Metal Or Metal Alloy Plating Or Implanted Material Patents (Class 427/531)
  • Patent number: 6136385
    Abstract: A surface reforming method of a metal product, wherein a platinum film is formed on the surface of a metal product by injecting onto that surface a nitrogen ion, a carbon ion and a platinum ion in that order, and then injected onto said platinum film a second platinum ion with the aim of improving the exfoliation resistance of the platinum film being formed on the metal surface, and the abrasion resistance of the surface.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: October 24, 2000
    Assignee: Saatec Engineering Corporation
    Inventor: Yasuaki Sakamoto
  • Patent number: 6136175
    Abstract: The electronic component, specifically a SAW component with conductive structures disposed on a substrate is encapsulated for protection against environmental influences. The electrically conductive structures are sealed with a gas diffusion-constricting protective layer formed with an electrochemical or ion bombardment process.
    Type: Grant
    Filed: June 22, 1998
    Date of Patent: October 24, 2000
    Assignee: Siemens Aktiengesellschaft
    Inventors: Alois Stelzl, Hans Kruger, Wolfgang Pahl, Jurgen Machui
  • Patent number: 6126793
    Abstract: The present invention relates to a method of forming an intermediate film and a hard cabon film over the inner surface of a cylindrical member having a bore, such as a bushing or a cylinder, with the hard carbon film being formed on the intermediate film with a uniform thickness, greatly enhancing of abrasion resistance of the inner surface. The cylindrical member is placed in a vacuum vessel, an auxiliary electrode of an intermediate film forming material, such as a titanium-silicon alloy or the like, is inserted in the bore of the cylindrical member, a sputtering gas is supplied into the vacuum vessel, a voltage is applied to the auxiliary electrode to produce a plasma around the auxiliary electrode in order that the intermediate film forming material is sputtered from the auxiliary electrode and an intermediate film is formed over the inner surface of the cylindrical member.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: October 3, 2000
    Assignee: Citizen Watch Co., Ltd.
    Inventors: Osamu Sugiyama, Yukio Miya, Ryota Koike, Takashi Toida, Toshiichi Sekine
  • Patent number: 6123997
    Abstract: A thermal barrier coating system and a method for forming the coating system which yields a thermal barrier coating having good adhesion to a bond coat overlying a metal superalloy substrate. The adhesion of the bond coat and the thermal barrier coating is enhanced by forming a mature .alpha.-alumina (Al.sub.2 O.sub.3) scale at the bond coat-TBC interface. The desired mature .alpha.-alumina scale can be obtained by utilizing one or more of the following steps: preoxidation of the bond coat at certain minimum temperatures and durations; inoculation of the surface of the bond coat; surface doping or alloying of the bond coat surface; and the addition of noble metals to the bond coat. Each of these steps promotes the formation of .alpha.-alumina and avoids the formation of the .gamma., .delta. and .theta.-alumina phases which undergo phase transformations at elevated temperatures, with the result that a more spallation-resistant thermal barrier coating system is obtained.
    Type: Grant
    Filed: October 15, 1997
    Date of Patent: September 26, 2000
    Assignee: General Electric Company
    Inventors: Jon C. Schaeffer, William B. Connor, Robert D. Field
  • Patent number: 6103073
    Abstract: A thin film magnetic head has a sharply defined zero throat location in the pole tip members utilizing a superior magnetic pole tip material having high resistivity and high magnetic induction. The zero throat location is defined by first depositing a first pole tip member on a first magnetic pole member which may be formed by plating and need not be composed of the same superior magnetic material as the first pole tip member. By etching the zero throat edge of the first pole tip member, a clearly defined edge location is produced. The second pole tip member of superior magnetic material is then deposited on an insulating gap layer which is formed on the lower pole tip member.
