Oxide-containing Coating Patents (Class 427/419.2)
  • Patent number: 6592980
    Abstract: A process provides a ceramic film, such as a mesoporous silica film, on a substrate, such as a silicon wafer. The process includes preparing a film-forming fluid containing a ceramic precursor, a catalyst, a surfactant and a solvent, depositing the film-forming fluid on the substrate, and removing the solvent from the film-forming fluid on the substrate to produce the ceramic film on the substrate. The ceramic film has a dielectric constant below 2.3, a halide content of less than 1 ppm and a metal content of less than 500 ppm, making it useful for current and future microelectronics applications.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: July 15, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: James Edward MacDougall, Kevin Ray Heier, Scott Jeffrey Weigel, Timothy W. Weidman, Alexandros T. Demos, Nikolaos Bekiaris, Yunfeng Lu, Michael P. Nault, Robert Parkash Mandal
  • Patent number: 6589601
    Abstract: In the process for producing a laminated substrate (1) such as electronic substrates (2; 3), when applying a sealing agent (7) to the end face of substrates (2; 3) combined together to seal it, first the sealing agent (7) is applied to a target area in the form of successive beads (7), and then a stream of compressed gas (10) is blown against the successive beads (7) from a gas ejecting nozzle (9) so as to scan the successive beads (7). The method can effectively fill the indentation or the stepped area formed along the end face with the sealing agent (7).
    Type: Grant
    Filed: January 2, 2002
    Date of Patent: July 8, 2003
    Assignee: Nordson Corporation
    Inventor: Takaji Shimada
  • Patent number: 6589604
    Abstract: A process for the production of multi-layer coatings in which a substrate is provided with a 10 &mgr;m to 25 &mgr;m thick primer surfacer substitute layer, a base coat layer determining the color shade of the multi-layer coating is applied thereto and a clear coat is applied thereto and cured, wherein a solvent-containing clear coat containing from 0.1 to 0.3 wt-% of at least one anti-sag urea compound and 0.1 to 0.4 wt-% of highly dispersed silica, in each case based on the clear coat solids, is used to produce the clear coat layer.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: July 8, 2003
    Inventor: Albrecht Luettenberg
  • Patent number: 6586044
    Abstract: A magnetic hard disk having magnetic tracks for storing data which is read or written by a magnetic head floating immediately above the magnetic track while the magnetic hard disk is rotating, and the magnetic head rests on the magnetic hard disk while the magnetic hard disk is not rotating. One aspect of the present invention is that the magnetic hard disk comprises a non-magnetic substrate having a plurality of banks and grooves alternately and concentrically arranged thereon, a magnetic film formed on each of the banks, and non-magnetic material formed on an entire surface of the substrate all over the banks and grooves such that roughness of the upper surface of the non-magnetic material is in a range between 0.5 nm and 3 nm.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: July 1, 2003
    Assignee: Fujitsu Limited
    Inventors: Hiroto Takeshita, Ryoichi Mukai, Wataru Yamagishi
  • Patent number: 6585864
    Abstract: A method for protecting high temperature stainless steel from coking and corrosion at elevated temperatures in corrosive environments, such as during ethylene production, by coating the stainless steel with an overlay coating of MCrAlX in which M is nickel, cobalt, iron or a mixture thereof and X is yttrium, hafnium, zirconium, lanthanum or combination thereof. The overlay coating and stainless steel substrate are heat-treated to metallurgically bond the overlay coating to the substrate and to form a multiphased microstructure. The overlay coating preferably is aluminized by depositing a layer of aluminum thereon and subjecting the resulting coating to oxidation to form an alumina surface layer. An intermediary aluminum-containing diffusion coating may be deposited directly onto the stainless steel substrate prior to deposition of the overlay coating to form a protective interlayer between the stainless steel substrate and overlay coating.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: July 1, 2003
    Assignee: Surface Engineered Products Corporation
    Inventors: Gary Anthony Fisher, Robert Prescott, Yan Chen, Hang Zheng, Chinnia Subramanian, Andrew George Wysiekierski
  • Patent number: 6585872
    Abstract: Disclosed herein is a gas sensor having a small amount of lead oxide incorporated into an inner electrode and an outer electrode, and a method for depositing the lead oxide. The lead oxide is applied in an amount sufficient to effectuate consistent performance during sensor break-in. Lead oxide is transferred to the electrodes of the sensor element during the fabrication process by exposing the sensor element to glass having a known lead content during a heating step. Lead oxide from the glass is vaporized and deposited on the electrodes in the form of lead oxide. The deposited lead oxide is incorporated into the electrodes of the sensor element. The lead oxide reduces performance irregularities thereby improving performance during the initial use of the gas sensor.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: July 1, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: Matthew J. Donelon, Paul Kikuchi, Marsha E. Nottingham
  • Patent number: 6585878
    Abstract: A thermal barrier coating for nickel based superalloy articles such as turbine engine vanes and blades that are exposed to high temperature gas is disclosed. The coating includes a columnar grained ceramic layer applied to a platinum modified Ni3Al gamma prime phase bond coat having a high purity alumina scale. The preferred composition of the bond coat is 5 to 16% by weight of aluminum, 5 to 25% by weight of platinum with the balance, at least 50% by weight, nickel. A method for making the bond coat is also disclosed.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: July 1, 2003
    Assignee: Honeywell International, Inc.
