Alkaline Earth Metal (mg, Ca, Sr, Or Ba) Patents (Class 423/635)
  • Publication number: 20110268956
    Abstract: The invention relates to a process for obtaining ceramic coatings and ceramic coatings obtained. This process allows obtaining coatings of ceramic oxides, such as ZrO2, Al2O3, TiO2, Cr2O3, Y2O3, SiO2, CaO, MgO, CeO2, Sc2O3, MnO, and/or complex mixtures thereof, by means of a high frequency pulse detonation technique in which the relative movement between the combustion stream and the substrate or piece to be coated takes place at a speed that produces an overlap between the successive coating areas exceeding 60% of the surface of a coating area. The allows producing ceramic coatings with a thickness greater than 30 microns in a single pass.
    Type: Application
    Filed: May 12, 2006
    Publication date: November 3, 2011
    Applicant: FUNDACION INASMET
    Inventors: Inaki Fagoaga Altuna, Maria Parco Camacaro, Georgiy Barikyn, Carlos Vaquero Gonzalez
  • Publication number: 20110239825
    Abstract: The present invention provides a metal component collection agent for collecting one or more metal components from a metal component-containing material; the agent containing, as an active ingredient, a compound containing one or more group 2 elements of the periodic table, or a compound containing one or more lanthanoid elements. The present invention further provides a method for collecting one or more metal components from a metal component-containing material; the method comprising heating the metal component-containing material and the metal component collection agent in such a manner that a metal vapor or metal oxide vapor produced by heating the metal component-containing material is brought into contact with the metal component collection agent. According to the present invention, metal components can be easily and efficiently collected from materials containing highly useful metal components such as noble or rare metal.
    Type: Application
    Filed: March 29, 2011
    Publication date: October 6, 2011
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Katsuhiro Nomura, Hiroyuki Kageyama
  • Publication number: 20110219986
    Abstract: The invention relates to a slaked lime composition containing Ca(OH)2 particles of platelet crystalline morphology, called platelets, said platelets having a diameter D, this being the diameter of the circle circumscribing the platelet, a thickness e and an aspect ratio given by the ratio of said diameter of the platelet-circumscribing circle to said thickness, said composition having a platelet content of between 50 and 100% relative to the sum of the Ca(OH)2 particles and said aspect ratio being between 10 and 300, and to its manufacturing process.
    Type: Application
    Filed: October 29, 2009
    Publication date: September 15, 2011
    Inventors: Marion Gross-Lorgouilloux, Gaetan Blandin, Thierry Chopin
  • Patent number: 8013204
    Abstract: A novel use of delayed reactivity partly prehydrated lime (“DRQL”), which is comprised of 40 to 98% by weight of CaO and of 60 to 2% by weight of Ca(OH)2, preferably of 80 to 92% by weight of CaO and of 20 to 8% by weight of Ca(OH)2, and more preferably of 85 to 90% by weight of CaO and of 15 to 10% by weight of Ca(OH)2, in the field of the separation of solid matter from the liquid of a suspension. The invention also involves a novel method for treating a sludge, in which the solid matter is concentrated, dried and recovered using the delayed reactivity partly prehydrated lime. It additionally relates to, as a novel industrial product, the purified sludge obtained according to the method.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: September 6, 2011
    Assignees: Sicab-Carmeuse France
    Inventors: Marc Gombart, Jean-Yves Tilquin, Stéphane Bartiaux
  • Publication number: 20110198285
    Abstract: A desalination and minerals extraction process includes a desalination facility fluidly coupled to a minerals extraction facility. The desalination facility includes a nanofiltration membrane section producing a first tailings stream and a reverse osmosis membrane section producing a second tailings stream and a desalinated water outlet stream from an inlet feed stream. The extraction facility produces at least one mineral compound, an extraction tailings stream, and a second desalinated water outlet stream. At least one of the first tailings stream and the second tailings stream is fed into the extraction facility. In certain exemplary embodiments, a natural gas combined cycle power unit supplies power to at least one of the desalination facility and the extraction facility. In certain exemplary embodiments, the extraction tailings stream is recycled into the desalination facility and there are no extraction tailings streams or desalination tailings streams discharged into the environment.
    Type: Application
    Filed: June 18, 2010
    Publication date: August 18, 2011
    Applicant: KATANA Energy LLC
    Inventor: Paul Steven Wallace
  • Publication number: 20110195142
    Abstract: A heat-reactive resist material of the invention is characterized in that the boiling point of the fluoride of the element is 200° C. or more. By this means, it is possible to achieve the heat-reactive resist material having high resistance to dry etching using fluorocarbons to form a pattern with the deep groove depth.
