Metal Or Metal Alloy Plating Or Implanted Material Patents (Class 427/531)
  • Publication number: 20100309584
    Abstract: To provide a magnetic recording medium enabling excellent magnetic recording reproduction characteristics to be exhibited with the spacing loss reduced and a manufacturing method of the medium, a method of manufacturing a magnetic recording medium of the invention is to manufacture a magnetic recording medium having a magnetic recording layer of a granular structure having nonmagnetic boundary portions between pillar-shaped magnetic particles on a nonmagnetic substrate, and an exchange coupling layer provided on the magnetic recording layer to add an action of exchange coupling the magnetic particles, and is characterized by having an ion irradiation step of performing ion irradiation on the entire surface of the exchange coupling layer after layering the exchange coupling layer on the magnetic recording layer.
    Type: Application
    Filed: March 9, 2009
    Publication date: December 9, 2010
    Applicant: HOYA CORPORATION
    Inventors: Junichi Yasumori, Yoshiaki Sonobe
  • Patent number: 7842353
    Abstract: A process for manufacturing electrodes for electrolysis, including steps of forming an arc ion plating (AIP) undercoating layer including valve metal or valve metal alloy containing a crystalline tantalum component and a crystalline titanium component on a surface of the electrode substrate comprising valve metal or valve metal alloy, by an arc ion plating method; heat sintering, including the steps of coating a metal compound solution, which includes valve metal as a chief element, onto the surface of the AIP undercoating layer, followed by heat sintering to transform only the tantalum component of the AIP undercoating layer into an amorphous substance, and to form an oxide interlayer, which includes a valve metal oxides component as a chief element, on the surface of the AIP undercoating layer containing the transformed amorphous tantalum component and the crystalline titanium component; and forming an electrode catalyst layer on the surface of the oxide interlayer.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: November 30, 2010
    Assignee: Permelec Electrode Ltd.
    Inventors: Yi Cao, Hajime Wada, Masashi Hosonuma
  • Patent number: 7838061
    Abstract: Disclosed herein is a method of fabricating a high temperature superconducting film in a vacuum chamber through auxiliary cluster beam spraying using an evaporation method, wherein a high temperature superconducting material is deposited on a substrate in a vapor state by evaporating the high temperature superconducting material, and at the same time, a cluster beam material is formed into gas atoms by heating the cluster beam material charged in a housing, and the formed gas atoms pass through a nozzle of an inlet of the housing and then are sprayed and grown on the substrate in the form of the cluster beam, thereby forming pinning centers in the high temperature superconducting film.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: November 23, 2010
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Sang Soo Oh, Ho Seop Kim, Kyu Jung Song, Do Jun Youm, Sun Mi Lim, Yong Hwan Jung, Sang Moo Lee, Ye Hyun Jung, Jae Eun Yoo
  • Patent number: 7811625
    Abstract: There is provided an electron-emitting device of a field emission type, with which the spot size of an electron beam is small, an electron emission area is large, highly efficient electron emission is possible with a low voltage, and the manufacturing process is easy. The electron-emitting device includes a layer 2 which is electrically connected to a cathode electrode 5, and a plurality of particles 3 which contains a material having a resistivity lower than that of a material constituting the layer 2, and is wherein a density of particles 3 in the layer 2 is 1×1014/cm3 or more and 5×1018/cm3 or less.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: October 12, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takeshi Ichikawa, Ryoji Fujiwara, Daisuke Sasaguri
  • Publication number: 20100206628
    Abstract: The present invention aims to provide a transparent electromagnetic wave shield member, which is free from a moirè phenomenon which could not be solved by the prior art, and in which an excellent electromagnetic wave shielding properties and a sufficient total light transmittance based on an appropriate network structure are compatible, and a method for manufacturing the same. The transparent electromagnetic wave shield member of the present invention is a transparent electromagnetic wave shield member in which a metal layer of an electroconductive metal network structure having a geometrical shape is formed on a transparent substrate, and which is characterized in that a spacing of said network structure is 200 ?m or less, an opening ratio of the network structure is 84% or more, and in addition, a thickness of the electroconductive metal layer is 2 ?m or less.