    Inventors: Thomas E. Strangman, Derek Raybould
  • Patent number: 6582772
    Abstract: An article such as a gas turbine blade or vane has a superalloy substrate, and a coating system deposited on the substrate. The coating system includes a protective layer overlying the substrate, and, optionally, a ceramic thermal barrier coating layer overlying the bond coat. The protective layer has an uppermost layer with a composition including platinum, aluminum, and, in atom percent, from about 0.14 to about 2.8 percent hafnium and from about 2.7 to about 7.0 percent silicon, with the atomic ratio of silicon:hafnium being from about 1.7:1 to about 5.6:1.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: June 24, 2003
    Assignee: General Electric Company
    Inventors: Joseph D. Rigney, Ramgopal Darolia, William S. Walston
  • Patent number: 6576568
    Abstract: A process for depositing porous silicon oxide-based films using a sol-gel approach utilizing a precursor solution formulation which includes a purified nonionic surfactant and an additive among other components, where the additive is either an ionic additive or an amine additive which forms an ionic ammonium type salt in the acidic precursor solution. Using this precursor solution formulation enables formation of a film having a dielectric constant less than 2.5, appropriate mechanical properties, and minimal levels of alkali metal impurities. In one embodiment, this is achieved by purifying the surfactant and adding ionic or amine additives such as tetraalkylammonium salts and amines to the stock precursor solution.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: June 10, 2003
    Assignees: Applied Materials, Inc., Air Products and Chemicals, Inc.
    Inventors: Robert P Mandal, Alexandros T Demos, Timothy Weidman, Michael P Nault, Nikolaos Bekiaris, Scott J Weigel, Lee A. Senecal, James E. MacDougall, Hareesh Thridandam
  • Patent number: 6572922
    Abstract: A method of manufacturing a magnetic recording medium comprises steps of: (a) preparing a sol solution containing gel particles; (b) treating the sol solution to remove gel particles having a size greater than a predetermined maximum size; (c) providing a non-magnetic substrate for a magnetic recording medium, the substrate including a surface; and (d) applying a layer of the treated sol solution to the surface of the substrate; (e) converting the layer of treated sol solution to a layer of sol-gel having a hardness less than that of the surface of the substrate, an exposed surface of the layer of sol-gel having very low surface micro-waviness and substantially no defects in the form of protrusions or bumps; (f) forming a pattern in the exposed surface of the layer of sol-gel; (g) converting the layer of sol-gel to a glass or glass-like layer having a density and hardness substantially comparable to that of the surface of the substrate, while preserving the pattern formed in an exposed surface of the g
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: June 3, 2003
    Assignee: Seagate Technology LLC
    Inventors: Hong Ying Wang, Neil Deeman, Nobuo Kurataka
  • Patent number: 6569292
    Abstract: A method of forming thin porous layers of calcium phosphate upon a silicon wafer surface using a high voltage spark. The outer layer of calcium phosphate is the inorganic component of bone and is anchored to the underlying substrate of silicon. The silicon is compatible with existing integrated circuit processing methods. The morphology and thickness of the calcium phosphate film can be controlled by the duration of the spark and the distance between the affected surface and the counterelectrode utilized. The resultant porous layer can be impregnated with medicinally useful substances which then can be subsequently released to the surroundings through an electrical actuator.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: May 27, 2003
    Assignee: Texas Christian University
    Inventor: Jeffery L. Coffer
  • Patent number: 6569263
    Abstract: There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: May 27, 2003
    Assignee: The Regents of the University of California
    Inventors: Donald W. Brown, Arun S. Wagh
  • Patent number: 6569498
    Abstract: I provide a method of coating zinc or zinc plated article with a non-hexavalent chromium oxide protective coating by coating a cleaned zinc or zinc plated article with a permanganate composition having a PH of about 2.0 to about 9.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: May 27, 2003
    Assignee: Sanchem, Inc.