    Type: Application
    Filed: October 13, 2009
    Publication date: August 11, 2011
    Applicant: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Yoshimichi Mitamura, Kazuyuki Furuya, Norikiyo Nakagawa, Masatoshi Maeda
  • Patent number: 7976806
    Abstract: A granular material having a high strength and a large BET specific surface area composed of porous particles comprising calcium oxide and calcium hydroxide wherein the calcium oxide is contained in an amount of 30 to 80 weight % based on a total amount of the calcium oxide and calcium hydroxide and the porous particles have a BET specific surface area of 40 m2/g or more, or composed of porous particles comprising calcium oxide, magnesium oxide, calcium hydroxide, and magnesium hydroxide wherein a ratio of an amount of magnesium to a total of an amount of calcium and an amount of magnesium is in the range of 0.05 to 0.80, a total hydroxide content in the whole particles is in the range of 1 to 20 weight % and the porous particles have a BET specific surface area of 50 m2/g or more.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: July 12, 2011
    Assignees: Ube Material Industries, Ltd., Taiyo Nippon Sanso Corporation
    Inventors: Osamu Misumi, Shinichi Yamamoto, Takayuki Watanabe, Takashi Kishimoto, Takashi Watanabe, Fumio Okada, Yoshio Ishihara, Katsumasa Suzuki, Kaoru Sakoda
  • Patent number: 7972586
    Abstract: The present invention relates to a fluorine-containing magnesium oxide powder using a vapor phase reaction and a method of preparing the same and more particularly to a fluorine-containing magnesium oxide powder brings about a cathode-luminescence emission having a peak within a wavelength range of 220 to 320 nm upon being excited by electron beams. The present invention provides a fluorine-containing magnesium oxide powder using a vapor phase reaction that sprays fluorine-containing gas and oxygen-containing gas to magnesium vapor, and the purity of magnesium oxide containing fluorine (i.e. the purity of fluorine-containing magnesium oxide) of 0.001 to 2 wt % is at least 98 wt % and a BET specific surface area thereof is 0.1 to 50 m2/g.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: July 5, 2011
    Assignee: Daejoo Electronic Materials Co., Ltd.
    Inventors: Seung-min Oh, Jong-hoon Byun, Yoon-gu Hwang
  • Patent number: 7972584
    Abstract: Magnesiothermic methods of producing solid silicon are provided. In a first embodiment, solid silica and magnesium gas are reacted at a temperature from 400° C. to 1000° C. to produce solid silicon and solid magnesium oxide, the silicon having a purity from 98.0 to 99.9999%. The silicon is separated from the magnesium oxide using an electrostatic technology. In a second embodiment, the solid silicon is reacted with magnesium gas to produce solid magnesium silicide. The magnesium silicide is contacted with hydrogen chloride gas or hydrochloric acid to produce silane gas. The silane gas is thermally decomposed to produce solid silicon and hydrogen gas, the silicon having a purity of at least 99.9999%. The solid silicon and hydrogen gas are separated into two processing streams. The hydrogen gas is recycled for reaction with chlorine gas to produce hydrogen chloride gas.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: July 5, 2011
    Assignee: Orion Laboratories, LLC
    Inventor: James G. Blencoe
  • Publication number: 20110158874
    Abstract: A process for the separation of carbon dioxide from gas mixtures is disclosed in which a metal oxide sorbent, which is used to capture and release carbon dioxide, is recycled. The process incorporates the regeneration of the carbon dioxide capture capacity of the metal oxide to maintain a high capture capacity over many cycles. The regeneration involves hydrating the metal oxide and then heating the resulting metal hydroxide under a gas atmosphere that is effective to suppress the dehydration of the hydroxide so that dehydration occurs at an elevated temperature. The regeneration may also be used independently from the carbon dioxide separation process to produce, from a metal hydroxide, a metal oxide having an enhanced resistance to attrition and fragmentation.
    Type: Application
    Filed: June 5, 2009
    Publication date: June 30, 2011
    Inventors: Stuart Smedley, Vlatko Materic, Caeolyn Mary Henderson
  • Publication number: 20110147679
    Abstract: The present invention provides a method for recovering an oxide-containing battery material from a waste battery material. The recovery method includes steps (1) and (2) in this order: (1) a step of immersing a base taken out of the waste battery material and the base having an oxide-containing battery material, in a solvent that does not substantially dissolve the oxide, and stripping the battery material from the base thereby, and (2) a step of separating the battery material from the base.