    Type: Application
    Filed: September 4, 2007
    Publication date: August 19, 2010
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Yoshitaka Matsui, Masaaki Kotoura, Osamu Watanabe, Tadashi Yoshioka, Keitaro Sakamoto
  • Patent number: 7771773
    Abstract: The present invention provides orthopedic prosthesis having at least one metallic component that includes a metallic substrate on which an integrally formed nano-crystalline coating is formed. The coating and the substrate have at least one metallic constituent in common having an average atomic concentration in the coating that differs from an average atomic concentration in the substrate by less than about 10 percent. Further, the nano-crystalline coatings includes crystalline grains with an average size in a range of about 1 to 999 nanometers, and more preferably in a range of about 10 to 200 nanometers. A transition region that exhibits a graded reduction in average grain size separates the coating from the substrate. The coating advantageously exhibits an enhanced hardness, and a high degree of resistance to corrosion and wear. In one application, the nano-crystalline coatings of the invention are utilized to form articulating surfaces of various orthopedic devices.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: August 10, 2010
    Assignee: Spire Corporation
    Inventor: Fereydoon Namavar
  • Publication number: 20100129615
    Abstract: The present invention relates to a process for coating a substrate with a wear resistant layer on the basis of carbon comprising the steps of i) providing a substrate containing a material which has an affinity for carbon ii) cleaning a surface of the substrate iii) deposition of a metal containing layer on the surface iv) ion-bombarding the coated surface v) deposition of a carbon layer on the surface. Further, the present invention relates to a substrate with a diamond-like carbon coating on the surface of the substrate and an apparatus for carrying out the process according to the invention.
    Type: Application
    Filed: August 3, 2007
    Publication date: May 27, 2010
    Applicant: CREEPSERVICE SARL
    Inventors: Anna Andreyevna Chizik, Alexei Sergueievitch Mikhailov, Serguei Mikhailov
  • Patent number: 7713591
    Abstract: An apparatus and method is disclosed for orienting the magnetic anisotropy of longitudinal patterned magnetic recording media. A disk-shaped longitudinal granular magnetic recording medium is provided having a high orientation ratio in the circumferential direction. The medium is then patterned to form a uniform array of magnetic islands. The magnetic islands are then irradiated with ions to increase the magnetic exchange coupling between the grains of each island. This aligns the axes of magnetic anisotropy of the individual grains with the average axis of magnetic anisotropy of the grains, thereby aligning the magnetic anisotropy of each island along the circumferential direction.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: May 11, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Manfred Albrecht, Andreas Moser, Natacha Supper, Bruce Terris
  • Patent number: 7700184
    Abstract: Novel catalytic membranes and methods of synthesizing the membranes are disclosed herein. The technology involves the synthesis of a new type of permselective membrane that combines a hollow porous support with strategically positioned catalytic and selective transport functions to overcome thermodynamic, kinetic, and thermal obstacles, such as in the production of hydrogen. Sub-micron, dense metallic catalysts and films may be deposited within porous hollow substrates to create the membranes using the techniques of sol slip casting, film coating and electroless plating.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: April 20, 2010
    Assignee: University of Houston System
    Inventors: Michael P. Harold, Balamurali Krishna R. Nair
  • Patent number: 7682649
    Abstract: An endoprosthesis, such as a stent, having a layer that can enhance the biocompatibility of the endoprosthesis, and methods of making the endoprosthesis are disclosed.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: March 23, 2010
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Verivada Chandrasekaran, Karl Morris Schmidt, Christopher Torres Molina
  • Publication number: 20100047667
    Abstract: A method for forming a mixed metal coating on a gas diffusion medium substantially free of ionomeric components which includes the steps of subjecting an electrically conductive web to a first ion beam having an energy not higher than 500 eV, then to a second beam having an energy of at least 500 eV containing the ions of a first metal, and to at least a third beam having an energy of at least 500 eV containing the ions of a noble metal. The invention also relates to gas diffusion electrodes.
    Type: Application
    Filed: June 30, 2006
    Publication date: February 25, 2010
    Applicant: BASF Fuel Cell GmbH
    Inventors: Andrea Gulla, Robert Allen
  • Patent number: 7655282
    Abstract: A method of forming a patterned thin film comprises the step of forming a frame having an undercut near the bottom thereof on an electrode film, and the plating step of forming the patterned thin film by plating through the use of the frame. The patterned thin film includes a plurality of linear portions disposed side by side. Each of the linear portions has a portion close to the electrode film. This portion has a width greater than the width of the remaining portion of each of the linear portions.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: February 2, 2010
    Assignee: TDK Corporation
    Inventor: Akifumi Kamijima
  • Publication number: 20090314632
    Abstract: A method of forming a CPP-GMR spin valve having a pinned layer with an AP2/coupling/AP1 configuration is disclosed wherein the AP2 portion is a FCC-like trilayer having a composition represented by CoZFe(100-Z)/Fe(100-X)TaX/CoZFe(100-Z) or CoZFe(100-Z)/FeYCo(100-Y)/CoZFe(100-Z) where x is 3 to 30 atomic %, y is 40 to 100 atomic %, and z is 75 to 100 atomic %. Preferably, z is 90 to provide a face centered cubic structure that minimizes electromigration. Optionally, the middle layer is comprised of an Fe rich alloy such as FeCr, FeV, FeW, FeZr, FeNb, FeHf, or FeMo. EM performance is improved significantly compared to a spin valve with a conventional AP2 Co50Fe50 or Co75Fe25 single layer. MR ratio is also increased and RA is maintained at an acceptable level. The coupling layer is preferably Ru and the AP1 layer may be comprised of a lamination of CoFe and Cu layers as in [CoFe/Cu]2/CoFe.
