Errodable, Resorbable, Or Dissolving Patents (Class 424/426)
  • Patent number: 11213564
    Abstract: A wound healing composition and method for treating acute and chronic wounds and skin conditions includes a wound healing composition or formulation including a mixture of buckwheat honey, methylglyoxal and bacitracin.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: January 4, 2022
    Assignee: SANMELIX LABORATORIES, INC.
    Inventor: Kenneth A Sabacinksi
  • Patent number: 11197905
    Abstract: A composition includes a target pharmaceutical or biological agent, a solution containing the target pharmaceutical or biological agent, and substrate that is soluble in the solution. The substrate is capable of being solidified via a solidification process and the solidification process causes the substrate to become physically or chemically cross-linked, vitrified, or crystallized. As a result of the solidification process, particles are formed. The target pharmaceutical or biological agent within the solution retains proper conformation to ultimately produce a desired effect.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: December 14, 2021
    Assignee: TissueGen, Inc.
    Inventors: Jennifer Seifert, Paul R. Sood, Brent B. Crow, Kevin D. Nelson, Nickolas B. Griffin, Alpeshkumar P. Patel, Paul A. Hubbard
  • Patent number: 11191853
    Abstract: A marker for imaging includes a bio-dissolvable material and a contrast agent configured to provide contrast during an imaging procedure. A method can include forming a marker for imaging from a bio-dissolvable material and impregnating the bio-dissolvable material with a contrast agent. A method can include implanting a bio-dissolvable marker for imaging into a patient.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: December 7, 2021
    Assignee: The Johns Hopkins University
    Inventors: Michael Lim, Henry Brem, Betty Tyler, Jason Liauw, Sheng-Fu Lo
  • Patent number: 11186681
    Abstract: The invention generally relates to compositions comprising degradable polymers and methods of making degradable polymers. Specifically, the disclosed degradable polymers comprise a biodegradable polymer backbone, a nitric oxide linker moiety, and a nitric oxide molecule. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: November 30, 2021
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Mark Schoenfisch, Lei Yang, Yuan Lu
  • Patent number: 11160905
    Abstract: A regenerative material in the connective tissues (such as bone, dentin or pulp) regeneration field. More precisely, a connective tissue regenerative material, preferably a bone, dentin or pulp regenerative material, including: a porous polymer matrix having interconnected pores; and non-hydrated calcium silicate particles; wherein: the polymer matrix is anhydrous; the non-hydrated calcium silicate particles have a d50granulometry, preferably ranging from 0.05 ?m to less than the average diameter size of the pores of the matrix; and the non-hydrated calcium silicate particles being coated on the inside walls of the pores of the matrix. Also, a method for preparing the connective tissue regenerative material and uses of the regenerative materials, such as in the dental field; especially, for providing regenerative materials with improved biomechanical and osteoinductive properties (i.e.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: November 2, 2021
    Assignees: SEPTODONT OU SEPTODONT SAS OU SPECIALITES SEPTODONT, UNIVERSITE DE PARIS, INSERM (INSTITUT NATIONAL DE LA SANTÉ ET DE LA RECHERCHE MÉDICALE), SORBONNE UNIVERSITE, ASSISTANCE PUBLIQUE—HOPITAUX DE PARIS
    Inventors: Fleur Beres, Gilles Richard, Arnaud Dessombz, Stéphane Simon, Juliane Isaac
  • Patent number: 11147747
    Abstract: Provided herein are compositions and kits including trichloroacetic acid, and methods of using the same for debridement during endodontic treatment.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: October 19, 2021
    Inventor: Terrell F. Pannkuk
  • Patent number: 11129925
    Abstract: Bioactive porous bone graft implants in various forms suitable for bone tissue regeneration and/or repair, as well as methods of use, are provided. The implants are formed of bioactive glass and have an engineered porosity. The implants may take the form of a putty, foam, fibrous cluster, fibrous matrix, granular matrix, or combinations thereof and allow for enhanced clinical results as well as ease of handling.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: September 28, 2021
    Assignee: PROSIDYAN, INC.
