Metal Carbide Containing Coating Patents (Class 427/249.17)
  • Publication number: 20080280038
    Abstract: Methods of using thin metal layers to make Carbon Nanotube Films, Layers, Fabrics, Ribbons, Elements and Articles are disclosed. Carbon nanotube growth catalyst is applied on to a surface of a substrate, including one or more thin layers of metal. The substrate is subjected to a chemical vapor deposition of a carbon-containing gas to grow a non-woven fabric of carbon nanotubes. Portions of the non-woven fabric are selectively removed according to a defined pattern to create the article. A non-woven fabric of carbon nanotubes may be made by applying carbon nanotube growth catalyst on to a surface of a wafer substrate to create a dispersed monolayer of catalyst. The substrate is subjected to a chemical vapor deposition of a carbon-containing gas to grow a non-woven fabric of carbon nanotubes in contact and covering the surface of the wafer and in which the fabric is substantially uniform density.
    Type: Application
    Filed: March 9, 2007
    Publication date: November 13, 2008
    Applicant: Nantero, Inc.
    Inventors: Jonathan W. Ward, Thomas Rueckes, Brent M. Segal
  • Patent number: 7435363
    Abstract: A method for manufacturing a diamond film is provided. The material with a low thermal decomposition point is used as a substrate. A buffer layer is formed on the substrate by coating or deposition, and then a diamond film is coated thereon, fitting the shape of the required diamond film. With the buffer layer, the coating or deposition uniformity of the diamond film is improved, and the problems such as thermal stress cracking and assembly damage are solved as well. During a subsequent process of forming the diamond film, the substrate is thermally decomposed due to a high temperature, such that the problems such as stripping and die loss are overcome.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: October 14, 2008
    Assignee: Kinik Company
    Inventor: Hsiao-Kuo Chang
  • Patent number: 7357975
    Abstract: The carbon-containing hard coating (1) according to the invention comprises nano-crystalline grains being separated from each other by grain boundaries, wherein said hard coating comprises aluminum (Al), at least one additional metal (Me1, Me2), carbon (C) and at least one further element (E1, E2) and has the chemical composition: (AlxMe1yMe2z)CuE1vE2w wherein Me1 is a metal, and Me2 is a metal, with x>0.4 and x+y+z=1 and y,z?0, and E1 and E2 are further chemical elements with 1>u>0 and u+v+w=1 and v,w?0. The grain boundaries have a higher concentration of carbon atoms than the nano-crystalline grains.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: April 15, 2008
    Assignee: Metaplas Ionon Oberflachenveredelungstechnik GmbH
    Inventor: Joerg Vetter
  • Patent number: 7323219
    Abstract: The invention relates to a coating and apparatus and method for applying the same, said coating including Diamond Like Carbon (DLC) applied by chemical vapor deposition using a pulsed DC biased power supply, typically having an initial metal layer and followed by a transitional metal carbide layer and a DLC layer. The depths and transitions between the materials can be selected to suit requirements. The apparatus also includes the use of an arrangement with at least one electrode with an RF power supply and the selective control of the power supplies to the electrode and substrates is used to improve the efficiency of application.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: January 29, 2008
    Assignee: Teer Coatings Ltd
    Inventor: Denis Teer
  • Patent number: 7311946
    Abstract: A process is described for depositing a metal film on a substrate surface having a diffusion barrier layer deposited thereupon. In one embodiment of the present invention, the process includes: providing a surface of the diffusion barrier layer that is substantially free of an elemental metal and forming the metal film on at least a portion of the surface via deposition by using a organometallic precursor. In certain embodiments, the diffusion barrier layer may be exposed to an adhesion promoting agent prior to or during at least a portion of the forming step. Suitable adhesion promoting agents include nitrogen, nitrogen-containing compounds, carbon-containing compounds, carbon and nitrogen containing compounds, silicon-containing compounds, silicon and carbon containing compounds, silicon, carbon, and nitrogen containing compounds, or mixtures thereof. The process of the present invention provides substrates having enhanced adhesion between the diffusion barrier layer and the metal film.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: December 25, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Diwakar Garg, Hansong Cheng, John Anthony Thomas Norman, Eduardo Machado, Pablo Ordejon
  • Patent number: 7285312
    Abstract: A method and superalloy component for depositing a layer of material onto gas turbine engine components by atomic layer deposition. A superalloy component may have a ceramic thermal barrier coating on at least a portion of its surface, comprising a superalloy substrate and a bonding coat; and aluminum oxide (Al2O3) layer may be deposited on top of an yttria-stabilized zirconia layer and form a bonding coat by atomic layer deposition. The yttria-stabilized zirconia layer may have a plurality of micron sized gaps extending from the top surface of the ceramic coating towards the substrate and defining a plurality of columns of the yttria-stabilized zirconia layer. Also, atomic layer deposition may be used to lay an aluminum oxide (Al2O3) layer over a tantalum oxide (Ta2O5) layer on a silicon-based substrate.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: October 23, 2007
    Assignee: Honeywell International, Inc.