    Type: Application
    Filed: August 25, 2009
    Publication date: December 24, 2009
    Inventors: Kunliang Zhang, Dan Abels, Min Li, Chyu-Jiuh Torng, Chen-Jung Chien, Yu-Hsia Chen
  • Patent number: 7601619
    Abstract: A method and an apparatus for plasma processing which can accurately monitor an ion current applied to the surface of a sample. Predetermined gas is exhausted via an exhaust port by a turbo-molecular pump while introducing the gas within the vacuum chamber from a gas supply device, and the pressure within the vacuum chamber is kept at a predetermined value by a pressure regulating valve. A high-frequency power supply for a plasma source supplies a high-frequency power to a coil provided near a dielectric window to generate inductively coupled plasma within the vacuum chamber. A high-frequency power supply for the sample electrode for supplying the high-frequency power to the sample electrode is provided. A matching circuit for the sample electrode and a high-frequency sensor are provided between the sample electrode high-frequency power supply and the sample electrode. An ion current applied to the surface of a sample can be accurately monitored buy using the high-frequency sensor and an arithmetic device.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: October 13, 2009
    Assignee: Panasonic Corporation
    Inventors: Tomohiro Okumura, Yuichiro Sasaki, Katsumi Okashita, Hiroyuki Ito, Bunji Mizuno, Cheng-Guo Jin, Ichiro Nakayama
  • Publication number: 20090213497
    Abstract: Embodiments of the present invention provide recording area separated magnetic recording media (DTMs, BPMs) allowing magnetic heads to fly lower. According to one embodiment, the recording area separated magnetic recording media are configured so that magnetic recording layers have parts with the relatively higher element ratio of a ferromagnetic material, and parts with the lower element ratio of the ferromagnetic material, occurring periodically in the in-plane direction, and the average height from the substrate surface of the parts with the relatively higher element ratio of a ferromagnetic material is higher than the average height from the substrate surface of the parts with the lower element ratio of the ferromagnetic material.
    Type: Application
    Filed: February 20, 2009
    Publication date: August 27, 2009
    Inventors: Toshinori Ono, Hiroshi Kanai, Tatsuysa Hinoue, Hiroyuki Suzuki, Hiroshi Inaba
  • Patent number: 7578889
    Abstract: Systematic and effective methodology to clean capacitively coupled plasma reactor electrodes and reduce surface roughness so that the cleaned electrodes meet surface contamination specifications and manufacturing yields are enhanced. Pre-cleaning of tools used in the cleaning process helps prevent contamination of the electrode being cleaned.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: August 25, 2009
    Assignee: Lam Research Corporation
    Inventors: Hong Shih, Yaobo Yin, Shun Jackson Wu, Armen Avoyan, John E. Daugherty, Linda Jiang
  • Publication number: 20090120101
    Abstract: Organic matrix composite components, systems using such components, and methods for manufacturing such components are provided. In this regard, a representative organic matrix composite component includes: an organic matrix composite; a layer of aluminum applied to the organic matrix composite; and a wear resistant coating applied to the aluminum layer.
    Type: Application
    Filed: October 31, 2007
    Publication date: May 14, 2009
    Applicant: UNITED TECHNOLOGIES CORP.
    Inventors: Gary M. Lomasney, Joseph Parkos, JR.
  • Patent number: 7504135
    Abstract: A method of fabricating a diffusion barrier using a gas cluster ion beam apparatus is disclosed. The method includes generating a metal-organic gas that includes a metal-organic compound that includes an element of cobalt (Co) or cobalt and iron (CoFe). The metal-organic gas is combined with a carrier gas that is supplied to the gas cluster ion beam apparatus (GCIB). The GCIB processes the carrier gas to form a beam of gas cluster ions that include the metal-organic compound. The beam irradiates an interface surface of a target material (e.g. an IrMn, PtMn, or MnFe antiferromagnetic layer) and at least a portion of the Co or CoFe remains in contact with the interface surface to form a barrier that prevents a diffusion of manganese (Mn).