    Type: Grant
    Filed: July 15, 1996
    Date of Patent: August 15, 2000
    Assignee: Read-Rite Corporation
    Inventor: Pradeep K. Thayamballi
  • Patent number: 6103319
    Abstract: A battery electrode substrate which is constituted of a porous metallic body structure having communicating pores at a porosity of at least 90% and an Fe/Ni multilayer structure wherein the skeletal portion of the porous metallic body is composed mainly of Fe and has an Ni covering layer on the surface thereof while pores communicating with the inside and outside of Fe skeletal portion exist in the Fe skeletal portion and the inside of the pores is covered with Ni. The electrode substrate is produced by applying an iron oxide powder of at most 20 .mu.m in an average particle size on a porous resin core body; heat treating the core to remove an organic resin component while simultaneously sintering Fe to obtain a porous Fe body; and then covering the Fe skeletal portion with Ni by electroplating. In this process, the iron oxide can be used in combination with carbon powder. Further, a nickel porous sintered body can also be produced using nickel oxide in place of iron oxide.
    Type: Grant
    Filed: August 18, 1998
    Date of Patent: August 15, 2000
    Assignees: Sumitomo Electric Industries, Ltd., Matsushita Electric Industrial Co., Ltd.
    Inventors: Keizo Harada, Kenichi Watanabe, Shosaku Yamanaka, Kiyoshi Hayashi, Nobuyasu Morishita, Hiroki Takeshima, Hideo Kaiya, Munehisa Ikoma
  • Patent number: 6083567
    Abstract: A surface of a substrate is vacuum coated with a material by sequentially implanting and depositing ions from a single ion source. First ions of the coating material are initially implanted into the surface of the substrate to form an implanted substrate layer. Next, second ions of the material are deposited on the implanted substrate layer to form a seed layer. Third ions of the material are then implanted into the seed layer to form an intermixed layer. Fourth ions of the material are deposited over the intermixed layer to form the coating over the substrate.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: July 4, 2000
    Assignee: University of Maryland, Baltimore County
    Inventors: Oleg Vesnovsky, Timmie Topoleski, Victor Pushnykh
  • Patent number: 6080669
    Abstract: A method is provided for forming metal layers in semiconductor channels or vias by using a very high pressure ionized metal deposition technique which results in improved sidewall step coverage with enhanced subsequent filling of the channel or vias by conductive materials. To obtain the very high pressure in excess of 100 mT, the plasma coil power is increased and the gas flow is increased while maintaining a constant pumping feed in the ionized metal deposition equipment.
    Type: Grant
    Filed: January 5, 1999
    Date of Patent: June 27, 2000
    Assignee: Advanced Micro Devices, Inc.
    Inventors: John A. Iacoponi, Dirk Brown, Takeshi Nogami
  • Patent number: 6069078
    Abstract: A method of forming metallization layers and vias as part of an interconnect structure within an integrated circuit ("IC") is disclosed. The metallization layers and vias are formed of an alloy consisting of tungsten and one or more other materials such as aluminum, gold, copper, cobalt, titanium, molybdenum or platinum. In the alternative, the alloy may include aluminum and exclude tungsten. The alloy that forms the metallization layers and vias is deposited onto the IC substrate using ionized cluster beam ("ICB") apparatus. The IC substrate is an "in-process" IC in that various active devices (e.g., bipolar and/or MOS transistors), resistors and capacitors are formed in the substrate using conventional techniques prior to the ICB deposition of the alloy layers. Intermediate IC substrate processing steps (e.g., patterning and etching to form the vias) may take place in-between ICB deposition steps.
    Type: Grant
    Filed: December 30, 1997
    Date of Patent: May 30, 2000
    Assignee: UTMC Microelectronic Systems Inc.
    Inventors: James C. Weaver, Rick C. Jerome
  • Patent number: 6060127
    Abstract: An apparatus for metal line deposition and a method for metal line deposition using the apparatus. A donor plate has a donor substrate transparent to a focused coherent light beam and a donor surface. The donor surface of the donor plate has a channel formed therein. The channel is coated with a metallic material. A deposition substrate onto which the metal line is to be deposited is disposed adjacent the donor surface of the donor plate. The focused coherent light beam is directed through the donor substrate of the donor plate and onto the metallic coating in the channel. The focused coherent light beam causes the metallic material to ablate from the channel by discharging ions of the metallic material away from the channel and onto the deposition substrate to form the metal line.