    Inventors: Charanpreet S. Bagga, Steve B. Jung, Hyun W. Bae
  • Patent number: 11116715
    Abstract: The present invention relates to a composition for dermal injection which includes two or more types of cross-linked hyaluronic acid particles having different particle diameters and non-cross-linked hyaluronic acid. The composition for dermal injection according to the present invention satisfies viscosity, extrusion force, and viscoelasticity conditions for dermal injection, and an extrusion force deviation is low so that the user does not feel fatigue when the composition is injected into the dermal thereof. Also, the composition is excellent in viscoelasticity and tissue restoring ability, is maintained for a long period of time, allows rapid recovery because an initial swelling degree is low, and also is excellent in safety and stability in the body.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: September 14, 2021
    Assignees: CG Bio Co., Ltd., DNCompany, Daewoong Pharmaceutical Co., Ltd.
    Inventors: Ji Sun Lee, Su Hyun Jung, Hak Su Jang, Jung Eun Choo, Hye Young Jung
  • Patent number: 11110694
    Abstract: Packaging material for food products with antimicrobial and antifungal properties including: a) a core layer of polymeric material including at least one active substance having antimicrobial and/or antifungal activity dispersed in the polymer matrix, b) a coating applied to a side of the core layer obtained from a lacquer or a polymeric paint including nano-fillers of a phyllosilicate or hydrotalcite, c) a coating for the release of an active antimicrobial or antifungal agent comprising encapsulated ethanol and a polymeric component selected from chitosan grafted with polyethylene glycol or cyclodextrin, a mixture of chitosan and polyethylene glycol and a polymer or mixture of polymers for printable paint applied to other side of the base layer; optionally the material further comprises: d) a coating with oxygen scavenger activity applied to the coating layer c) and/or a further coating e) including active substances of type b).
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: September 7, 2021
    Assignee: SOREMARTEC S.A.
    Inventor: Igor Romano
  • Patent number: 11103618
    Abstract: Provided is an injectable implant configured to fit at or near a bone defect to promote bone growth, the injectable implant comprising lyophilized demineralized bone matrix (DBM) being in fiber and particle forms; alginate; and a liquid carrier, wherein the DBM is in an amount of about 20 wt. % to about 40 wt. % of a total weight of the injectable implant, the alginate is in an amount of from about 3 wt. % to about 10 wt. % of the total weight of the injectable implant, and the liquid carrier is in an amount from about 50 wt. % to about 70 wt. % of the total weight of the injectable implant. A moldable implant and methods of making the implants are further provided.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: August 31, 2021
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Kerem N. Kalpakci, Daniel A. Shimko
  • Patent number: 11104901
    Abstract: The disclosed subject matter relates to brush polymer-oligonucleotide conjugates comprising oligonucleotides covalently attached to the backbone of a non-cationic, sterically congested brush polymer and the use of such polymer-oligonucleotide conjugates in antisense gene regulation and as diagnostic agents.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: August 31, 2021
    Assignee: Northeastern University
    Inventors: Ke Zhang, Xueguang Lu
  • Patent number: 11103613
    Abstract: In various aspects, the present invention provides a degradable and resorbable novel phosphate functionalized amino acid-based poly(ester urea) adhesive and related methods for its synthesis and use. These adhesives are formed from phosphate functionalized PEU polymers and copolymers crosslinked using one or more divalent metal crosslinking agents. The phosphate functionalized amino acid-based poly(ester urea) adhesives of various embodiments of the present invention have been found particularly effective in bonding bone to either bone or metal and have demonstrated adhesive strengths on bone samples that were significant and comparable to commercially available poly(methyl methacrylate) bone cement.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: August 31, 2021