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: March 17, 2009
    Assignee: Samsung Electronics Co., Ltd
    Inventor: Janice H. Nickel
  • Patent number: 7504126
    Abstract: A plasma display panel is composed of a first substrate and a second substrate facing each other via a discharge space and sealed together. A protective layer on the first substrate is composed principally of magnesium oxide, includes a substance or structure that creates a first energy level in an area of a forbidden band, the area being in a vicinity of a conduction band, and includes a substance or structure that creates a second energy level in another area in the forbidden band, the other area being in a vicinity of a valence band. During driving the second energy level is occupied by electrons, and few electrons exist in the first energy level, or electrons can easily occupy the first energy level due to a minus charge state, and MgO insultaive resistance is not lowered. This maintains wall charge retention and reduces discharge irregularities and firing voltage Vf.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: March 17, 2009
    Assignee: Panasonic Corporation
    Inventors: Mikihiko Nishitani, Yukihiro Morita, Masatoshi Kitagawa, Masaharu Terauchi
  • Publication number: 20090035601
    Abstract: A protective coating system includes a nickel-aluminum-zirconium alloy coating having at least one phase selected from gamma phase nickel, gamma prime phase nickel-aluminum, or beta phase nickel-aluminum in combination with the gamma phase nickel or the gamma prime phase nickel-aluminum. For example, the nickel-aluminum-zirconium alloy coating includes about 0.001 wt % to 0.2 wt % zirconium.
    Type: Application
    Filed: August 5, 2007
    Publication date: February 5, 2009
    Inventors: David A. Litton, Venkatarama K. Seetharaman, Michael J. Maloney, Benjamin J. Zimmerman, Brian S. Tryon
  • Patent number: 7455890
    Abstract: A turbine engine rotor component, such as a compressor or turbine disk or seal element, is protected from corrosion by implanting aluminum or chromium ions, or mixtures thereof, on the surface of the component. Additional metal ions, such as rare earth and reactive elements, may also be implanted on the surface of the component. The component may be heated in a nonoxidizing atmosphere at a specified temperature and time to diffuse the ions into the surface. The component is typically then heated or maintained at an elevated temperature in the presence of oxygen to form an oxide coating on the surface of the component.
    Type: Grant
    Filed: August 5, 2003
    Date of Patent: November 25, 2008
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Michael James Weimer
  • Publication number: 20080226835
    Abstract: According to a containing-fullerene production method by the background art, containment target ions obtained by ionizing containment target atoms have been irradiated to empty fullerene within a vacuum vessel. This has resulted in a problem of a lower formation efficiency of containing-fullerene, in case of forming containing-fullerene which internally contains an atom larger than a six-membered ring of fullerene. It is thus devised to irradiate ions having larger diameters and masses to a fullerene film, simultaneously with irradiation of containment target ions thereto. Since ions having larger masses collide with fullerene molecules, the fullerene molecules are largely deformed and openings thereof are enlarged. Containment target ions are caused to enter cages of fullerene molecules, thereby increasing a probability of formation of containing-fullerene.
    Type: Application
    Filed: March 18, 2005
    Publication date: September 18, 2008
    Inventors: Yasuhiko Kasama, Kenji Omote, Noboru Kudo
  • Publication number: 20080152943
    Abstract: The invention is directed to a process for the creation of a photonic lattice on the surface of an emissive substrate comprising first depositing a thin film metal layer on at least one surface of the substrate, the thin film metal comprising a metal having a melting point lower than the melting point of the substrate, then annealing the thin film metal layer and the substrate to create nano-particles on the substrate surface, and anodizing or plasma etching the annealed thin film metal and substrate to create pores in the nano-particles and the substrate such that upon exposure to high temperature the emissivity of the substrate is refocused to generate emissions in the visible and lower infrared region and to substantially eliminate higher infrared emission, and to the substrate thus created.
    Type: Application
    Filed: December 20, 2006
    Publication date: June 26, 2008
    Inventor: Deeder M. Aurongzeb
  • Publication number: 20080102305
    Abstract: The present invention provides adhesiveless copper clad laminates wherein there is formed a copper film layer having high adhesiveness and insulation reliability, and a method for manufacturing such adhesiveless copper clad laminates.
    Type: Application
    Filed: August 24, 2005
    Publication date: May 1, 2008
    Inventors: Junichi Nagata, Yoshiyuki Asakawa
  • Publication number: 20080063901
    Abstract: A magnetic recording medium includes a first metal thin-film magnetic layer and a second metal thin-film magnetic layer, which respectively include a plurality of columns and have magnetization easy axes that are inclined in opposite directions, formed in that order on a non-magnetic substrate. Both metal thin-film magnetic layers include former growth portions that comprise base end parts of the respective columns and latter growth portions that comprise remaining parts of the respective columns on front-end sides of the columns. The former growth portions are formed by the columns growing in a thickness direction of the non-magnetic substrate. The latter growth portions are formed by the columns growing so as to become inclined to a length of the non-magnetic substrate and arc-shaped in profile.