    Type: Grant
    Filed: March 31, 1998
    Date of Patent: May 9, 2000
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Abdelkrim Tatah, Makoto Ishizuka
  • Patent number: 6059937
    Abstract: The present invention relates to a sensor for detecting hydrocarbon type gas such as methane gas and propane gas, and process for manufacturing thereof. SiO.sub.2 was deposited in 1 .mu.m by ion beam sputtering with a mixed gas (3:2) of argon and oxygen on a silicon wafer in the process. In case of a propane sensor, platinum electrode is deposited in 600 .ANG. by ion beam sputtering on a tin oxide thin film synthesized by ionized beam of which the oxygen ion energy is 0 to 500 eV by using poly alumina. In case of a methane sensor, heat treatment at 500.degree. C. was performed for 1 hour in the air in order for the thin film to be stable at high operation temperature, while heat treatment was not performed in case of propane sensor. The sensor was manufactured by adding platinum or palladium thereto by argon ion beam sputtering. The thin film type tin oxide sensor according to the present invention exhibited an excellent selectivity of 47.4% even at low temperature of 150.degree. C.
    Type: Grant
    Filed: May 28, 1996
    Date of Patent: May 9, 2000
    Assignee: Korea Gas Corporation
    Inventors: Seok Keun Koh, Hyung Jin Jung, Seok Kyun Song, Won Kook Choi, Dongsoo Choi, Jin Seok Jeon
  • Patent number: 6051115
    Abstract: An adhesive strength increasing method which does not need a bulky apparatus such as an ion implantation apparatus and prevent the characteristic of a material from being degraded by using a high level current ion of a low level energy, thus increasing an adhesive strength between a metal thin film and a glass substrate. In the present invention, a metal is deposited on a substrate an inert gas or a reactive gas having a predetermined energy is irradiatd to the deposited metal thin film, and then the metal thin film is sealed, thus increasing an adhesive strength between a metal thin film and a glass substrate.
    Type: Grant
    Filed: July 15, 1997
    Date of Patent: April 18, 2000
    Assignee: Korea Institute of Science and Technology
    Inventors: Hong Kyu Jang, Seok Keun Koh, Hyung Jin Jung, Won Kook Choi
  • Patent number: 6040020
    Abstract: A method of forming a film having enhanced reflow characteristics at low thermal budget is disclosed, in which a surface layer of material is formed above a base layer of material, the surface layer having a lower melting point than the base layer. In this way, a composite film having two layers is created. After reflow, the surface layer can be removed using conventional methods.
    Type: Grant
    Filed: August 7, 1995
    Date of Patent: March 21, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Randhir P. S. Thakur
  • Patent number: 6021964
    Abstract: The present invention provides a gas introduction pipe in which the least component is replaced when deformation or damage is caused and a magnetic recording medium production method using this gas introduction pipe. The gas introduction pipe according to the present invention includes: a gas supply pipe 20 for supplying a gas; a main body 22, 23 connected to the gas supply pipe and having a gas flow passage 21 for flowing of a gas supplied from the gas supply pipe; and a blowoff block 25 arranged at the opposite side of the main body 22, 23 not having the gas supply pipe and having a blowoff opening 27 exposed outward for blowing off the gas outside. The blowoff block 25 is held so as to be sandwiched by the main body 22, 23 and can be detached and attached from/to the main body 22, 23.
    Type: Grant
    Filed: June 24, 1998
    Date of Patent: February 8, 2000
    Assignee: Sony Corporation
    Inventors: Tomohiro Kubo, Shuetsu Kumagai
  • Patent number: 6003336
    Abstract: A die for press-molding glass optical elements which can press-mold glass optical elements having high melting points and various shapes repeatedly, which includes a base material having high strength on which a cutting layer having heat resistance and free cutting machinability is formed. After cutting the cutting layer into the desired shape with high accuracy, the die is coated with a surface protective film.
    Type: Grant
    Filed: March 29, 1996
    Date of Patent: December 21, 1999
    Assignee: Matsushita Electric Industrial Co. Ltd.