    Type: Application
    Filed: June 30, 2009
    Publication date: June 23, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Hiroshi Inukai, Toshinori Isobe, Kenji Nakane
  • Publication number: 20110136013
    Abstract: A method is disclosed for coating a positive active material of a lithium-ion battery. The method includes the step of dissolving at least one salt that contains a coating metal in a solvent to provide a solution, the step of dissolving a lithium-containing positive active material in the solution and adjusting the pH value of the solution to deposit M(OH)2n on the lithium-containing positive active material, the step of drying the M(OH)2n and the lithium-containing positive active material, and the step of sintering the M(OH)2n and the lithium-containing positive active material to coat the lithium-containing positive active material with MOn.
    Type: Application
    Filed: December 7, 2009
    Publication date: June 9, 2011
    Inventors: Na Liu, Meng-Yao Wu, Lei-Min Xu, Lu Li, Rui Xu, Feng-Gang Zhao
  • Publication number: 20110059001
    Abstract: The present application is directed to a method and system for monetizing energy. More specifically, the invention is directed to the economically efficient utilization of remote or stranded natural gas resources. The invention includes importing a high energy density material into an energy market and distributing the high energy density material (HEDM) therein. The HEDM is produced from reduction of a material oxide such as boria into the HEDM, which may be boron. The reduction utilizes remote hydrocarbon resources such as stranded natural gas resources.
    Type: Application
    Filed: April 9, 2009
    Publication date: March 10, 2011
    Inventors: Bruce T. Kelley, Harry W. Deckman, Stephen Mark Davis, Frank Hershkowitz
  • Publication number: 20110045299
    Abstract: The present invention refers to a method to prepare nanometric magnesium hydroxide particles. These particles have an average diameter that ranges from 90 to 110 nm, and that could range from 20 to 160 nm, with monodisperse and stable characteristics for greater than 12 month in a wide range of concentrations. This process includes 3 stages: one reaction stage performed in two steps, one of maturation and one of purification. The first step of the reaction is developed in micro blending zone, and the second one is the stabilization of suspension. During the second stage, the particles maturation is developed through a chemical-mechanic treatment. The last stage is designed to purify and concentrate the material, as well as its preparation to integrate it to the desired form.
    Type: Application
    Filed: April 3, 2007
    Publication date: February 24, 2011
    Inventor: Jesús Manuel Martínez
  • Patent number: 7892447
    Abstract: Nanoplatelet forms of metal hydroxide and metal oxide are provided, as well as methods for preparing same. The nanoplatelets are suitable for use as fire retardants and as agents for chemical or biological decontamination.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: February 22, 2011
    Assignee: Aqua Resources Corporation
    Inventor: Orville Lee Maddan
  • Patent number: 7867471
    Abstract: A process of producing a ceramic powder including providing a plurality of precursor materials in solution, wherein each of the plurality of precursor materials in solution further comprises at least one constituent ionic species of a ceramic powder, combining the plurality of precursor materials in solution with an onium dicarboxylate precipitant solution to cause co-precipitation of the ceramic powder precursor in a combined solution; and separating the ceramic powder precursor from the combined solution. The process may further include calcining the ceramic powder precursor.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: January 11, 2011
    Assignee: SACHEM, Inc.
    Inventor: Wilfred Wayne Wilson
  • Publication number: 20100322836
    Abstract: The present invention discloses a continuous calcination vessel which can be used to prepare calcined chemically-treated solid oxides from solid oxides and chemically-treated solid oxides. A process for the continuous preparation of calcined chemically-treated solid oxides is also provided. Calcined chemically-treated solid oxides disclosed herein can be used in catalyst compositions for the polymerization of olefins.
    Type: Application
    Filed: June 23, 2009
    Publication date: December 23, 2010
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Elizabeth A. Benham, Max P. McDaniel
  • Publication number: 20100308710
    Abstract: A plasma display panel (PDP) including a protective layer and a material for preparing the protective layer that can be easily fabricated and has little defects, includes a magnesium oxide (MgO) powder including a cathode rays emission spectrum having a first emission peak in a wavelength in the range of 300 to 450 nm, a second emission peak in a wavelength in the range of 650 to 750 nm, and an intensity ratio between 1:0.15 and 0.40 as an intensity ratio of the second emission peak with respect to the first emission peak.