    Type: Application
    Filed: September 7, 2007
    Publication date: March 13, 2008
    Applicant: TDK CORPORATION
    Inventors: Masao NAKAYAMA, Hiromichi KANAZAWA, Shigeharu WATASE, Takahiro HAYASHI
  • Publication number: 20080050186
    Abstract: The present invention relates to cutting insert for milling of hardened steels, tool steels and hard cast irons and stainless steels with a hardness of more than about 45 HRC comprising a substrate and a coating. The substrate has a hardness of from about 1700 HV3 to about 2000 HV3, with a 10° angle and 0.2 mm wide negative chamfer giving an edge sharpness of 0(sharp) to about 40 ?m and the coating comprises a homogeneous AlxTi1-xN-layer with x=from about 0.6 to about 0.67, preferably x=about 0.62 and a thickness of more than about 1 to less than about 3.8 ?m. The invention also relates to a method of making as well as the use of the inserts.
    Type: Application
    Filed: August 23, 2007
    Publication date: February 28, 2008
    Inventors: Kenneth Westergren, Susanne Norgren
  • Publication number: 20070200500
    Abstract: A plasma display panel, a method of manufacturing an electrode burying dielectric wall of a plasma display panel, and a method of manufacturing an electrode burying dielectric wall of the plasma display panel. The plasma display panel comprises a front substrate, a rear substrate separated from the front substrate in a vertical direction, front discharge electrodes and rear discharge electrodes disposed between the front substrate separated from one another by an insulating layer, a high dielectric layer surrounding the front discharge electrodes and the rear discharge electrodes, discharge cells, at least a portion of each discharge cell being surrounded by the high dielectric layer, a phosphor layer disposed in each of the discharge cells, and a discharge gas filled in the discharge cells.
    Type: Application
    Filed: February 13, 2007
    Publication date: August 30, 2007
    Applicant: Samsung Techwin Co., Ltd.
    Inventors: Woo-suk Choi, Eun-hee Kim
  • Patent number: 7250196
    Abstract: An exemplary system and method for plasma plating are provided to generate a deposition layer on a substrate. The method for plasma plating includes positioning a substrate within a vacuum chamber, positioning a depositant in a filament within the vacuum chamber, reducing the pressure in the vacuum chamber to a level at or below 4 milliTorr, and introducing a gas into the vacuum chamber at a rate to raise the pressure in the vacuum chamber to a level at or between 0.1 milliTorr and 4 milliTorr. In other embodiments, the gas is not required to be introduced. The method also includes applying a dc signal to the substrate at a voltage amplitude at or between 1 volt and 5000 volts, applying a radio frequency signal to the substrate at a power level at or between 1 watt and 50 watts, and heating the depositant to a temperature at or above the melting point of the depositant to generate a plasma in the vacuum chamber.
    Type: Grant
    Filed: October 26, 1999
    Date of Patent: July 31, 2007
    Assignee: Basic Resources, Inc.
    Inventors: Jerry D. Kidd, Craig D. Harrington, Daniel N. Hopkins
  • Patent number: 7244159
    Abstract: A method for producing an electromagnetic-shielding transparent window member including a transparent film and a patterned conductor disposed thereon includes the steps of applying a resin coating material containing a catalyst for electroless plating to the transparent film to form a patterned resin having the same pattern as the patterned conductor to be formed; and depositing a conductive material only on the patterned resin by electroless plating to form the patterned conductor.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: July 17, 2007
    Assignee: Bridgestone Corporation
    Inventor: Hidefumi Kotsubo
  • Patent number: 7229675
    Abstract: The invention relates to metallurgy and mechanical engineering, in particular to the development of methods for providing metallic pieces with protective coatings with a view to improving the performance characteristics thereof. In accordance with the inventive method, a multilayer coating is formed by combining and simultaneously or consecutively using of various technologies including ion-plasma evaporation diffusive metallization and controlled atmosphere thermal treatment. The obtained coatings possess superior characteristics with respect to overall properties and are used for gas turbine construction, in particular, for manufacturing gas turbine vanes of aircraft engines.
    Type: Grant
    Filed: April 10, 2000
    Date of Patent: June 12, 2007
    Inventors: Anatoly Nikolaevich Paderov, Jury Genrikhovich Vexler
  • Patent number: 7189437
    Abstract: An exemplary method for using a mobile plating system is provided that includes locating the mobile plating system at a desired location for plating, positioning an external vacuum pump from an interior position of a mobile storage volume of the mobile plasma plating system to an exterior position, and coupling the external vacuum pump to a vacuum chamber within the mobile storage volume of the mobile plasma plating system using a flexible piping segment, rigid coupling with a dampening effect, or other arrangement operable to reduce and/or eliminate the mechanical vibrations within the vacuum chamber due to the operation of the external vacuum pump.