    Inventor: Chien-Wei Li
  • Patent number: 7214406
    Abstract: A method of forming a hydrogenated amorphous germanium carbon (?-GeCx:H) film on a surface of an infrared (IR) transmissive material such as a chalcogenide is provided. The method includes positioning an IR transmissive material in a reactor chamber of a parallel plate plasma reactor and thereafter depositing a hydrogenated amorphous germanium carbon (?-GeCx:H) film on a surface of the IR transmissive material. The depositing is performed at a substrate temperature of about 130° C. or less and in the presence of a plasma which is derived from a gas mixture including a source of germanium, an inert gas, and optionally hydrogen. Optical transmissive components, such as IR sensors and windows, that have improved abrasion-resistance are also provided.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: May 8, 2007
    Assignee: Lockheed Martin Corporation
    Inventors: James Neil Johnson, Kevin Warner Flanagan, George Theodore Dalakos
  • Patent number: 7198820
    Abstract: A process depositing a carbon- and transition metal-containing thin film on a substrate involves placing a substrate within a reaction space and sequentially pulsing into the reaction space a transition metal chemical and an organometallic chemical. Following each chemical pulse, the reaction space is purged, and the pulse and purge sequence is repeated until a desired film thickness is obtained. A preferred deposition process uses atomic layer deposition techniques and may result in an electrically conductive thin carbide film having uniform thickness over a large substrate area and excellent adhesion and step coverage properties.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: April 3, 2007
    Assignee: Planar Systems, Inc.
    Inventors: Kari Härkönen, Mark Doczy, Teemu Lang, Nathan E. Baxter
  • Patent number: 7150897
    Abstract: According to the present invention there is now provided a cemented carbide body provided with at least one wear resistant layer, which body contains a toughness increasing surface zone. Increase in toughness is obtained due to the presence of a surface zone having increased WC grain size and/or increased Co content. The invention is most suitable for WC—Co cemented carbides. A method for making such bodies is also disclosed.
    Type: Grant
    Filed: November 23, 2001
    Date of Patent: December 19, 2006
    Assignee: Sandvik Intellectual Property AB
    Inventor: Marian Mikus
  • Patent number: 7087266
    Abstract: A thermal barrier coating, or TBC, and method for forming the TBC. The TBC is formed of a thermal-insulating material that contains yttria-stabilized zirconia (YSZ) alloyed with at least a third oxide. The TBC is formed to also contain elemental carbon, and may potentially contain carbides and/or a carbon-containing gas that forms from the thermal decomposition of carbon. The TBC is characterized by lower density and thermal conductivity, high temperature stability and improved mechanical properties. To exhibit the desired effect, the third oxide is more particularly one that increases the lattice strain energy of the TBC microstructure as a result of having an ion size that is sufficiently different than a zirconium ion.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: August 8, 2006
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Boris A. Movchan, Yuriy E. Rudoy, Leonella M. Nerodenko, Irene Spitsberg, David John Wortman
  • Patent number: 7052585
    Abstract: A coated article is provided which includes a layer including titanium oxycarbide. In order to form the coated article, a layer of titanium oxide is deposited on a substrate by sputtering or the like. After sputtering of the layer including titanium oxide, an ion beam source(s) is used to implant at least carbon ions into the titanium oxide. When implanting, the carbon ions have sufficient ion energy so as to knock off oxygen (O) from TiOx molecules so as to enable a substantially continuous layer comprising titanium oxycarbide to form near a surface of the previously sputtered layer.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: May 30, 2006
    Assignee: Guardian Industries Corp.