    Type: Application
    Filed: June 4, 2010
    Publication date: December 9, 2010
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Hee-Young Chu, Sung-Hwan Moon, Dong-Hyun Kang, Yuri Matulevich, Jae-Hyuk Kim, Mi-Hyun Lee, Chang-Hyuk Kim, Jong-Seo Choi
  • Patent number: 7824642
    Abstract: A forsterite powder with superior characteristics which can be sintered at a relatively low temperature can be economically produced, when a magnesium source, a silicon source, and copper particles are mixed to prepare a mixed powder containing 300 to 2,000 ppm by weight of the copper particles, and the mixed powder is fired. The magnesium source used is preferably Mg(OH)2, and the silicon source used is preferably SiO2. A polycrystalline forsterite powder is preferably produced. The magnesium source, the silicon source, and the copper particles can be mixed in the presence of a solvent to prepare the mixed powder. The forsterite powder preferably contains 300 to 2,000 ppm by weight of copper, has a particle size of 0.20 to 0.40 ?m and has a crystal size of 0.034 to 0.040 ?m.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: November 2, 2010
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoichi Moriya, Naoya Mori
  • Publication number: 20100266845
    Abstract: Magnesium oxide powders having a large diameter of crystallite, and having a favorable crystallinity are provided. Magnesium oxide powders: having peak widths at half-height of the peaks on a (111) plane, a (200) plane and a (220) plane of each no greater than 0.20 degrees as determined with a powder X-ray diffraction method carried out using a Cu—K? ray; and having a crystallite diameter of no less than 700 ?.
    Type: Application
    Filed: May 30, 2008
    Publication date: October 21, 2010
    Applicant: TATEHO CHEMICAL INDUSTRIES CO., LTD.
    Inventors: Yoshihisa Ohsaki, Atsuya Kawase, Kaori Yamamoto
  • Publication number: 20100233767
    Abstract: A process for the recovery of magnesium from a solution containing soluble magnesium, the process comprising, precipitating magnesium hydroxide from the solution, forming an oxide blend including magnesium oxide derived from the precipitated magnesium hydroxide together with calcium oxide, reducing the oxide blend to form a magnesium metal vapour and condensing the vapour to recover magnesium metal.
    Type: Application
    Filed: June 30, 2008
    Publication date: September 16, 2010
    Inventor: David McMurran
  • Patent number: 7794688
    Abstract: Magnesium oxychloride cement is formed by mixing a magnesium chloride (MgCl2) brine solution with a magnesium oxide (MgO) composition in a selected stoichiometric ratio of MgCl2, MgO, and H2O that forms the 5 phase magnesium oxychloride cement composition. Although Sorel cements formed from the mixture of MgCl2, MgO can form a variety of compounds, the inventive systems and methods provide for controlling the cement kinetics to form the five phase magnesium oxychloride cement composition and results in an improved and stable cement composition. Various fillers can be optionally added to form preferred cement materials for uses as diverse such as road stripping, fire-proofing, fire barriers, cement repair, and mortar.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: September 14, 2010
    Assignee: Maya Magstone, Inc.
    Inventors: George Eccles Caine, Charles W. Ellis
  • Publication number: 20100196239
    Abstract: Calcium hydroxide particles with very high reactivity exhibiting an X-ray diffraction line at d=0.49 nm obtained by the Debye-Scherrer powder method with an intensity below 50% of the intensity of a traditional hydrated lime with a specific surface area of 15.8 m2/g.
    Type: Application
    Filed: April 15, 2010
    Publication date: August 5, 2010
    Applicant: LIME TECHNOLOGY CONSULTING SPRL
    Inventor: Philippe Dumont
  • Publication number: 20100184580
    Abstract: Glass-ceramic sealant is disclosed for planar solid oxide fuel cells. The glass-ceramic sealant includes 0 to 40 mol % of silicon oxide, 0 to 15 mol % boron oxide, 0 to 10 mol % of aluminum oxide, 0 to 40 mol % of barium oxide, 0 to 15 mol % of calcium oxide, 0 to 15 mol % of lanthanum oxide and 0 to 5 mol % of zirconium dioxide. At 0° C. to 600° C., the thermal expansion coefficient of the sealant is 8 to 10 ppm/° C.
    Type: Application
    Filed: January 14, 2008
    Publication date: July 22, 2010
    Applicant: ATOMIC ENERGY COUNCIL - INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: Chien-Kuo Liu, Tung-Yuan Yung, Kin-Fu Lin, Ruey-Yi Lee, Tzang-Sheng Lee
  • Patent number: 7749483
    Abstract: Disclosed is a processes for the production of relatively high purity alkaline earth metal oxides, such as SrO, from relatively low purity forms of carbonated or other oxygenated forms of such metals, such as strontium carbonate. The relatively low purity material is exposed to conditions under which at least a portion of the metal contained therein is converted to a salt that is more readily solvated in a provided solvent than the starting material, while at the same time not substantially increasing the solubility of at least one or more of the impurities in such selected solvent. This step is then preferably followed by removal of solid or otherwise un-dissolved impurities from the solution. After the removal step, the solution is preferably exposed to conditions effective to form a relatively insoluble salt of the alkaline earth metal, such as a strontium salt. The insoluble salt is also preferably one that can be readily and effectively converted to the desired alkaline earth metal oxide, preferably SrO.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: July 6, 2010
    Assignee: Honeywell International Inc.