    Inventors: Yoshinari Kashiwagi, Makoto Umetani, Hidenao Kataoka, Kenji Inoue, Shoji Nakamura, Satoru Morimoto
  • Patent number: 5997634
    Abstract: A method of forming a crystalline phase material includes, a) providing a stress inducing material within or operatively adjacent a crystalline material of a first crystalline phase; and b) annealing the crystalline material of the first crystalline phase under conditions effective to transform it to a second crystalline phase. The stress inducing material preferably induces compressive stress within the first crystalline phase during the anneal to the second crystalline phase to lower the required activation energy to produce a more dense second crystalline phase. Example compressive stress inducing layers include SiO.sub.2 and Si.sub.3 N.sub.4, while example stress inducing materials for providing into layers are Ge, W and Co. Where the compressive stress inducing material is provided on the same side of a wafer over which the crystalline phase material is provided, it is provided to have a thermal coefficient of expansion which is less than the first phase crystalline material.
    Type: Grant
    Filed: November 14, 1996
    Date of Patent: December 7, 1999
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Sujit Sharan
  • Patent number: 5980974
    Abstract: An improved coated orthopaedic implant component is disclosed. The implant may be coated with platinum, iridium or other metals for improved characteristics. Ion beam coating orthopaedic parts by ion implanting the parts with zirconium ions while the parts are immersed in an oxygen-containing background gas is also disclosed. The adhesion of the graded interface zirconium oxide surface layer so formed is further improved by the initial removal of surface contamination using an ion bombardment and the deposition of an intermediate layer of platinum or similar metal or silicon between the orthopaedic metal component and the zirconium oxide. Furnace heating results in atomic interdiffusion to enhance adhesion between the surfaces. The zirconium oxide provides a low friction, low wear articulating surface. The graded interface may be characterized by a blackish color and a transition between pure zirconium oxide and pure intermediate layer that extends over a thickness of hundreds of Angstroms.
    Type: Grant
    Filed: April 16, 1996
    Date of Patent: November 9, 1999
    Assignee: Implant Sciences Corporation
    Inventors: Anthony J. Armini, Stephen N. Bunker
  • Patent number: 5976444
    Abstract: The present invention is a process for making a nanochannel glass (NCG) rica, having the steps of: coating a face of an etched NCG with a replica material (with or without an intervening buffer layer), where the etched NCG face has a plurality of channels arranged in a desired pattern, to form a replica coating on the NCG conforming to the pattern; and removing the replica coating from the etched NCG. The present invention is also the replica made by this process.
    Type: Grant
    Filed: September 24, 1996
    Date of Patent: November 2, 1999
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Douglas H. Pearson, Ronald J. Tonucci
  • Patent number: 5976636
    Abstract: An electric arc ion plating apparatus to coat a metal material on an object includes: (a) an vacuum chamber; (b) an electric arc bombardment chamber in the vacuum chamber, comprising an anode, a cathode target, and an arc triggering electrode to generate metal particles when a voltage is applied on the anode and the cathode, and on the arc triggering electrode; and (c) a magnetic coil having a longitudinal axis. The magnetic coil emanates from the electric arc bombardment chamber and encloses at least a part of the electric bombardment chamber. The magnetic coil contains a constant-diameter section enclosing and immediately emanating from the electric arc bombardment chamber to guide the metal particles away from the cathode and toward the object, and a varying-diameter section away from the electric arc bombardment chamber to provide optimum distribution of the metal particles before they reach the object surface.
    Type: Grant
    Filed: March 19, 1998
    Date of Patent: November 2, 1999
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Sheng Leu, Wei-Cheng Lih, Yuh-Wen Lee, Shau-Yi Chen, Wei-Jieh Chang, Shinn-Cherng Huang, Mau-Shen Liou
  • Patent number: 5945153
    Abstract: The present invention provides a process of forming an antimicrobial coating on a surface of a medical implant, the coating comprising an antimicrobially effective amount of antimicrobial metal atoms incorporated into a coating of amorphous carbonaceous material.