    Type: Grant
    Filed: January 6, 2003
    Date of Patent: March 13, 2007
    Assignee: Basic Resources, Inc.
    Inventors: Jerry D. Kidd, Craig D. Harrington, Daniel N. Hopkins
  • Patent number: 7156960
    Abstract: A method for the deposition of a metal layer on a substrate (1) uses a cold plasma inside an enclosure (7) heated to avoid the formation of a metal deposit at its surface. The enclosure has an inlet (21) and an outlet (22) for the substrate with a source of metal vapor between them, made up of an electrode to form a plasma (6) with the substrate or a separate electrically conducting element as a counter-electrode. The deposition metal is introduced in the liquid state in a retention tank (8) and is maintained as a liquid at an essentially constant level during the formation of the metal layer on the substrate. An Independent claim is included for the device used to put this method of coating a substrate into service.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: January 2, 2007
    Assignee: Cold Plasma Applications, CPA, SPRL
    Inventors: Pierre Vanden Brande, Alain Weymeersch
  • Patent number: 7122100
    Abstract: A method for reducing the loss of particles from the surface of porous getter bodies is taught herein. The method consists in producing on the surface of the porous getter a thin layer of a metal or metal alloy with a deposition technique selected among the deposition of materials from arc generated plasma, ionic beam deposition and cathodic deposition. The deposition technique allows for granular or columnar surface of the covering material but still allowing access to the surface of the getter material, resulting in a reduced getter particle loss.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: October 17, 2006
    Assignee: SAES Getters S.p.A.
    Inventors: Andrea Conte, Marco Moraja
  • Patent number: 7077837
    Abstract: Intravascular devices having a radiopaque layer thereon for visualization are provided. The devices further includes a capping layer on the radiopaque layer to prevent exposure of the radiopaque material to surrounding tissues. A method of coating the device is also provided. The method includes using an unbalanced magnetic field magnetron to generate, from a source, metal atoms for coating and bombarding ions for compressing deposited metal atoms to the surface of the device.
    Type: Grant
    Filed: November 15, 2001
    Date of Patent: July 18, 2006
    Assignee: Implant Sciences Corporation
    Inventor: Richard Sahagian
  • Patent number: 6969672
    Abstract: A method of controlling a conductive layer deposition process includes depositing a conductive layer onto a semiconductor wafer based upon a deposition recipe, measuring a thickness of the conductive layer deposited on the semiconductor wafer, determining whether the measured thickness of the conductive layer is within a predetermined tolerance, and revising the deposition recipe if the thickness of the conductive layer is not within the predetermined tolerance.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: November 29, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Joyce S. Obey Hewett, Alexander James Pasadyn
  • Patent number: 6955578
    Abstract: A method of varying a transmittance of a transparent conductive film includes forming the transparent conductive film on a substrate and injecting a high energy source into the transparent conductive film to vary the transmittance of the transparent conductive film.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: October 18, 2005
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-Il Park, Chang-Soo Kim
  • Patent number: 6953519
    Abstract: In order to establish processing techniques capable of making multi-tip probes with sub-micron intervals and provide such microscopic multi-tip probes, there is provided an outermost surface analysis apparatus for semiconductor devices etc. provided with a function for enabling positioning to be performed in such a manner that there is no influence on measurement in electrical measurements at an extremely small region using this microscopic multi-tip probe, and there are provided the steps of making a cantilever 1 formed with a plurality of electrodes 3 using lithographic techniques, and forming microscopic electrodes 6 minute in pitch by sputtering or gas-assisted etching a distal end of the cantilever 1 using a focused charged particle beam or using CVD.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: October 11, 2005
    Assignee: SII NanoTechnology Inc.