    Inventors: Thomas Scholten, Michael Fooken, Jessica Mauer, Andreas Kanschik-Conradsen, Michael Hau
  • Publication number: 20100104493
    Abstract: Devices and components that can interact with or modify propagation of electromagnetic waves are provided. The design, fabrication and structures of the devices exploit the properties of reactive composite materials (RCM) and reaction products thereof.
    Type: Application
    Filed: March 11, 2009
    Publication date: April 29, 2010
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Edward K.Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, Thomas J. Nugent, JR., Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, JR.
  • Patent number: 7704482
    Abstract: Provided is a method for producing a carbon nanotube, wherein a catalyst for carbon nanotube production comprising a powdery catalyst supporting a metal on magnesia and having a bulk density of 0.30 g/mL to 0.70 g/mL, in a vertical reactor, is disposed over the whole area in a horizontal cross section direction of the reactor, in such state a carbon-containing compound flowed in a vertical direction inside the reactor is contacted with the catalyst at 500 to 1200° C., thereby carbon nanotubes of uniformity and high quality are efficiently synthesized in a large amount.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: April 27, 2010
    Assignee: TORAY Industries, Inc.
    Inventors: Kenichi Sato, Keisuke Fujita, Masayuki Maeda, Masahito Yoshikawa, Kazuyoshi Higuchi
  • Patent number: 7704477
    Abstract: A forsterite powder with superior characteristics which can be sintered at a relatively low temperature can be economically produced, when a magnesium source, a silicon source, and copper particles are mixed to prepare a mixed powder containing 300 to 2,000 ppm by weight of the copper particles, and the mixed powder is fired. The magnesium source used is preferably Mg(OH)2, and the silicon source used is preferably SiO2. A polycrystalline forsterite powder is preferably produced. The magnesium source, the silicon source, and the copper particles can be mixed in the presence of a solvent to prepare the mixed powder. The forsterite powder preferably contains 300 to 2,000 ppm by weight of copper, has a particle size of 0.20 to 0.40 ?m and has a crystal size of 0.034 to 0.040 ?m.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: April 27, 2010
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoichi Moriya, Naoya Mori
  • Patent number: 7704906
    Abstract: A semiconductor porcelain composition [(BiNa)x(Ba1-yRy)1-x]TiO3 with 0<x?0.2, 0<y?0.02 and R being selected from the group consisting of La, Dy, Eu, Gd or Y is prepared by separately calcining a composition of (BaR)TiO3 at a temperature of 900° C. through 1300° C. and calcining a composition of (BiNa)TiO3 at a temperature of 700° C. through 950° C., and then mixing the two calcined powders and forming and sintering the mixed calcined powder. Similarly, a semiconductor porcelain composition [(BiNa)x(Ba1-x][Ti1-zMz]O3 with 0<x?0.2, 0<z?0.005 and M being selected from the group consisting of Nb, Ta and Sb is prepared by separately calcining a composition of (BaM)TiO3 at a temperature of 900° C. through 1300° C. and calcining a composition of (BiNa)TiO3 at a temperature of 700° C. through 950° C., and then mixing the two calcined powders, and forming and sintering the mixed calcined powders.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: April 27, 2010
    Assignee: Hitachi Metals, Ltd.
    Inventors: Takeshi Shimada, Koichi Terao, Kazuya Toji
  • Patent number: 7700509
    Abstract: A method of producing a semiconductor disk represented by a composition formula [(Bi0.5Na0.5)x(Ba1?yRy)1?x]TiO3, in which R is at least one element of La, Dy, Eu, Gd and Y and x and y each satisfy 0?x?0.14, and 0.002?y?0.02 includes carrying out a sintering in an inert gas atmosphere with an oxygen concentration of 9 ppm to 1% and wherein a treatment at an elevated temperature in an oxidizing atmosphere after the sintering is not carried out.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: April 20, 2010
    Assignee: Hitachi Metals, Ltd.