    Assignee: The University of Akron
    Inventors: Matthew Becker, Vrushali Dinkar Bhagat
  • Patent number: 11096699
    Abstract: A drill guide to facilitate drilling a hole into a bone and inserting an anchor. The drill guide includes a handle extending to a proximal end and a guide shaft extending from the handle to a distal end. A recess extends into the handle at the proximal end. The drill guide also includes a channel extending through the recess and into the guide shaft and a contact surface extending from the recess. The contact surface may be a proximal surface on a ring extending circumferentially within the recess. The contact surface may alternatively be a proximal surface on a protrusion extending from and within the recess. For example, the protrusion is a triangular protrusion extending along the recess toward the channel. The contact surface allows for the use of inserters of varying sizes within the channel of the drill guide.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: August 24, 2021
    Assignee: CONMED CORPORATION
    Inventors: Grady Breslich, Trey Smith
  • Patent number: 11097033
    Abstract: A method of crosslinking a protein or peptide for use as a biomaterial, the method comprising the step of irradiating a photoactivatable metal-ligand complex and an electron acceptor in the presence of the protein or peptide, thereby initiating a cross-linking reaction to form a 3-dimensional matrix of the biomaterial.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: August 24, 2021
    Assignee: Cook Medical Technologies LLC
    Inventors: Alan George Brownlee, Christopher Malcolm Elvin, Jerome Anthony Werkmeister, John Alan Maurice Ramshaw, Charles Mark Lindall
  • Patent number: 11078244
    Abstract: A composition comprising a synthetic growth factor analogue comprising a non-growth factor heparin binding region, a linker and a sequence that binds specifically to a cell surface receptor and an osteoconductive material where the synthetic growth factor analogue is attached to and can be released from the osteoconductive material and is an amplifier/co-activator of osteoinduction.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: August 3, 2021
    Assignees: Ferring B.V., Brookhaven Science Associates, LLC
    Inventors: Paul Zamora, Brent Lee Atkinson, Xinhua Lin, Louis A. Pena
  • Patent number: 11077194
    Abstract: The present invention generally relates to nitric oxide releasing pharmaceutical compositions and methods of using the same.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: August 3, 2021
    Assignee: Novan, Inc.
    Inventor: Ryan Doxey
  • Patent number: 11065360
    Abstract: A medical hydrogel composition, a medical hydrogel, a preparation method therefore and an application thereof, and a medical hydrogel kit. The medical hydrogel composition comprises a first component and a second component; the first component comprises polylysine and polyethylene imine; the second component comprises one or more of 4-arm-polyethylene glycol-succinimidyl glutarate, 4-arm-polyethylene glycol-succinimidyl succinate, and 4-arm-polyethylene glycol-succinimidyl carbonate; the degree of polymerization of the polylysine is 20 or more. The medical hydrogel is formed by reacting the first component with the second component of the medical hydrogel composition. The medical hydrogel kit comprises the medical hydrogel composition and a buffer solution used for dissolving the components of the medical hydrogel composition. The medical hydrogel has a degree of swelling of ?10%-50%, and can be applied in narrow parts where cranial, spinal, and peripheral nerves are densely distributed.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: July 20, 2021
    Assignee: Medprin Regenerative Medical Technologies Co., Ltd.