    Inventor: John Bibber
  • Patent number: 6569492
    Abstract: The invention relates to a process of repairing a MCrAlY-coating of an article, which has being exposed to the hot gases of, for example, a gas turbine. The MCrAlY-coating is examined and repaired only locally where it is needed and then, subsequently, on top of the MCrAlY-coating the article is aluminized and/or chromized, avoiding the stripping of the whole coating and re-coating over the entire surface of the article. This is for replenishing the coating of Al and/or Cr that become depleted during engine operation, in an easy, cost and time saving manner.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: May 27, 2003
    Assignee: Alstom Ltd
    Inventors: John Fernihough, Abdus S. Khan, Maxim Konter, Markus Oehl, Hans-Joachim Dorn
  • Patent number: 6569812
    Abstract: A polycrystalline silver member is stuck on a given long member made of Hastelloy material or stainless steel material, to make a long base material. Then, an yttrium-based high temperature superconducting film is fabricated in the long base material by a CVD method with applying a magnetic field of preferable 2T or over. Thereby, an yttrium-based high temperature superconducting tape can be provided which can maintain the superconductivity under a higher magnetic field environment.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: May 27, 2003
    Assignee: Tohoku University
    Inventors: Kazuo Watanabe, Mitsuhiro Motokawa
  • Patent number: 6565929
    Abstract: The method of manufacturing the magnetic medium for data storage comprising magnetic segments (5) for data storage which alternate regularly with nonmagnetic segments, which method comprises deposition on a substrate (1) from a nonmagnetic material a material having low or zero initial magnetization and capable of varying its magnetic characteristics under the effect of irradiation. The mentioned material is laid on the substrate (1) as a layer (2) in a thickness corresponding to one of the overall size values of any one of the magnetic segment (5) being formed. Then the applied layer (2) is selectively irradiated so as to vary the magnetic characteristics of the material of the layer (2) on the irradiated segments before forming the magnetic segments (5) each having a maximum overall size the ratio between which and any other overall size of this magnetic segment is from 3.5:1 to 15:1.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: May 20, 2003
    Assignee: Obschestvo s organichennoi otvetstvennostju “Laboratoria Ionnykh Nanotekhnology” (OOO “Labintech”)
    Inventors: Boris Aronovich Gurovich, Dmitry Losifovich Dolgy, Evgeny Zalmanovich Meylikhov, Evgeny Pavlovich Velikhov, Vladimir Borisovich Betelin, Evgenia Anatolievna Kuleshova, Evgeny Dmitrievich Olshansky, Boris Aronovich Aronzon, Alexandr Viktorovich Kalinin
  • Publication number: 20030082297
    Abstract: A method of repairing the tip region of combustion turbine engine blades is provided. The method includes application of a thermal barrier coating after stripping of the bond coat, repair of the blade, reapplication of the bond coat and suitable heat treatment. Blades which previously were not coated with a thermal barrier coating are candidates for repair with the methods of the present invention.
    Type: Application
    Filed: October 26, 2001
    Publication date: May 1, 2003
    Applicant: Siemens Westinghouse Power Corporation
    Inventors: Lutz Wolfgang Wolkers, Thomas J. Carr
  • Publication number: 20030082414
    Abstract: A multi-layer tile material produced from layers of alumina enhanced thermal barrier material having different densities. The insulation layers are bound together by a high strength, high temperature alumina or silica binder having a coefficient of thermal expansion similar to that of the insulation layers. Use of the multi-layered tile allows the problems of tile slumping and of insufficient heat management associated with low density alumina enhanced thermal barrier tile to be overcome.