    Inventors: Takeshi Shimada, Koichi Terao, Kazuya Toji
  • Patent number: 7691200
    Abstract: Provided is a MgO single crystal for obtaining a magnesium oxide (MgO) single crystal deposition material which is prevented from splashing during the vapor deposition in, e.g., an electron beam deposition method without reducing the deposition rate, and for obtaining a MgO single crystal substrate which can form thereon, e.g., a superconductor thin film having excellent superconducting properties. A MgO single crystal having a calcium content of 150×10?6 to 1,000×10?6 kg/kg and a silicon content of 10×10?6 kg/kg or less, wherein the MgO single crystal has a variation of 30% or less in terms of a CV value in detected amounts of calcium fragment ions, as analyzed by TOF-SIMS with respect to the polished surface of the MgO single crystal. A MgO single crystal deposition material and a MgO single crystal substrate for forming a thin film obtained from the MgO single crystal.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: April 6, 2010
    Assignee: Tateho Chemical Industries Co., Ltd
    Inventors: Atsuo Toutsuka, Yoshifumi Kawaguchi, Masaaki Kunishige
  • Patent number: 7686986
    Abstract: Magnesium hydroxide nanoparticles are made from a magnesium compound that is reacted with an organic dispersing agent (e.g., a hydroxy acid) to form an intermediate magnesium compound. Magnesium hydroxide nanoparticles are formed from hydrolysis of the intermediate compound. The bonding between the organic dispersing agent and the magnesium during hydrolysis influences the size of the magnesium hydroxide nanoparticles formed therefrom. The magnesium hydroxide nanoparticles can be treated with an aliphatic compound (e.g., a monofunctional alcohol) to prevent aggregation of the nanoparticles during drying and/or to make the nanoparticles hydrophobic such that they can be evenly dispersed in a polymeric material. The magnesium hydroxide nanoparticles exhibit superior fire retarding properties in polymeric materials compared to known magnesium hydroxide particles.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: March 30, 2010
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Zhenhua Zhou, Zhihua Wu, Bing Zhou
  • Patent number: 7678351
    Abstract: Applying an acid treatment to eggshells provides a sorbent with unexpectedly high CO2 capture capacity and ability to regenerate.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: March 16, 2010
    Assignee: The Ohio State University
    Inventors: Mahesh V. Iyer, Liang-Shih Fan
  • Publication number: 20100060139
    Abstract: Disclosed is a material for forming a protective layer, a protective layer employing the material and a PDP with the protective layer. Unlike conventional protective layers which employ MgO created in conditions of pressurized artificial gas, the instant protective layer uses MgO created by heating Mg and allowing it to oxidize naturally in air. The result is MgO with fewer defects that is more effective as a protective layer in many uses, such as in a PDP. The instant MgO also shows many specific spectral characteristics and contains impurities in amounts of less than about 2 ppm each. Also disclosed is a PDP which takes advantage of the advantages of the inventive protective layer.
    Type: Application
    Filed: March 20, 2009
    Publication date: March 11, 2010
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Jae-Hyuk Kim, Sung-Hwan Moon, Dong-Hyun Kang, Yury Matulevich, Hee-Young Chu, Mi-Hyun Lee, Chang-Hyuk Kim, Jong-Seo Choi
  • Publication number: 20100031816
    Abstract: There is described a method for the removal of gaseous contaminants from the housings of devices sensitive to the presence of such contaminants by means of nanostructured sorbers, wherein the sorber is in the form of a fiber containing an active material at its inside. Nanostructured sorbers and their manufacturing method are also described.
    Type: Application
    Filed: April 1, 2008
    Publication date: February 11, 2010
    Inventors: Roberto Giannantonio, Lorena Cattaneo
  • Patent number: 7622090
    Abstract: The invention relates to a method for separating uranium(VI) from one or more actinides selected from actinides(IV) and actinides(VI) other than uranium(VI), characterized in that it comprises the following steps: a) bringing an organic phase, which is immiscible with water and contains the said uranium and the said actinide or actinides, in contact with an aqueous acidic solution containing at least one lacunary heteropolyanion and, if the said actinide or at least one of the said actinides is an actinide(VI), a reducing agent capable of selectively reducing this actinide(VI); and b) separating the said organic phase from the said aqueous solution. Applications: reprocessing irradiated nuclear fuels, processing rare-earth, thorium and/or uranium ores.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: November 24, 2009
    Assignees: Commissariat a l'Energie Atomique, Compagnie General des Matieres Nucleaires
    Inventors: Binh Dinh, Michaël Lecomte, Pascal Baron, Christian Sorel, Gilles Bernier
  • Patent number: 7608238
    Abstract: Periclase MgO having a nanosheet structure. The distance of the lattice planes in HRTEM is ?0.24 nm-0.25 nm. Method of preparing periclase MgO having a nanosheet structure including preparation of Mg(OCH3)2 in methanol solution. 4-methoxy benzy alcohol (MBZ) or 4-nitro benzyl alcohol (NBZ) or a mixture thereof is added in a ration of Mg to MBZ and/or NBZ of at least 1. Water/methanol mixture is added to the system. Solvent removal and calcinations in air is performed of the mixture.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: October 27, 2009
    Assignee: International University Bremen GmbH
    Inventors: Ryan Richards, Kake Zhu, Christian Kubel
  • Patent number: 7582276
    Abstract: The invention relates to nanoscale rutile or oxide powder that is obtained by producing amorphous TiO2 by mixing an alcoholic solution with a titanium alcoholate and with an aluminum alcohalate and adding water and acid. The amorphous, aluminum-containing TiO2 is isolated by removing the solvent, and is redispersed in water in the presence of a tin salt. Thermal or hydrothermal post-processing yields rutile or oxide that can be redispersed to primary particle size. The n-rutile or the obtained oxide having a primary particle size ranging between 5 and 20 nm can be incorporated into all organic matrices so that they remain transparent. Photocatalytic activity is suppressed by lattice doping with trivalent ions. If the amorphous precursor is redispersed in alcohol, or not isolated, but immediately crystallized, an anatase is obtained that can be redispersed to primary particle size.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: September 1, 2009
    Assignee: ITN Nanovation AG
    Inventor: Ralph Nonninger
  • Publication number: 20090211493
    Abstract: The invention concerns a new synthetic mineral matter containing carbonate, the decomposition of which reduces the rate of fossil fuel carbon dioxide emission. It also concerns its manufacture in batches, or in a batch-continuous manner, or in a continuous manner, together with its uses in the pharmaceutical field, the field of human or animal foodstuffs, or again the papermaking field with, notably, manufacture of paper, filler or coating, or again every other paper surface treatment, together with the fields of water-based or non-water-based paints, together with the field of plastics, such as that of breathable polyethylene films, or again the field of printing inks.