    Inventors: Limin Lin, Yaya Yang, Cheng Ma, Kunxue Deng, Yuyu Yuan
  • Patent number: 11058804
    Abstract: Methods and devices are provided for promoting wound healing. In general, surgical staplers and staple components are provided having an effective amount of at least matrix metalloproteinase (MMP) inhibitor being effective to prevent MMP-mediated extracellular matrix degeneration during wound healing in tissue.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: July 13, 2021
    Assignee: Ethicon LLC
    Inventors: Tamara S. Widenhouse, Frederick E. Shelton, IV
  • Patent number: 10980921
    Abstract: A method for controlling generation of biologically desirable voids in a composition placed in proximity to bone or other tissue in a patient by selecting at least one water-soluble inorganic material having a desired particle size and solubility, and mixing the water-soluble inorganic material with at least one poorly-water-soluble or biodegradable matrix material. The matrix material, after it is mixed with the water-soluble inorganic material, is placed into the patient in proximity to tissue so that the water-soluble inorganic material dissolves at a predetermined rate to generate biologically desirable voids in the matrix material into which bone or other tissue can then grow.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: April 20, 2021
    Assignee: ORTHOMEDEX LLC
    Inventor: James A. Walls
  • Patent number: 10980882
    Abstract: A hydrogel delivery composition, including degradable microcapsules suspended in a degradable thermo-responsive hydrogel. The hydrogel is thermo-responsive at a physiological temperature and changes after application to a more solid state due to body temperatures. The composition includes one or more treatment agents to be released over time as the composition degrades. The composition can be varied to modify the structure and/or release of the treatment agent.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: April 20, 2021
    Inventor: Jennifer J. Kang-Mieler
  • Patent number: 10973856
    Abstract: Described our medical compositions and methods including a particulate extracellular matrix tissue in admixture with sugar. Such medical compositions, in dried forms, can demonstrate enhanced rehydration properties. Medical compositions and products as described herein find particular use in treating diseased and/or damaged tissue, such as wound repair. Related methods of manufacture and use are also described.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: April 13, 2021
    Assignee: Cook Biotech Incorporated
    Inventors: Michelle Chutka, Michael C. Hiles
  • Patent number: 10966848
    Abstract: Medical devices and method for manufacturing medical devices are discloses. An example medical device may include a medical device body formed from one or more multi-melting point polymeric filaments. Each of the filaments may include a polymeric blend comprising a first block polymer and a second polymer. The polymeric blend may have a first melting point and a second melting point less than the first melting point. The medical device body may be heat set at a temperature within 10° C. of the second melting point.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: April 6, 2021
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Gerald Fredrickson, Mark W. Boden, Emma Boutcher
  • Patent number: 10953139
    Abstract: A biodegradable cardiovascular implant is provided for growing cardiovascular tissue in a patient. The implant distinguishes an electro-spun network with supramolecular compounds having hard-blocks covalently bonded with soft-blocks resulting in much enhanced durability and fatigue resistance, while maintaining the effectiveness as a cardiovascular implant.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: March 23, 2021
    Assignee: Xeltis AG
    Inventors: Aurelie Serrero, Martijn Antonius Johannes Cox
  • Patent number: 10954250
    Abstract: The present invention relates to compounds of Formula I:
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: March 23, 2021
    Assignee: Alkermes Pharma Ireland Limited
    Inventors: Laura Cook Blumberg, John A. Lowe, III, Orn Almarsson, Juan Alvarez, Tarek A. Zeidan
  • Patent number: 10945854
    Abstract: Synthetic composite materials for use, for example, as orthopedic implants are described herein. In one example, a composite material for use as a scaffold includes a thermoplastic polymer forming a porous matrix that has continuous porosity and a plurality of pores. The porosity and the size of the pores are selectively formed during synthesis of the composite material. The example composite material also includes a plurality of a anisometric calcium phosphate particles integrally formed, embedded in, or exposed on a surface of the porous matrix. The calcium phosphate particles provide one or more of reinforcement, bioactivity, or bioresorption.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: March 16, 2021
    Assignee: HAPPE SPINE, LLC
    Inventors: Ryan K Roeder, Gabriel L Converse, Stephen M Smith
  • Patent number: 10933164
    Abstract: A method includes covering or contacting a portion of a parathyroid of a subject with a shield including extraembryonic tissue and/or a parathyroid protective injection. The covering occurs during a neck or reconstructive surgery of the subject.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: March 2, 2021
    Inventor: James Glenn Norman
  • Patent number: 10912832