    Inventors: Yoshiharu Shirakawabe, Hiroshi Takahashi, Tadashi Arai
  • Patent number: 6905736
    Abstract: The method for the fabrication of nano scale temperature sensors and nano scale heaters using focused ion beam (FIB) techniques. The process used to deposit metal nano strips to form a sensor is ion beam assisted chemical vapor deposition (CVD). The FIB Ga+ ion beam can be used to decompose W(CO)6 molecules to deposit a tungsten nano-strip on a suitable substrate. The same substrate can also be used for Pt nano-strip deposition. The precursors for the Pt can be trimethyl platinum (CH3)3Pt in the present case. Because of the Ga+ beam used in the deposition, both Pt and W nano-strips can contain a certain percentage of Ga impurities, which we denoted as Pt(Ga) and W(Ga) respectively. Our characterization of the response of this Pt(Ga)/W(Ga) nano scale junction indicates it has a temperature coefficient of approximately 5.4 mV/° C. This is a factor of approximately 130 larger than the conventional K-type thermocouples.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: June 14, 2005
    Assignee: University of Central Florida
    Inventors: Lee Chow, Dan Zhou, Fred Stevie
  • Patent number: 6864042
    Abstract: A magnetic recording medium is formed with a distribution of low coercivity regions functioning as a transition pattern for servo information capable of being sensed by a read/write head by exposing a masked magnetic layer to ions to change the coercivity of the exposed magnetic layer without substantially affecting the topography of the magnetic layer. Embodiments of the present invention include forming a series of substantially radially extending low coercivity regions used to divide the magnetic layer into a plurality of sectors comprising substantially concentric circumferentially extending data tracks by exposing a masked magnetic layer having a high coercivity, i.e. from about 2000 Oe to about 10000 Oe, to one or more heavy atom ion bombardments of gaseous ions, e.g. argon ions, at a dose of about 1×1013 atoms/cm2 to about 9×1015 atoms/cm2 having an implantation energy of about 10 KeV to about 50 KeV.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: March 8, 2005
    Assignee: Seagate Technology LLC
    Inventors: David Kuo, Xinwei Li, Jing Gui
  • Patent number: 6861089
    Abstract: A method of inhibiting production of projections in a metal deposited-film according to the present invention is characterized by using a vapor deposition apparatus comprising, in a vacuum-treating chamber, an evaporating section for a depositing material, and an accommodating member and/or a holding member for accommodation and/or hold of work pieces, respectively, and, in depositing a metal depositing material on each of the surface of the work pieces with the accommodating member and/or the holding member being made rotated about the horizontal rotational axis thereof, carrying out vapor deposition with a Vickers hardness of a film formed on each of the surface of the work pieces maintained at 25 or more. According to the present invention, production of projections in a metal deposited-film can be effectively inhibited when forming the metal deposited-film of aluminum, zinc or the like on the surface of a work piece such as a rare earth metal-based permanent magnet.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: March 1, 2005
    Assignee: Neomax Co. Ltd.
    Inventors: Takeshi Nishiuchi, Fumiaki Kikui, Yoshimi Tochishita
  • Patent number: 6829121
    Abstract: A magnetoresistive film includes a nonmagnetic film, and a structure in which magnetic films are formed on the two sides of the nonmagnetic film. At least one of the magnetic films is a perpendicular magnetization film. A magnetic film whose easy axis of magnetization is inclined from a direction perpendicular to the film surface is formed at a position where the magnetic film contacts the perpendicular magnetization film but does not contact the nonmagnetic film. A memory, magnetic element, magnetoresistive element, and magnetic element manufacturing method are also disclosed.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: December 7, 2004
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takashi Ikeda, Akio Koganei, Kazuhisa Okano
  • Patent number: 6787198
    Abstract: The present invention involves the hydrothermal treatment of nanostructured films to form high k PMOD™ films for use in applications that are temperature sensitive, such as applications using a polymer based substrate. After a PMOD™ precursor is deposited and converted on a substrate, and possibly after other process steps, the amorphous, nanoporous directly patterned film is subjected to low temperature hydrothermal treatment to densify and possibly crystallize the resulting high dielectric PMOD™ film. A post hydrothermal treatment bake is then performed to remove adsorped water.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: September 7, 2004
    Assignee: EKC Technology, Inc.
    Inventors: Shyama P. Mukherjee, Harold O. Madsen, Paul J. Roman, Jr., Leo G. Svendsen
  • Patent number: 6780527
    Abstract: The present invention includes a personal ornament having a white coating layer and a method for making the same. The base article is made of metal and the white-colored stainless steel coating layer is formed by a dry plating process. The base metal may be ferrous or non-ferrous.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: August 24, 2004
    Assignee: Citizen Watch Co., Ltd.