    Type: Application
    Filed: May 11, 2006
    Publication date: August 27, 2009
    Applicant: OMYA DEVELOPMENT AG
    Inventors: Matthias Buri, Thoralf Gliese
  • Patent number: 7553462
    Abstract: A method for the production of Mg(OH)2 nanoparticles, by means of polyol-mediated synthesis, from an Mg precursor as well as a base. The particles produced with this method have a diameter between 10 nm to 300 nm, have a mono-disperse particle distribution, and are present in non-agglomerated form. They can be converted to MgO particles by means of calcination.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: June 30, 2009
    Assignee: K&S Aktiengesellschaft
    Inventors: Claus Feldmann, Sascha Ahlert, Jörg-Heino Sachse, Ingo Stahl
  • Patent number: 7553474
    Abstract: It is an object to provide a method for producing stable alkaline metal oxide sols having a uniform particle size distribution. The method comprises the steps of: heating a metal compound at a temperature of 60° C. to 110° C. in an aqueous medium that contains a carbonate of quaternary ammonium; and carrying out hydrothermal processing at a temperature of 110° C. to 250° C. The carbonate of quaternary ammonium is (NR4)2CO3 or NR4HCO3 in which R represents a hydrocarbon group, or a mixture thereof. The metal compound is one, or two or more metal compounds selected from a group of compounds based on a metal having a valence that is bivalent, trivalent, or tetravalent.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: June 30, 2009
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Yutaka Ohmori, Hirokazu Kato, Yoshinari Koyama, Kenji Yamaguchi
  • Patent number: 7544345
    Abstract: A magnesium oxide single crystal having controlled crystallinity has a subboundary, and ranges of variation of diffraction line positions, as measured for reciprocal lattice maps with respect to a region surrounded by the same subboundary, with the range of the variation of 1×10?3 to 2×10?2 degree of on ?? coordinates, and with the range of the variation of 4×10?4 to 5×10?3 degree on 2? coordinates.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: June 9, 2009
    Assignee: Tateho Chemical Industries Co., Ltd.
    Inventors: Atsuo Toutsuka, Yoshifumi Kawaguchi, Masaaki Kunishige
  • Publication number: 20090123354
    Abstract: A solid material is presented for the partial oxidation of natural gas. The solid material includes a solid oxygen carrying agent and a hydrocarbon activation agent. The material precludes the need for gaseous oxygen for the partial oxidation and provides better control over the reaction.
    Type: Application
    Filed: November 14, 2007
    Publication date: May 14, 2009
    Inventors: Deng-Yang Jan, Joel T. Walenga, Kurt M. Vanden Bussche, Joseph A. Kocal, Lisa M. King
  • Patent number: 7517614
    Abstract: The negative active material for a rechargeable lithium battery of the present invention includes a carbonaceous material and a silicon-based compound represented by Formula 1: Si(1-y)MyO1+x(1) where 0?y?1, ?0.5?x?0.5, and M is selected from the group consisting of Mg, Ca, and mixtures thereof.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: April 14, 2009
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Goo-Jin Jeong, Sang-Min Lee, Sung-Soo Kim, Yoshiaki Nitta
  • Patent number: 7514489
    Abstract: The invention provides a submicron magnesium hydroxide particulate composition comprising a first distribution of magnesium hydroxide particles having a D50 of no more than about 0.30 ?m, a D90 of no more than about 1.5 ?m, and a BET surface area of at least about 35 m2/g, which can be used as a flame-retardant additive for synthetic polymers, optionally in combination with other flame-retardant additives such as nanoclays and larger-sized magnesium hydroxide particulate compositions. Polymeric resins comprising the submicron magnesium hydroxide particles and methods of manufacturing submicron magnesium hydroxide particles are also provided.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: April 7, 2009
    Assignee: Martin Marietta Materials, Inc.