    Inventors: Vijayen S. Veerasamy, Scott V. Thomsen, Rudolph Hugo Petrmichl
  • Patent number: 6960280
    Abstract: The present invention provides a method of forming a surface coating having a micro-Vickers hardness of about 1600 kgf/mm2 or more on a substrate made of metal, alloy or ceramic. The method comprises subjecting the substrate to a reactive plasma process which uses a target material consisting of tungsten or its alloy, a sputtering gas consisting of argon, and at least one reactive gas selected firm the group consisting of carbon dioxide and carbon monoxide, to form a tungsten oxycarbide coating on the surface of the substrate, wherein the reactive plasma process is performed additionally using at least one noble gas selected from the group consisting of helium, neon, krypton and radon, as an auxiliary gas, while maintaining the substrate at a temperature in the range of about 550 to 680 K.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: November 1, 2005
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventor: Tetsuo Kado
  • Patent number: 6827975
    Abstract: Methods of coating cutting tool inserts including a hard substrate and a plurality of coatings are disclosed. In one embodiment, the method comprises applying a first coating of at least 2 microns to at least a portion of the hard substrate and applying a second coating. The first coating can comprise at least one of a metal carbide, a metal nitride, and a metal carbonitride of at least one metal selected from zirconium and hafnium. The second coating can comprise at least one of a metal carbide, a metal boride, a metal nitride, and a metal oxide of a metal selected from groups IIIA, IVB, VB, and VIB of the periodic table. Optionally, third and fourth coatings are also applied to the cutting tool inserts.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: December 7, 2004
    Assignee: TDY Industries, Inc.
    Inventors: Roy V. Leverenz, John Bost, James J. Oakes
  • Patent number: 6827977
    Abstract: A method of making a coated article (e.g., window unit), and corresponding coated article are provided. A layer of or including diamond-like carbon (DLC) is formed on a glass substrate. Then, a protective layer is formed on the substrate over the DLC inclusive layer. During heat treatment (HT), the protective layer prevents the DLC inclusive layer from significantly burning off. Thereafter, the resulting coated glass substrate may be used as desired, it having been HT and including the protective DLC inclusive layer.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: December 7, 2004
    Assignee: Guardian Industries Corp.
    Inventor: Vijayen S. Veerasamy
  • Patent number: 6824823
    Abstract: There are disclosed a coated cutting tool which comprises a base material of a hard alloy comprising a hard phase of tungsten carbide and at least one material selected from a carbide, nitride and carbonitride of a metal selected from the Group 4, 5 and 6 of the Periodic Table and a mutual solid solution thereof and a binder phase of at least one element selected from Fe, Ni and Co, and a hard coating film formed on the surface of the base material by a CVD method, wherein the hard coating film has a columnar crystal layer comprising at least one material selected from a carbide, nitride and carbonitride of titanium, the columnar crystal layer contains large-sized particles and small-sized particles, and the ratio of the amounts of the large particles to the small particles is 3 to 50; and a method for producing the same which comprises forming the hard coating film by at least one coating film of a carbide, carbonitride and carbonitroxide of titanium using a hydrocarbon gas containing ethane as a carbon elem
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: November 30, 2004
    Assignee: Toshiba Tungaloy Co., Ltd.
    Inventors: Hiroyuki Kodama, Nobukazu Yoshikawa, Itsuo Yazaki
  • Patent number: 6800552
    Abstract: The present invention relates generally to a method of depositing transition metal carbide thin films. In particular, the invention concerns a method of depositing transition metal carbide thin films by atomic layer deposition (ALD), in which a transition metal source compound and a carbon source compound are alternately provided to the substrate. A variety of metal and carbon source gases are disclosed. The methods are applicable to forming metal carbide thin films in semiconductor fabrication, and particularly to forming thin, conductive diffusion barriers within integrated circuits.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: October 5, 2004
    Assignee: ASM International, N.V.
    Inventors: Kai-Erik Elers, Suvi P. Haukka, Ville Antero Saanila, Sari Johanna Kaipio, Pekka Juha Soininen
  • Patent number: 6723391
    Abstract: Method for producing cutting tools provides a first hard material coating on a first region of a tool base body containing at least one cutting edge, using a plasma vacuum coating process. A second hard material coating is provided on a second region which is adjacent the first, also via plasma vacuum coating process. Hard material for the coatings is a carbide, oxide, oxicarbide, nitride, nitrocarbide, oxinitride or nitrooxicarbide of at least two of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al. The first coating has a content of at least two of the metal elements which is at most 2 at % different from the content of the two metal elements in the second coating if the tool is for higher adhesive strength than hardness. The first coating has a content of the two metal elements that is different from the content of the two metal elements of the second coating by more than 2 at % if the tool is for higher hardness than high adhesive strength.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: April 20, 2004
    Assignee: Unaxis Balzers AG
    Inventors: Volker Derflinger, Harald Zimmermann
  • Publication number: 20030228510
    Abstract: A separator of a fuel cell includes a base material and a surface treatment layer formed on the base material. The surface treatment layer includes a base material-side portion made from metal and a base material opposite-side portion made from carbon formed at an atom level or composite materials of carbon and metal or semi-metal. The surface treatment layer may further include carbon particle composite layer formed on the base material opposite-side portion formed at an atom level. In a manufacturing method of the above separator of a fuel cell, the base material opposite-side portion is formed by dry coating.