    Abstract: Disclosed herein is a multiple drugs delivery system and its uses in treating diseases. The multiple drugs delivery system includes, an anti-PEG antibody for directing the PEGylated therapeutic to the treatment site; and a hydrogel for retaining the anti-PEG antibody and/or the PEGylated therapeutic at the treatment site for at least 3 days. The hydrogel is selected from the group consisting of hyaluronan (HA) or a derivative of HA, collagen, gelatin, fibronectin, fibrinogen, alginate, chitosan, and a synthetic biocompatible polymer. The anti-PEG antibody and the hydrogel are present in the mixture in a ratio from about 1:1 (v/v) to 1:100 (v/v). At least two dosages of the PEGylated therapeutic, which may be the same or different, are administered to the subject, with each dosage being given at about 1 hour to about 1 week apart. Accordingly, a novel method of treating a subject having cancer or ischemia disease is also provided.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: February 9, 2021
    Assignee: ACADEMIA SINICA
    Inventors: Patrick C. H. Hsieh, Pei-Jung Wu, Steve Roffler, Bill Cheng
  • Patent number: 10913923
    Abstract: The present invention relates to a tissue cell culture device which includes a tissue cell culture body. The porous material used as the tissue cell culture body is a porous metallic material which is formed by pore cavities classified by a pore size of the material and cavity walls surrounding to form the classified pore cavities. The cavity wall surrounding to form an upper level of large pore cavity is provided with a lower level of small pore cavity. The pore cavities in the same level are in communication with each other. The pore cavities in different levels are also in communication with each other. This device is particularly beneficial for cell cultivation and allows tissue cells to grow freely and normally in a three-dimensional space.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: February 9, 2021
    Assignee: Chongqing Runze Pharmaceutical Co., Ltd.
    Inventor: Lei Ye
  • Patent number: 10905792
    Abstract: An improved fibrinogen-based tissue sealing patch having a degradation time of less than two weeks is disclosed. The patch comprises a polyethylene glycol-caprolactone-lactide (PEG-CL-LA) triblock copolymer film in which the PEG-CL-LA units are preferably connected by urethane linkages and into a surface of which a fibrinogen-based sealant comprising less than 8 mg/cm2 fibrinogen and less than 10 IU/cm2 thrombin has been incorporated. In preferred embodiments, the polymer film comprises PEG having a molecular weight of between 3000 and 3500 and a CL:LA:PEG ratio of 34:2:1. Methods of production and use of the patch are also disclosed.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: February 2, 2021
    Assignee: SEALANTIUM MEDICAL LTD.
    Inventors: Orgad Laub, Eran Cohen, Yotam Schwartz
  • Patent number: 10905775
    Abstract: Particulate constructs stabilized by amphiphilic copolymers and comprising at least one active coupled to a hydrophobic moiety provide sustained release of the active in both in vitro and in vivo environments.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: February 2, 2021
    Assignees: Celator Pharmaceuticals, Inc., The Trustees of Princeton University
    Inventors: Lawrence D. Mayer, Robert K. Prud'homme, Christine J. Allen, Walid S. Saad
  • Patent number: 10898498
    Abstract: Provided is a slow release composition to promote bone growth, the slow release composition comprising: an oxysterol encapsulated in a biodegradable polymer to control the release of the oxysterol. Methods of making and use are further provided.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: January 26, 2021
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: David S. Scher, Benjamin T. Reves, Roger E. Harrington, Susan J. Drapeau, Jerbrena C. Jacobs
  • Patent number: 10898432
    Abstract: Hormone formulations, dosage units including the hormone formulations, and methods of use relate to a controlled release formulation, which includes hormones, e.g., progesterone. Formulations and methods are for controlling the reproductive cycle and/or ovulation of a female mammal, for example, to promote ovulation in a female mammal or synchronizing the ovulation or heat/estrus of a group of female mammals. In addition, formulations are for increasing the likelihood that a female mammal becomes pregnant, for example, after insemination or embryo transference. In addition, formulations are for reducing the anestrous period in a female mammal.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: January 26, 2021
    Assignees: Proinvet Innovations S.A., Proinvet Innovations LLC
    Inventors: Juan Andrés Colman, Daniel Roberto Sammartino
  • Patent number: 10898441
    Abstract: The embodiments relate to a pharmaceutically effective composition comprising sustained release particles, each sustained release particle comprising a shell and a core, wherein the shell comprises a first material and a second material, the second material comprising a first biodegradable material, wherein the core is enclosed by the shell and the core comprises a drug, wherein the first material is distributed in a matrix of the first biodegradable material, wherein the first material is configured to create holes in the shell and comprises metallic particles, wherein the holes allow the drug to be released to the exterior of the shell through the holes, and wherein the drug comprises a targeting material or targeting molecule that binds to a certain organ, object or a specific site within a body of a human or an animal.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: January 26, 2021
    Inventor: Neil S. Davey
  • Patent number: 10888551
    Abstract: The present invention provides for a drug delivery system for anti-cancer compound and method of preparation thereof.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: January 12, 2021
    Assignee: INDIAN INSTITUTE OF TECHNOLOGY, BOMBAY
    Inventors: Radhika Poojari, Dulal Panda, Rohit Srivastava
  • Patent number: 10874605
    Abstract: Biodegradable implants sized and suitable for implantation in an ocular region or site and methods for treating ocular conditions. The implants provide an extended release of an active agent at a therapeutically effective amount for a period of time between 50 days and one year, or longer.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: December 29, 2020
    Assignee: ALLERGAN, INC.