    Inventors: Lemuel O. Granada, Jr., James Innes, David Morgan Smith, Mark Wajer
  • Publication number: 20090062556
    Abstract: A carrier for a catalyst useful for the epoxidation of an olefin which comprises an inert, refractory solid carrier is provided. The carrier has no or little absolute volume from small pores, of less than 1 micrometer, and large pores, of above 5 micrometer. By “no or little absolute volume from small pores of less than 1 micron” it is meant that the pore volume of such pores is less than 0.20 ml/g. By “no or little absolute volume from large pores of above 5 micron” it is meant that the pore volume of such pores is less than 0.20 ml/g. The invention further provides a catalyst useful for the epoxidation of an olefin supported on such a carrier and a process for the oxidation of an olefin, especially ethylene, to an olefin oxide, especially ethylene oxide.
    Type: Application
    Filed: August 30, 2007
    Publication date: March 5, 2009
    Applicant: SD LIZENZVERWERTUNGSGESELLSCHAFT MBH & CO. KG
    Inventor: Serguei Pak
  • Publication number: 20090041818
    Abstract: An antiviral agent having been experimentally supported which contains a powder obtained by baking (calcining) dolomite and hydrating a part thereof. Thus, it is possible to provide an antiviral agent which is usable in masks, filters, etc. because of acting directly on viral particles, thus eliminating the infectious capacity of the virus and preventing the invasion of the virus into cells; and a mask and a filter with the use of the antiviral agent.
    Type: Application
    Filed: August 10, 2004
    Publication date: February 12, 2009
    Inventors: Koichi Otsuki, Toshihiro Ito, Toshiyuki Murase, Hiroshi Ito, Kazuo Wakabayashi, Masami Yakura, Hideaki Yamana
  • Patent number: 7488464
    Abstract: Methods and systems for processing metal oxides from metal containing solutions. Metal containing solutions are mixed with heated aqueous oxidizing solutions and processed in a continuous process reactor or batch processing system. Combinations of temperature, pressure, molarity, Eh value, and pH value of the mixed solution are monitored and adjusted so as to maintain solution conditions within a desired stability area during processing. This results in metal oxides having high or increased pollutant loading capacities and/or oxidation states. These metal oxides may be processed according to the invention to produce co-precipitated oxides of two or more metals, metal oxides incorporating foreign cations, metal oxides precipitated on active and inactive substrates, or combinations of any or all of these forms.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: February 10, 2009
    Assignee: EnviroScrub Technologies Corporation
    Inventors: Charles F. Hammel, Richard M. Boren
  • Patent number: 7476376
    Abstract: Disclosed is metal composite oxides having the new crystal structure. Also disclosed are ionic conductors including the metal composite oxides and electrochemical devices comprising the ionic conductors. The metal composite oxides have an ion channel formed for easy movement of ions due to crystallographic specificity resulting from the ordering of metal ion sites and metal ion defects within the unit cell. Therefore, the metal composite oxides according to the present invention are useful in an electrochemical device requiring an ionic conductor or ionic conductivity.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: January 13, 2009
    Assignee: LG Chem, Ltd.
    Inventors: Seung Tae Hong, Yun Ho Roh, Eung Je Lee, Mi Hyae Park
  • Patent number: 7468169
    Abstract: This invention provides a production process, which can stably produce high-quality satin white (calcium trisulfoaluminate) having very small and homogeneous particulate shapes suitable for incorporation into coated paper for printing, and an apparatus for use in said process. In this process for producing calcium trisulfoaluminate, a calcium hydroxide suspension (A) is reacted with an aqueous aluminum sulfate solution (B) to produce calcium trisulfoaluminate (C). The aqueous aluminum sulfate solution (B) is added in plurality of stages to the calcium hydroxide suspension (A). At least any one stage of the plurality of stages addition, addition of the aqueous aluminum sulfate solution (B) to the calcium hydroxide suspension (A) is carried out in such a manner that the aqueous aluminum sulfate solution (B) is continuously added to the calcium hydroxide suspension (A) being continuously transferred.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: December 23, 2008
    Assignee: OJI Paper Co., Ltd.
    Inventors: Takayuki Kishida, Yuichi Ogawa, Yoshiki Kojima, Takuya Ono, Kenichi Mitsui, Tetsuya Hirabayashi, Masaki Nakano