    Type: Application
    Filed: June 3, 2003
    Publication date: December 11, 2003
    Inventors: Hiromichi Nakata, Masayoshi Yokoi, Kenji Shimoda, Noboru Takayanagi
  • Patent number: 6656520
    Abstract: A non-carbon, metal-based, high temperature resistant, electrically conductive and electrochemically active anode of a cell for the production of aluminum has a metal-based substrate to which an adherent coating is applied prior to its immersion into the electrolyte and start up of the electrolysis by connection to the positive current supply. The coating is obtainable from one or more layers applied from: a liquid solution, a dispersion in a liquid or a paste, a suspension in a liquid or a paste, and a pasty or non-pasty slurry, and combinations thereof with or without one or more further applied layers, with or without heat treatment between two consecutively applied layers when at least two layers are applied.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: December 2, 2003
    Assignee: Moltech Invent-SA
    Inventor: Vittorio de Nora
  • Patent number: 6599584
    Abstract: Methods and systems are provided for making a coated plastic container, such as for packaged beverages, possessing a gas barrier and having enhanced resistance to loss in barrier due to handling abuses expansion of walls of the container. The system comprises a vacuum cell, a coating source in the vacuum cell for supplying a coating vapor to an external surface of a plastic container positioned within the vacuum cell, and gas feeds for supplying one or more process gases into an interior space of the vacuum cell. The coating source heats and evaporates an inorganic coating material, such as metal or silicon, to form a coating vapor, which is energized to form a plasma. The process gases include a carbon-containing gas, such as acetylene.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: July 29, 2003
    Assignee: The Coca-Cola Company
    Inventors: George Plester, Horst Ehrich
  • Patent number: 6599572
    Abstract: A process for growing an electrically conductive metalloid thin film on a substrate with a chemical vapor deposition process. A metal source material and a reducing agent capable of reducing the metal source material to a reduced state are vaporized and fed into a reaction space, where the metal source material and the reducing agent are contacted with the substrate. The reducing agent is a boron compound having at least one boron-carbon bond, and the boron compound forms gaseous by-products when reacted with the metal source material. Generally, the boron compound is an alkylboron compound with 0-3 halogen groups attached to the boron. The metal source material and the reducing agent may be fed continuously or in pulses during the deposition process.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: July 29, 2003
    Assignee: ASM Microchemistry Oy
    Inventors: Ville Antero Saanila, Kai-Erik Elers, Sari Johanna Kaipio, Pekka Juha Soininen
  • Publication number: 20030104254
    Abstract: A method of increasing the compressive stress or of reducing the tensile residual stress of a CVD layer, a PCVD layer or PVD layer and a cutting insert for machining.
    Type: Application
    Filed: October 16, 2002
    Publication date: June 5, 2003
    Inventors: Hartmut Westphal, Volkmar Sottke
  • Patent number: 6524402
    Abstract: A passivation method for the metallic surface of a nickel and iron-based superalloy which is used as the constituent material of reactor or furnace walls is described, in which the superalloy is coated on at least one of its surfaces which comes into contact with a corrosive atmosphere containing either hydrocarbons at high temperature or containing oxidizing gases at high temperature, with at least two successive layers resulting from successive chemical vapour deposition of its one or more constituent elements, the external phase, resulting from chemical vapour deposition of at least one silicon compound and the layer(s) deposited between the superalloy surface, and the external layer resulting from chemical vapour deposition of at least one of a metal or metalloid.
    Type: Grant
    Filed: June 23, 1995
    Date of Patent: February 25, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Paul Broutin, Pascal Nisio, François Ropital
  • Patent number: 6482262
    Abstract: The present invention relates generally to a method of depositing transition metal carbide thin films. In particular, the invention concerns a method of depositing transition metal carbide thin films by atomic layer deposition (ALD), in which a transition metal source compound and a carbon source compound are alternately provided to the substrate. A variety of metal and carbon source gases are disclosed. The methods are applicable to forming metal carbide thin films in semiconductor fabrication, and particularly to forming thin, conductive diffusion barriers within integrated circuits.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: November 19, 2002
    Assignee: ASM Microchemistry Oy
    Inventors: Kai-Erik Elers, Suvi P. Haukka, Ville Antero Saanila, Sari Johanna Kaipio, Pekka Juha Soininen
  • Patent number: 6413585
    Abstract: The invention concerns (1) thermochemically treating by pack-cementation a carbon-containing material, which may have an open porosity, to generate a refractory carbide coating on its surface and, if the material is porous, within the material; and (2) the use of specific alloys as a pack for thermochemically treating carbon-containing materials, optionally with an open porosity, in a halogenated atmosphere. Pack-cementation is carried out under reduced pressure using an element E (to be transported and to be reacted with the carbon in the material to generate the expected carbide) alloyed to an element M, and using a halide (chloride or fluoride, preferably a fluoride) of the same element M, of low volatility, present in the solid form.