    Type: Application
    Filed: October 26, 2001
    Publication date: May 1, 2003
    Inventors: Robert A. DiChiara, Franklin K. Myers
  • Patent number: 6555181
    Abstract: A process for making a multiple-layer elastomer-coated member, includes applying a coating of an elastomeric material to a supporting metallic substrate; and curing the elastomeric material by exposure to radiant energy in a radiant energy curing apparatus.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: April 29, 2003
    Assignee: Xerox Corporation
    Inventors: Carla M. Santos, Elizabeth L. Ogren, Alan R. Kuntz, George A. Riehle, Laurence J. Lynd
  • Patent number: 6555159
    Abstract: A method for making a sensor is disclosed. The method comprises: disposing an electrolyte between a first side of sensing electrode and a first side of reference electrode, disposing a first side of a protective layer adjacent to said a second side of said sensing electrode, applying a mixture of a metal oxide, a fugitive material, and a solvent to a second side of the protective layer, and calcining the applied mixture to form said a protective coating on the second side of the protective layer.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: April 29, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: Eric P. Clyde, Richard F. Beckmeyer, William J. Labarge, Marsha E. Nottingham
  • Publication number: 20030077462
    Abstract: The invention concerns composites with excellent barrier properties to gases and water vapor. Such composites can be used, e.g., in foodstuff packaging or as technical membranes. The outstanding barrier effect is achieved by arranging on a substrate material, which, for example, may consist of biodegradable polymers, at least two films. At least one of these films consists of an organic-inorganic hybrid polymer (ORMOCER), at least one further film of a further barrier material or of a substrate material.
    Type: Application
    Filed: September 25, 2002
    Publication date: April 24, 2003
    Inventors: Helmar Utz, Sabine Amberg-Schwab, Gerhard Schottner
  • Patent number: 6548107
    Abstract: In one aspect, the invention encompasses a method of forming an insulating material around a conductive component. A first material is chemical vapor deposited over and around a conductive component. Cavities are formed within the first material. After the cavities are formed, at least some of the first material is transformed into an insulative second material. In another aspect, the invention encompasses a method of forming an insulating material. Polysilicon is deposited proximate a substrate. A porosity of the polysilicon is increased. After the porosity is increased, at least some of the polysilicon is transformed into silicon dioxide.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: April 15, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Patent number: 6548121
    Abstract: The invention relates to a process for the production of strongly adherent coatings on an inorganic or organic substrate that comprises, in a first step a) subjecting the inorganic or organic substrate to the action of a low-temperature plasma discharge, a corona discharge, high-energy UV radiation or electron radiation, then discontinuing the radiation or discharge; in a further step b) under vacuum or at normal pressure, applying one or more photoinitiators containing at least one ethylenically unsaturated group to the inorganic or organic substrate, and allowing reaction with the free-radical sites formed there; and c1) coating the substrate so precoated with photoinitiator with a composition comprising at least one ethylenically unsaturated monomer or oligomer, and curing the coating by means of UV/VIS radiation or c2) depositing a metal, semi-metal oxide or metal oxide from the gaseous phase, in the presence of UV light, on the substrate so precoated with photoinitiator.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: April 15, 2003
    Assignee: Ciba Specialty Chemicals Corporation
    Inventors: Michael Bauer, Manfred Köhler, Martin Kunz, Ljubomir Misev
  • Publication number: 20030064255
    Abstract: An optical coating and a method of coating a substrate are provided. A first layer is deposited adjacent to a substrate. The first layer has an optical thickness of about 0.27 &lgr;0 to about 0.31 &lgr;0, where &lgr;0 is a reference wavelength corresponding to a spectral region bound by or in the visible spectrum. A second layer having an optical thickness of about 0.1 &lgr;0 to about 0.125 &lgr;0 and a refractive index from about 2.2 to about 2.6 is deposited. A third layer having a refractive index from about 1.46 to about 1.52 is deposited. The optical coating provides broadband anti-reflection performance, and the thin second layer facilitates high throughput production of the optical coating.
    Type: Application
    Filed: August 31, 2001
    Publication date: April 3, 2003
    Inventor: Rand David Dannenberg
  • Patent number: 6541075
    Abstract: An article includes a substrate and an adhesion layer overlying the substrate. The adhesion layer includes a first phase including particles, and a second phase including braze alloy that bonds the particles to the substrate. The article further includes a ceramic layer overlying the adhesion layer. In one embodiment, the ceramic layer is a thermal barrier coating (TBC), formed of stabilized zirconia (ZrO2).
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: April 1, 2003
    Assignee: General Electric Company
    Inventors: Wayne Charles Hasz, Jeffrey Allen Conner
  • Publication number: 20030054108
    Abstract: A method of placing a ceramic coating on an article of manufacture comprising a substrate formed of a nickel or cobalt-based superalloy, which includes the steps of placing a bonding layer on the substrate and placing an anchoring layer, which is chemically different from the bonding layer and comprises a nitride compound, on the bonding layer. The method further includes the step of placing the ceramic coating on the anchoring layer.