    Inventors: Koichi Naoi, Akiyoshi Takagi, Yukio Miya, Fumio Tase, Kazumi Hamano
  • Patent number: 6773556
    Abstract: A thin film magnetic recording medium, comprising: at least one ferromagnetic thin film recording layer comprising magnetic particles with substantially uniform barriers to magnetization reversal, formed by a process comprising steps of: (a) providing a precursor structure including at least one ferromagnetic thin film recording layer having a surface and a first, higher coercivity which may be greater than that which permits writing of the precursor structure, comprising magnetic particles having a distribution of energy barriers to magnetization reversal; and (b) uniformly bombarding the entire surface of the precursor structure with particles of sufficient dosage and energy to: (i) substantially equalize the energy barriers to magnetization reversal of the magnetic particles; (ii) lower the coercivity of the at least one ferromagnetic thin film recording layer from the first, higher coercivity to a second, lower coercivity within a range of coercivities permitting writing of the bombarded at least one
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: August 10, 2004
    Assignee: Seagate Technology LLC
    Inventors: Richard Michael Brockie, Hans Jurgen Richter
  • Patent number: 6746782
    Abstract: A barrier coating is disclosed, containing about 15 atom % to about 95 atom % chromium; and about 5 atom % to about 60 atom % of at least one of rhenium, tungsten, and ruthenium. Nickel, cobalt, iron, and aluminum may also be present. The barrier coating can be disposed between a metal substrate (e.g., a superalloy) and an oxidation-resistant coating, preventing the substantial diffusion of various elements at elevated service temperatures. A ceramic overcoat (e.g., based on zirconia) can be applied over the oxidation-resistant coating. Related methods for applying protective coatings to metal substrates are also described.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: June 8, 2004
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson
  • Patent number: 6723213
    Abstract: A titanium target assembly includes a titanium sputtering target, a copper or copper alloy backing plate and serving as a support member for the target and a silver or silver alloy coating film and formed between the target and backing plate. The coating film is formed on a surface subjected to cleaning treatment on the bonding side or sides of the target and backing plate by physical vapor deposition. The titanium target and backing plate are solid phase diffusion bonded. The face(s) serve as the bonding plane. The assembly can be manufactured by cleaning the surface(s) of the target and/or backing plate on bonding side(s), forming a coating film on the cleaned surface(s) on bonding side(s) and solid phase diffusion-bonding the target and backing plate, while using surface(s) provided with coated film as the bonding plane. The target assembly possesses high bonding strength and excellent bonding stability and reliability.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: April 20, 2004
    Assignee: Vacuum Metallurgical Co., Ltd.
    Inventors: Yasuo Nakadai, Poong Kim, Weiping Chai, Masahiro Kodera
  • Patent number: 6723388
    Abstract: This invention comprises methods for making nanostructured and nanoporous thin film structures of various compositions. These films can be directly patterned. In these methods, precursor films are deposited on a surface and different components of the precursor film are reacted under selected conditions, forming a nanostructured or nanoporous film. Such films can be used in a variety of applications, for example, low k dielectrics, sensors, catalysts, conductors or magnetic films. Nanostructured films can be created: (1) using one precursor component and two reactions, (2) using two or more components based on differential rates of photochemical conversion, (3) using two precursors based on the thermal sensitivity of one precursor and the photochemical sensitivity of the other, and (4) by photochemical reaction of a precursor film and selected removal of a largely unreacted component from the film.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: April 20, 2004
    Assignee: EKC Technology, Inc.
    Inventors: Leo G. Svendsen, Shyama P. Mukheriee, Paul J. Roman, Jr., Ross H. Hill, Harold O. Madsen, Xin Zhang, Donna Hohertz
  • Patent number: 6689256
    Abstract: A frequency selective plate which is produced by coating an Ag layer dispersed with Ag particles on a transparent substrate. The Ag layer is formed by depositing an Ag continuous layer on the substrate and heating the Ag continuous layer to varying into Ag particles or by depositing an Ag continuous layer on the heated substrate. The frequency selective plate performs high transparency of radio waves and visible rays while sufficiently reflecting near-infrared rays of solar radiation.
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: February 10, 2004
    Assignee: Central Glass Company, Limited
    Inventors: Hiroshi Nakashima, Masaaki Yonekura, Hideaki Wakabayashi, Masanobu Kominami
  • Patent number: 6670308
    Abstract: An epitaxial article and method for forming the same includes a substrate having a textured surface, and an electrochemically deposited substantially single orientation epitaxial layer disposed on and in contact with the textured surface. The epitaxial article can include an electromagnetically active layer and an epitaxial buffer layer. The electromagnetically active layer and epitaxial buffer layer can also be deposited electrochemically.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: December 30, 2003
    Assignee: UT-Battelle, LLC
    Inventor: Amit Goyal
  • Patent number: 6663920
    Abstract: A method for forming a magnetoresistive (MR) layer first employs a substrate over which is formed a magnetoresistive (MR) layer formed of a magnetoresistive (MR) material. There is then ion implanted selectively, while employing an ion implant method, the magnetoresistive (MR) layer to form: (1) an ion implanted portion of the magnetoresistive (MR) layer formed of an ion implanted magnetoresistive (MR) material; and (2) an adjoining non ion implanted portion of the magnetoresistive (MR) layer formed of the magnetoresistive (MR) material, where the ion implanted magnetoresistive (MR) material is a non magnetoresistive (MR) material. The method may be employed for forming within magnetoresistive (MR) sensor elements magnetoresistive (MR) layers with enhanced dimensional uniformity, and in particular enhanced overlay dimensional uniformity.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: December 16, 2003
    Assignee: Headway Technologies, Inc.
    Inventors: Cherng-Chyi Han, Rong-Fu Xiao, Mao-Min Chen, Po-Kang Wang