    Inventors: Thierry Nivaggioli, James Jane-Guo Shiah, Qing Lin
  • Patent number: 10869953
    Abstract: A method includes covering or contacting a portion of a recurrent laryngeal nerve of a subject with a shield including extraembryonic tissue. The covering occurs during a neck or reconstructive surgery of the subject.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: December 22, 2020
    Inventor: James Glenn Norman
  • Patent number: 10869956
    Abstract: An interventional catheter assembly comprising a catheter for insertion and guidance to a target site in a body lumen or a cavity and an operating head mounted in proximity to a distal end of the catheter and comprising a system for removing obstructive material from the target site is provided. In certain embodiments, the catheter assembly includes at least one aspiration port located proximal to the operating head that communicates with a first sealed lumen for withdrawing fluids and obstructive material from the target site. The catheter assembly may also include at least one liquid infusion port that communicates with a second sealed lumen for supplying fluid to a location in proximity to the target site. Kits including the interventional catheter assembly with an aspiration and/or infusion conduit are also provided.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: December 22, 2020
    Assignee: BOSTON SCIENTIFIC LIMITED
    Inventors: Casey Torrance, Kate Walsh, Jared Salstrom, Scott Youmans, Edward I. Wulfman
  • Patent number: 10850274
    Abstract: The disclosure provides for microfluidic devices comprising patterned hydrogels with embedded cells or microtissues.
    Type: Grant
    Filed: April 9, 2016
    Date of Patent: December 1, 2020
    Assignee: The Regents of the University of California
    Inventors: Shyni Varghese, Aereas Aung, Han Liang Lim
  • Patent number: 10842810
    Abstract: The present invention concerns polymer particles made from poly(lactic-co-glycolic acid) (PLGA) polymer, poly(lactic-co-glycolic acid)-polyethylene glycol-poly(lactic-co-glycolic acid) (PLGA-PEG-PLGA) copolymer, or the mixture of same, combined with hyaluronic acid molecules or hyaluronic acid salts, and the method for preparing same. The present invention also concerns injectable pharmaceutical or cosmetic compositions comprising such polymer particles, the method for preparing such compositions, and the use thereof for medical purposes, in particular for the prevention and/or treatment of musculoskeletal diseases, diseases and traumatic conditions of the skin, oral disorders, vaginal mucosa dryness and urinary infections or cystitis, dryness of the eye membrane and eye infections, obesity, and the use of same to combat ageing of the skin and/or for repairing the dermal tissue (mesotherapy).