    Type: Application
    Filed: October 25, 2002
    Publication date: March 20, 2003
    Applicant: Siemens Aktiengesellschaft
    Inventor: Wolfram Beele
  • Publication number: 20030044624
    Abstract: An article protected by a thermal barrier coating system is fabricated by providing an article substrate having a substrate surface, thereafter depositing a bond coat on the substrate surface, the bond coat having a bond coat surface, and thereafter processing the bond coat to flatten the bond coat surface. A thermal barrier coating is deposited overlying the bond coat surface. The thermal barrier coating is yttria-stabilized zirconia having a yttria content of from about 3 percent by weight to about 5 percent by weight of the yttria-stabilized zirconia.
    Type: Application
    Filed: August 31, 2001
    Publication date: March 6, 2003
    Inventors: Irene Spitsberg, Robert William Bruce
  • Publication number: 20030044587
    Abstract: A method of fabricating a device is provided. A substrate having first conductive layer disposed thereon. An organic layer is fabricated over the first conductive layer. A second conductive layer is then fabricated over the organic layer such that the second conductive layer is in electrical contact with the first conductive layer during at least a portion of the step of depositing the second conductive layer. The electrical contact between the first conductive layer and the second conductive layer is then broken. A method of fabricating an active matrix array of organic light emitting devices is also provided. A substrate is obtained, having circuitry adapted to control the current flowing through each organic light emitting device, and having a first conductive layer disposed thereon, such that the first conductive layer is electrically attached to the circuitry. An organic layer is fabricated over the first conductive layer.
    Type: Application
    Filed: August 20, 2001
    Publication date: March 6, 2003
    Inventors: Min-Hao Michael Lu, Michael S. Weaver, Michael Hack
  • Patent number: 6528123
    Abstract: This invention relates to a method for preparing the surface of a ceramic component that enables direct brazing using a non-active braze alloy. The present invention also relates to a method for directly brazing a ceramic component to a ceramic or metal member using this method of surface preparation, and to articles produced by using this brazing method. The ceramic can be high purity alumina. The method comprises applying a first coating of a silicon-bearing oxide material (e.g. silicon dioxide or mullite (3Al2O3.2SiO2) to the ceramic. Next, a thin coating of active metal (e.g. Ti or V) is applied. Finally, a thicker coating of a non-active metal (e.g. Au or Cu) is applied. The coatings can be applied by physical vapor deposition (PVD). Alternatively, the active and non-active metals can be co-deposited (e.g. by sputtering a target made of mullite).
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: March 4, 2003
    Assignee: Sandia Corporation
    Inventors: Charles H. Cadden, F. Michael Hosking
  • Patent number: 6527873
    Abstract: This invention is a method for forming a chemical conversion coating on ferrous metal substrates, the chemical solutions used in the coating and the articles coated thereby. By modifying and combining the features of two existing, but heretofore unrelated, coating technologies, a hybrid conversion coating is formed. Specifically, a molecular iron/oxygen-enriched intermediate coating, such as a dicarboxylate or phosphate, is applied to a ferrous substrate by a first oxidation. The intermediate coating pre-conditions the substrate to form a surface rich in molecular iron and oxygen in a form easily accessible for further reaction. This oxidation procedure is followed by a coloring procedure using a heated (about 120-220 F.) oxidizing solution containing alkali metal hydroxide, alkali metal nitrate, alkali metal nitrite or mixtures thereof, which reacts with the iron and oxygen enriched intermediate coating to form magnetite (Fe3O4).
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: March 4, 2003
    Assignee: Birchwood Laboratories, Inc.
    Inventors: Keith N. Ravenscroft, William V. Block
  • Publication number: 20030039813
    Abstract: The present invention provides thin film dielectrics, and methods of producing them, with high-K performance, and high breakdown field strength and with self-healing breakdown properties. In one aspect there is provided a multilayer dielectric film having an interrupted grain structure, comprising a first sub layer comprising a first dielectric material having a columnar grain structure having a first orientation, a second sub layer comprising a second dielectric material on top of said first layer having an equiaxed grain structure that is different from the first sub layer and a third sub layer comprising third dielectric material on top of said second layer having a microstructure that is different from the second sub layer to provide an interrupted grain structure through said multilayer dielectric film.