    Type: Grant
    Filed: April 21, 1999
    Date of Patent: July 2, 2002
    Assignee: Societe Nationale d'Etude et de Construction de Moteurs d'Aviation - S.N.E.C.M.A.
    Inventors: Yves Madec, Lionel Vandenbulcke, Christian Robin-Brosse, Jacques Thebault, Stéphane Goujard
  • Publication number: 20020081432
    Abstract: Coated milling insert has a WC-Co cemented carbide with a low content of cubic carbides and a highly W-alloyed binder phase and a coating including an inner layer of TiCxNy with columnar grains followed by a layer of &kgr;-Al2O3 and a top layer of TiN. The coated milling insert is particularly useful for milling of grey cast iron with or without cast skin under wet conditions at low and moderate cutting speeds and milling of nodular cast iron and compacted graphite iron with or without cast skin under wet conditions at moderate cutting speeds.
    Type: Application
    Filed: October 29, 2001
    Publication date: June 27, 2002
    Inventors: Anders Nordgren, Ingemar Hessman, Marian Mikus
  • Patent number: 6376015
    Abstract: A multi-layer thermal barrier coating for a superalloy article includes a metallic matrix coating containing particles, a MCrAlY alloy bond coating on the metallic matrix coating, a thin oxide layer on the MCrAlY alloy bond coating and a columnar grain ceramic thermal barrier coating. The metallic matrix coating includes a 80 wt % nickel-20 wt % chromium alloy. The particles include metallic compounds such as carbides, oxides, borides and nitrides, which react with harmful transition metal elements such as titanium, tantalum and hafnium, in the superalloy substrate. One suitable compound is chromium carbide because the hafnium transition metal elements will take part in an exchange reaction with the chromium in the chromium carbide to form a stable carbide of the harmful transition metal element. This reduces the amount of harmful elements in the superalloy reaching the oxide layer and increases the service life of the thermal barrier coating.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: April 23, 2002
    Assignees: Rolls-Royce, PLC, Chromalloy United Kingdon Limited
    Inventor: David S Rickerby
  • Patent number: 6235416
    Abstract: A composite in which a substrate body is coated with a single layer or multiple layers and at least one layer has two or three phases comprised of cubic ZrCN and monoclinic or tetragonal ZrO2. The composite can be in the form of a lathe or milling cutter cutting insert.
    Type: Grant
    Filed: June 21, 1999
    Date of Patent: May 22, 2001
    Assignee: Widia GmbH
    Inventors: Udo Kõnig, Hartmut Westphal, Volkmar Sottke
  • Patent number: 6214729
    Abstract: A method of forming a film on a substrate using transition metal or lanthanide complexes. The complexes and methods are particularly suitable for the preparation of semiconductor structures using chemical vapor deposition techniques and systems.
    Type: Grant
    Filed: September 1, 1998
    Date of Patent: April 10, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Stefan Uhlenbrock, Brian A. Vaartstra
  • Patent number: 6183820
    Abstract: A method of coating an inner face of a metal tube with an electrically conducting coating material includes the steps of positioning a wire, made of the coating material, generally axially in an interior of the tube, along the inner face thereof; and passing an electric current pulse of sufficient intensity through the wire to cause an explosive vaporization thereof, whereby particles of the vaporized material impinge on the inner face of the metal tube and form a layer thereon.
    Type: Grant
    Filed: August 20, 1998
    Date of Patent: February 6, 2001
    Assignees: Rheinmetall Industrie AG, TZN Forschungs - und Entwicklungszentrum Unterlüss GmbH
    Inventors: Helmut Neff, Thomas Weise, Alexei Voronov, Gert Schlenkert
  • Patent number: RE40082
    Abstract: Coated milling insert has a WC—Co cemented carbide with a low content of cubic carbides and a highly W-alloyed binder phase and a coating including an inner layer of TiCxNy with columnar grains followed by a layer of ?-Al2O3 and a top layer of TiN. The coated milling insert is particularly useful for milling of grey cast iron with or without cast skin under wet conditions at low and moderate cutting speeds and milling of nodular cast iron and compacted graphite iron with or without cast skin under wet conditions at moderate cutting speeds.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: February 19, 2008
    Assignee: Sandvik Intellectual Property AB
    Inventors: Anders Nordgren, Ingemar Hessman, Marian Mikus