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: November 24, 2020
    Assignee: GENBIOTECH
    Inventors: Yannis Guillemin, Dominique Vacher, Thomas Perrier, Maud Gonnet, Jean-Noël Gouze
  • Patent number: 10842604
    Abstract: A non-setting agent for positioning a surgical mesh prosthesis against a tissue defect during surgical hernia repair enables a surgeon to position the surgical mesh prosthesis at an optimal location against the tissue defect without pre-measuring suture location and pre-suturing. The surgical mesh prosthesis can be repositioned by removing and replacing, or by sliding, the mesh along the tissue defect without traumatizing the tissue. The positioning agent is provided with adhesion and lubricity characteristics providing an adhesion strength required to temporarily maintain the surgical mesh in place, otherwise unsupported, against tissue of a targeted tissue location, and providing a viscosity that permits removal and replacement, or slidable movement, of the surgical mesh along the tissue upon receipt of a non-gravitational external force applied to the surgical mesh so movement of the surgical mesh that is atraumatic to the tissue.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: November 24, 2020
    Assignee: ATRIUM MEDICAL CORPORATION
    Inventors: Roger Labrecque, Stephanie Santos
  • Patent number: 10814112
    Abstract: A drug-impregnated sleeve for encasing a medical implant is provided. In one embodiment, the sleeve may include a body made of a biologically-compatible material that defines an internal cavity configured to receive the medical implant. In one embodiment, the biologically-compatible material is bioresorbable. The body may include a plurality of apertures, such as perforations or holes, extending from the cavity through the body. The sleeve may further include a first end, a second end, and a drug impregnated into the resorbable sheet. In one possible embodiment, the first end of the sleeve may be open for receiving the medical implant therethrough and the second end may be closed. The implant may be encased in the sleeve and implanted into a patient from which the drug is dispensed in vivo over time to tissue surrounding the implantation site. In one embodiment, the body is made from at least one sheet of a biologically-compatible material.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: October 27, 2020
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Mark Thomas Fulmer, David A. Armbruster, Robert Frigg, Elliott A. Gruskin, Sean Hamilton Kerr
  • Patent number: 10806828
    Abstract: A method for reattaching a detached tissue to a hard tissue includes operation in which a suture anchor having a first stitch and a second stitch is provided, wherein the first stitch is divided into a first strand and a second strand, and the second stitch is divided into a third strand and a fourth strand. The suture anchor is fixed on a hard tissue. The first strand, the second strand, the third strand and the fourth strand pass through a detached tissue. A bioinductive patch is provided, wherein the bioinductive patch includes a patch body and a button. The first strand and the third strand pass through the patch body and a first suture hole of the button, and the second strand and the fourth strand pass through the patch body and a second suture hole of the button. The second strand and the third strand are knotted to form a first strand node, and the first strand node presses the bioinductive patch and the detached tissue tightly onto the hard tissue.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: October 20, 2020
    Assignee: DE NOVO ORTHOPEDICS INC.
    Inventor: Chia-Wei Lin
  • Patent number: 10806696
    Abstract: An improved medical implant device directed to, inter alia, (i) avoiding unwanted initial drug “burst” problems, (ii) providing a more level amount of drug delivery, (iii) reducing blood clotting, (iv) reducing the amount of drug material that remains in the implant device, and/or (v) novel materials for an implant device.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: October 20, 2020
    Inventor: Robert W. Adams
  • Patent number: 10792477
    Abstract: The present invention is an inflatable balloon which is enclosed by an expandable cover which becomes increasingly porous/permeable during expansion. The balloon is coated or enclosed with a matrix which contains a pharmaceutically active agent. During expansion of the balloon, the pharmaceutically active agent is released or extruded through the expandable cover into a body cavity such as an artery or vein. The present invention also provides for a method of treating a disease or condition by delivering the inflatable balloon to a particular body cavity.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: October 6, 2020
    Assignee: OrbusNeich Medical PTE. LTD.
    Inventors: Robert J. Cottone, Stephen Rowland
  • Patent number: 10792481
    Abstract: The invention pertains to implantable medical devices for controlled delivery of therapeutic agents. Some devices according to the invention have a titanium reservoir, and a porous titanium oxide based membrane to control the rate of release of the therapeutic agent. The reservoir contains a formulation of the active agent, and means to promote water uptake into the reservoir upon implantation. In some embodiments the means include a gas with a higher solubility in than air water.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: October 6, 2020
    Assignee: NANO PRECISION MEDICAL, INC.