    Type: Application
    Filed: August 22, 2002
    Publication date: February 27, 2003
    Inventors: Adrian Kitai, Kenneth Cook, Xiaohua Deng, Doris Stevanovic
  • Patent number: 6524718
    Abstract: A metallic object, having a metallic substrate of a valve metal or a valve metal alloy inclusive of intermetallic phases, and a thin polyphase oxide coating, is disclosed. The polyphase oxide coating has a metal oxide phase and at least one other organic and/or inorganic phase. The polyphase oxide coating is produced by bringing the metallic substrate into contact with an organic and/or inorganic component to be integrated into the polyphase oxide coating such that the inorganic and/or organic phases are present at or in the direct vicinity of the substrate surface and by simultaneously or subsequently anodically polarizing the substrate material in an electrolytic solution.
    Type: Grant
    Filed: June 21, 1999
    Date of Patent: February 25, 2003
    Assignee: Merck Patent GmbH
    Inventors: Hartmut Worch, Michael Thieme, Dieter Scharnweber, Sophie Rössler, Martina Stölzel
  • Patent number: 6524714
    Abstract: A heat treatable coated article including a solar management layer for reflecting infrared (IR) or the like, is provided between a substrate and an overlying dielectric layer. An underlying dielectric layer between the substrate and solar management layer is optional. In certain embodiments, the solar management layer may include NiCrNx while the dielectric layer(s) may include a nitride such as silicon nitride. By nitriding the solar management layer, it has been found that the resulting coated article is more color stable upon heat treatment (HT). For example, the coated article may have a &Dgr;E* value (transmissive and/or glass side reflective) of no greater than 5.0, more preferably no greater than 4.0, and most preferably no greater than 3.0. Coated articles herein may be used in the context of insulating glass (IG) window units, vehicle windows, or the like.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: February 25, 2003
    Assignee: Guardian Industries Corp.
    Inventors: George Neuman, Grzegorz Stachowiak, Hong Wang
  • Publication number: 20030035945
    Abstract: A carbon deposit inhibiting thermal barrier coating for an internal element or component in a gas turbine engine. Such coating includes a layer of thermal barrier material coated onto the surface of an engine component that will be exposed to the flow of burning engine gases. Such coating further includes a layer of carbon deposit inhibiting material coated on top of the layer of thermal barrier material.
    Type: Application
    Filed: August 16, 2001
    Publication date: February 20, 2003
    Applicant: Honeywell International, Inc.
    Inventors: Thomas E. Strangman, Dave Narasimhan, Jeffrey P. Armstrong, Keith R. Karasek
  • Publication number: 20030035979
    Abstract: A polarized organic photonics device, including an LED or photovoltaic device, is comprised of a first conductive layer or electrode coated with a friction transferred alignment material, a photoactive material, and a second electrically conductive layer or electrode. The alignment material provides for the orientation of the subsequently deposited photoactive material such that the photoactive material interacts with or emits light preferentially along a selected polarization axis. Additional layers and sublayers optimize and tune the optical and electronic responses of the device.
    Type: Application
    Filed: October 8, 2002
    Publication date: February 20, 2003
    Inventors: Xiaochun Linda Chen, Zhenan Bao
  • Patent number: 6521052
    Abstract: A simple surface treatment process is provided which offers a high performance surface for a variety of applications at low cost. This novel surface treatment, which is particularly useful for Ti-6Al-4V alloys, is achieved by forming oxides on the surface with a two-step chemical process and without mechanical abrasion. First, after solvent degreasing, sulfuric acid is used to generate a fresh titanium surface. Next, an alkaline perborate solution is used to form an oxide on the surface. This acid-followed-by-base treatment is cost effective and relatively safe to use in commercial applications. In addition, it is chromium-free, and has been successfully used with a sol-gel coating to afford a strong adhesive bond that exhibits excellent durability after the bonded specimens have been subjected to a harsh 72 hour water boil immersion. Phenylethynyl containing adhesives were used to evaluate this surface treatment with a novel coupling agent containing both trialkoxysilane and phenylethynyl groups.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: February 18, 2003
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Cheol Park, Sharon E. Lowther, Terry L. St. Clair
  • Patent number: 6517959
    Abstract: The invention relates to a product (1) designed for hot gas admission with a coating (3) in which chromium nitride (6) is inserted as a diffusion barrier to improve the long-term stability of the coating (3). The invention furthermore relates to a process for producing a coating (3) for a product designed for hot gas admission (1).