    Type: Grant
    Filed: July 29, 1997
    Date of Patent: August 31, 1999
    Assignee: Southwest Research Institute
    Inventor: Geoffrey Dearnaley
  • Patent number: 5900126
    Abstract: An improved magnetic-recording disk and a process for manufacturing magnetic-recording disks are disclosed. A precision cold-rolled authentic stainless steel is the substrate for a magnetic-recording disk. The surface of the substrate may be hardened by plasma nitriding, plasma carburizing, or plasma carbonitriding. A hard coating may be applied to the substrate by evaporative reactive ion plating or reactive sputtering of aluminum nitride, silicon nitride, silicon carbide, or nitrides, carbides, or borides of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, or tungsten.
    Type: Grant
    Filed: June 3, 1996
    Date of Patent: May 4, 1999
    Assignee: Tulip Memory Systems, Inc.
    Inventors: Carl W. Nelson, Richard D. Weir
  • Patent number: 5891312
    Abstract: A process for forming a thin metal coating on a substrate wherein a gas stream heated by an electrical current impinges on a metallic target in a vacuum chamber to form a molten pool of the metal and then vaporize a portion of the pool, with the source of the heated gas stream being on one side of the target and the substrate being on the other side of the target such that most of the metallic vapor from the target is directed at the substrate.
    Type: Grant
    Filed: December 24, 1996
    Date of Patent: April 6, 1999
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jack L. Weeks, Douglas M. Todd
  • Patent number: 5885665
    Abstract: A method for forming crystallographically coherent precipitates of vanadium dioxide in the near-surface region of sapphire and the resulting product is disclosed. Ions of vanadium and oxygen are stoichiometrically implanted into a sapphire substrate (Al.sub.2 O.sub.3), and subsequently annealed to form vanadium dioxide precipitates in the substrate. The embedded VO.sub.2 precipitates, which are three-dimensionally oriented with respect to the crystal axes of the Al.sub.2 O.sub.3 host lattice, undergo a first-order monoclinic-to-tetragonal (and also semiconducting-to-metallic) phase transition at .about.77.degree. C. This transformation is accompanied by a significant variation in the optical transmission of the implanted region and results in the formation of an optically active, thermally "switchable" surface region on Al.sub.2 O.sub.3.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: March 23, 1999
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Laurence A. Gea, Lynn A. Boatner
  • Patent number: 5882738
    Abstract: An ion implant process is disclosed for forming an amorphous structure in a semiconductor metallization barrier layer, which barrier may be a pure metal barrier, such as titanium, tantalum, tungsten, or metal compound barrier, such as titanium nitride, or titanium-tungsten. The implant is preferably an ion of the barrier metal being used, which is implanted such that an amorphous (texture-less non-crystalline) layer is produced. Other implant species, such as nitrogen or noble gases, such as neon or argon may also be used. Subsequent deposition of the interconnect metallization (typically Al or Cu) results in an interconnect metal structure having a high degree of texture which is characterized by a very narrow distribution of crystallographic orientations in the Al or Cu film. The highly textured Al or Cu metallization results in optimizing the interconnect metal for maximum electromigration performance.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: March 16, 1999
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Richard C. Blish, II, Bryan Tracy
  • Patent number: 5879760
    Abstract: A method for protecting a titanium aluminide substrate against environmental degradation at higher temperatures, which comprises applying a layer of a ductile titanium alloy to at least one exterior surface of the substrate and applying an oxidation resistant coating to the exterior surface of the ductile layer. The titanium aluminide substrate may be monolithic or a fiber-reinforced composite structure. The oxidation resistant coating is an ion-plated coating of (a) a noble metal, such as gold or platinum, or (b) a coating of tungsten followed by an ion-plated coating of a noble metal.
    Type: Grant
    Filed: November 5, 1992
    Date of Patent: March 9, 1999
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Daniel Eylon, Paul R. Smith
  • Patent number: 5876783
    Abstract: A method and apparatus for producing a guide wire including a core wire a distal portion of which is surrounded by a helically wound spring. The coils forming the distal portion of the spring include a annular layer of radiopaque material, e.g., gold, ion deposited onto the stainless steel wire of the spring.