    Inventor: Wouter Erik Roorda
  • Patent number: 10772828
    Abstract: Disclosed herein are compositions and methods for the treatment of otic diseases or conditions with antimicrobial agent compositions and formulations administered locally to an individual afflicted with an otic disease or condition, through direct application of these compositions and formulations onto or via perfusion into the targeted auris structure(s).
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: September 15, 2020
    Assignees: OTONOMY, INC., THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Jay Lichter, Andrew M. Trammel, Fabrice Piu, Qiang Ye, Luis A. Dellamary, Carl Lebel, Jeffrey P. Harris
  • Patent number: 10765354
    Abstract: A sensor plaster (116) for the transcutaneous measurement of an organ function, more particularly of a kidney function, is proposed. The sensor plaster (116) comprises at least one flexible carrier element (134) having at least one adhesive surface (138) which can be stuck onto a body surface. Furthermore, the sensor plaster (116) comprises at least one radiation source, more particularly a light source (142), wherein the radiation source is designed to irradiate the body surface with at least one interrogation light (162). Furthermore, the sensor plaster (116) comprises at least one detector (146) designed to detect at least one response light (176) incident from the direction of the body surface.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: September 8, 2020
    Assignee: MediBeacon Inc.
    Inventors: Norbert Gretz, Johannes Pill, Daniel Schock-Kusch, Thomas Walter, Jürgen Hesser, Maliha Sadick, Felix Eickemeyer, Jae Hyung Hwang, Christian Schildknecht, Soichi Watanabe, Wolfgang Wach, Thomas Rose
  • Patent number: 10758572
    Abstract: The present invention relates to substantially homogenous populations of human retinal progenitor cells having the following positive surface markers: SSEA4, CD73, PTK7 and PSA-NCAM. The invention also relates to method for preparing such substantially homogeneous cell populations from human tissue using cell sorting techniques.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: September 1, 2020
    Assignee: The Schepens Eye Research Institute
    Inventors: Michael J. Young, Petr Y. Baranov
  • Patent number: 10758502
    Abstract: A transdermal topical anesthetic formulation, which can be used to ameliorate or inhibit pain, has been developed. In the preferred embodiment, the topical anesthetic is a local anesthetic such as lidocaine, most preferably lidocaine free-base in a gel, and the dosage of the local anesthetic is effective in the painful area or immediately adjacent areas, to ameliorate or eliminate the pain. High concentration of local anesthetic in solution in the carrier is used to drive rapid release and uptake of the drug. Relief is typically obtained for a period of several hours.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: September 1, 2020
    Assignee: Centrexion Therapeutics Corporation
    Inventors: James N. Campbell, Arthur F. Michaelis
  • Patent number: 10745511
    Abstract: The present invention provides a method for preparing hydrophilic polymer foam. The method comprises a step of providing an isocyanate functionalized prepolymer (A) and a step of foaming and curing the prepolymer (A). The prepolymer (A) is prepared by reacting diisocyanate (A1) and polyether polyol (A2), wherein the diisocyanate (A1) is selected from any one and a combination of 1,4-butyl diisocyanate (BDI), lysine diisocyanate (LDI) and 1,5-pentyl diisocyanate (PDI); the polyether polyol (A2) is a copolymer of ethylene oxide (EO) and propylene oxide (PO) and/or butylene oxide (BO); the ethylene oxide has a weight percentage of about 50%-100% in the polyether polyol, and has an OH functionality degree of 3-6, a hydroxyl value of about 21 mg KOH/g-168 mg KOH/g and a number-average molecular weight of about 1000 g/mol to about 8000 g/mol; and NCO content in the prepolymer (A) is 1%-10%.
    Type: Grant
    Filed: February 3, 2018
    Date of Patent: August 18, 2020
    Inventors: Jianli Zhang, Qing Zhou