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: February 11, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventor: Wolfram Beele
  • Patent number: 6517896
    Abstract: A high performance specular free layer bottom spin valve is disclosed. This structure made up the following layers: NiCr/MnPt/CoFe/Ru/CoFe/Cu/free layer/Cu/Ta or TaO/Al2O3. A key feature is that the free layer is made of a very thin CoFe/NiFe composite layer. Experimental data confirming the effectiveness of this structure is provided, together with a method for manufacturing it and, additionally, its longitudinal bias leads.
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: February 11, 2003
    Assignee: Headway Technologies, Inc.
    Inventors: Cheng T. Horng, Mao-Min Chen, Min Li, Ru-Ying Tong
  • Patent number: 6514563
    Abstract: A method of on-line coating a coat film on the inner wall of a reaction tube in a hydrocarbon pyrolysis reactor for preventing the formation and the deposit of coke on the inner walls. This method comprises the steps of vapor depositing a mixed solution of a metal alkoxide and a chromic compound on the inner walls concurrently with introducing a carrier at a flow rate of 1-5000 kg/hr/coil at a temperature of 600-900° C. under a pressure of 0-3 kg/cm2 to form a buffer layer on the inner walls; and vapor depositing a metal alkoxide as a barrier on the buffer layer; and vapor depositing an alkali metal/alkaline earth metal compound alone or mixed with metal alkoxide as a decoking layer on the barrier. A decoking layer may further be provided on the diffusion barrier.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: February 4, 2003
    Assignee: SK Corporation
    Inventors: Sin Cheol Kang, Ahn Seop Choi, Dong Hyun Cho, Sun Choi
  • Patent number: 6503634
    Abstract: The invention concerns composites with excellent barrier properties to gases and water vapor. Such composites can be used, e.g., in foodstuff packaging or as technical membranes. The outstanding barrier effect is achieved by arranging on a substrate material, which, for example, may consist of biodegradable polymers, at least two films. At least one of these films consists of an organic-inorganic hybrid polymer (ORMOCER), at least one further film of a further barrier material or of a substrate material.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: January 7, 2003
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Helmar Utz, Sabine Amberg-Schwab, Gerhard Schottner
  • Patent number: 6495203
    Abstract: The invention relates to a glass substrate having on at least one of its faces an antireflection coating formed by a stack of thin dielectric material layers having alternately high and low refractive indices. To prevent the modification of the optical properties of the coating in the case where the substrate is subject toga heat treatment such as tempering, bending or annealing, the layer or layers of the stack which are liable to deteriorate on contact with alkali ions such as sodium ions are separated form the substrate by at least one layer forming part of the antireflection coating and forming a “shield” with respect to the diffusion of alkali.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: December 17, 2002
    Assignee: Saint-Gobain Vitrage
    Inventors: Charles-Edward Anderson, Philippe Macquart
  • Patent number: 6491985
    Abstract: A method of treating the surface of a substrate by thermally spraying large size particles, >10 micrometers, of a composition such as a metal hydroxide, carbonate, or nitrate directly onto the substrate whereby a small size particle coating, <5 microns and more particularly <3, is formed on the substrate, enhancing the surface area and porosity properties of the substrate, and substrates with metal oxide surfaces produced thereby.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: December 10, 2002
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventor: Ting He
  • Publication number: 20020182363
    Abstract: A method of forming a crystalline, phase-change layer that remains atomically smooth on its surface. Also, an atomically smooth, crystalline, phase-change layer made according to this method. The method can include forming a phase-change layer over a substrate, forming a thick capping layer over the phase-change layer, changing the phase-change layer from an amorphous phase to a crystalline phase, removing the thick capping layer, and forming a thin capping layer over the phase-change layer.
    Type: Application
    Filed: June 5, 2001
    Publication date: December 5, 2002
    Inventors: Heon Lee, Robert Bicknell-Tassius
  • Patent number: 6488981
    Abstract: A method of manufacturing a touch screen panel, the method including applying a resistive coating to one surface of an insulative substrate, applying an insulative protective coating to the resistive coating, depositing a conductive edge electrode pattern including a plurality of edge electrodes on the protective coating, and firing the panel until the edge electrodes etch through the protective coating and make electrical contact with the resistive coating.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: December 3, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Paul J. Richter, Michael J. Kardauskas, Frank J. Bottari
  • Patent number: 6489034
    Abstract: A method of applying a metal onto a copper layer, comprising the steps of: stabilizing a surface of a copper layer by applying a stabilization layer thereto, the stabilization layer comprised of zinc oxide, chromium oxide, nickel, nickel oxide or a combination thereof and having a thickness of between about 5 Å and about 70 Å; and vapor depositing a metal selected from the group consisting of aluminum, nickel, chromium, copper, iron, indium, zinc, tantalum, tin, vanadium, tungsten, zirconium, molybdenum and alloys thereof onto the stabilized surface of the copper layer, and a sheet material formed thereby.
    Type: Grant
    Filed: February 8, 2000
    Date of Patent: December 3, 2002
    Assignee: Gould Electronics Inc.
    Inventors: Jiangtao Wang, John Callahan, Dan Lillie
  • Patent number: 6482274
    Abstract: A nonchromate metallic surface treating agent comprising (a) a silane coupling agent and/or a hydrolytic condensation product thereof, (b) water-dispersible silica, and (c) a zirconium compound and/or a titanium compound is disclosed. The present invention also discloses a method for treating a surface of a PCM steel panel, a method of producing a PCM steel panel, and a PCM steel panel as produced by the method.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: November 19, 2002
    Assignee: Nippon Paint Co., Ltd.
    Inventors: Toshiaki Shimakura, Motohiro Sasaki, Katsuyoshi Yamasoe, Christian Jung
  • Patent number: 6482466
    Abstract: A transparent electro-conductive structure comprising a transparent substrate and formed successively thereon a transparent electro-conductive layer and a transparent coat layer, which is used in, e.g., front panels of display devices such as CRTS. The transparent electro-conductive layer is composed chiefly of I) noble-metal-coated fine silver particles having an average particle diameter of from 1 nm to 100 nm, the fine silver particles being surface-coated with gold or platinum alone or a composite of gold and platinum, and ii) a binder matrix. A transport electro-conductive layer forming coating fluid used in the production of this transparent conductive structure comprises a solvent and noble-metal-coated fine silver particles dispersed in the solvent and having an average particle diameter of from 1 nm to 100 nm, the fine silver particles being surface-coated with gold or platinum alone or a composite of gold and platinum.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: November 19, 2002
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Masaya Yukinobu, Kenji Kato
  • Patent number: 6482763
    Abstract: The present invention provides fuel cell electrode catalysts comprising alternating platinum-containing layers and layers containing suboxides of a second metal, where the catalyst demonstrates an early onset of CO oxidation. Preferred second metals are selected from the group consisting of Group IIIb metals, Group IVb metals, Group Vb metals, Group VIb metals and Group VIIb metals, most preferably Ti, Ta, W and Mo. The present invention additionally provides methods of making such catalysts, preferably by alternate deposition of platinum and second metals in the presence of substoichiometric amounts of gaseous oxygen.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: November 19, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Gregory M. Haugen, Mark K. Debe, John H. Thomas, III, Krzysztof A. Lewinski, George D. Vernstrom
  • Publication number: 20020168478
    Abstract: The present invention relates to a transparent conductive layered structure having a transparent substrate and a transparent conductive layer and transparent coating layer formed in succession on this substrate, used in, for instance, the front panel of CRT, etc., display devices. The main components of said transparent conductive layer are noble metal microparticles with a mean particle diameter of 1 to 100 nm, wherein the microparticles are made from gold and/or platinum and silver and the gold and/or platinum content is within a range exceeding 50 wt % up to 95 wt %, and a binder matrix.
    Type: Application
    Filed: April 30, 2002
    Publication date: November 14, 2002
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kenji Kato, Masaya Yukinobu
  • Publication number: 20020168554
    Abstract: The present invention provides a refractory and heat insulating material excellent in heat resistance, slag resistance, molten steel resistance, wear resistance, and mechanical impact resistance, and relates to a highly durable heat insulating material characterized by having a thermally sprayed film of refractory ceramic on a surface of a formed body of an inorganic refractory fiber which surface is covered with a cloth material or was covered with the cloth material until it burned out by flame fusion coating of refractory ceramic powder material during the fabricating process of the heat insulating material, with an application film of a surface hardening material acting as an intermediary layer between the thermally sprayed film and the fiber body.
    Type: Application
    Filed: January 18, 2002
    Publication date: November 14, 2002
    Inventors: Taijiro Matsui, Hiroshi Imagawa, Tsuneo Kayama, Shinji Aso, Masataka Matsuo, Kazuhiro Honda