    Type: Grant
    Filed: November 6, 1997
    Date of Patent: March 2, 1999
    Assignee: The MicroSpring Company, Inc.
    Inventor: Paul J. Dobson
  • Patent number: 5876848
    Abstract: A method of forming a magnetic structure having layers with different magnetization orientations provided by a common magnetic bias layer includes the steps of depositing an antiferromagnetic layer between first and second ferromagnetic layers. During the deposition of the first and second ferromagnetic layers, magnetization fields of different orientations are employed separately to induce different directions of magnetization in the first and second layers. The different directions of magnetization in the first and second layers are sustained, through the process of exchange coupling, by the interposed antiferromagnetic layer which serves as the bias layer. A magnetic structure thus fabricated, can be used as a read transducer capable of generating differential signals with common mode noise rejection, and can be used as a magnetic pole for a magnetic head with reduced Barkhausen noise.
    Type: Grant
    Filed: February 3, 1997
    Date of Patent: March 2, 1999
    Assignee: Read-Rite Corporation
    Inventors: Minshen Tan, Hua-Ching Tong, Francis H. Liu, Swie-In Tan
  • Patent number: 5858471
    Abstract: A deposition process provides selective areal deposition on a substrate surface having separate areas of different materials comprises forming a plasma over the substrate, injecting coating species into the plasma by either of sputtering or gaseous injection, adding a reactive gas for altering surface binding energy at the coating surface, and biasing the substrate during deposition to bombard the substrate with ionic species from the plasma. Surface binding energy is altered, in the general case, differently for the separate areas, enhancing selectivity. Bias power is managed to exploit the alteration in surface binding energy. In the case of gaseous injection of the coating species, and in some cases of sputtering provision of the coating material, the temperature of the substrate surface is managed as well. In an alternative embodiment, selectivity is to phase of the coating material rather than to specific areas on the substrate, and a selected phase may be preferentially deposited on the substrate.
    Type: Grant
    Filed: October 3, 1996
    Date of Patent: January 12, 1999
    Assignee: Genus, Inc.
    Inventors: Mark A. Ray, Gary E. McGuire
  • Patent number: 5855951
    Abstract: An improved magnetic-recording disk and a process for manufacturing magnetic-recording disks are disclosed. An electrically conductive hard coating is deposited upon a ceramic substrate. This coating can be one from the group including the nitrides, carbides, and borides of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, or tungsten. Graded interfacial diffusion or pseudo-diffusion layers are formed between the ceramic substrate and the coating by the elemental metal present in the coating. Magnetic-recording media is then deposited upon the electrically conductive coating. Optionally, a texturable coating that is softer than the hard coating can be placed over the electrically conductive hard coating before the magnetic-recording media is deposited. This texturable coating limits the depth to which abrasive tape texturing can take place.
    Type: Grant
    Filed: April 18, 1997
    Date of Patent: January 5, 1999
    Assignee: Tulip Memory Systems, Inc.
    Inventors: Carl W. Nelson, Richard D. Weir, Richard S. Weir
  • Patent number: 5855967
    Abstract: This invention concerns a method for protecting surfaces of diamond, diamondlike carbon and of other forms of carbon, from the effects of oxidation which can occur at high temperatures in an oxidizing environment. The method involves exposing the surface of the diamond or other carbon material to energetic ions of, or containing, an element or elements which can be caused to react with the carbon to form a thin layer containing a carbide compound that is itself more oxidation resistant than the diamond or other carbon material and which is able to serve as a barrier to prevent or delay penetration of oxygen to the thereby protected diamond or other carbon material.
    Type: Grant
    Filed: October 23, 1997
    Date of Patent: January 5, 1999
    Assignee: Epion Corporation
    Inventor: Allen R. Kirkpatrick
  • Patent number: 5855716
    Abstract: The present invention is a method for modifying a substrate in a predetermined pattern, comprising the steps of: (a) applying a material to the face of an etched nanochannel glass (NCG), where this face has a pattern of channels corresponding to the predetermined pattern, and (b) contacting the substrate with the etched NCG face having applied material, under conditions for transferring the material to the substrate.
    Type: Grant
    Filed: September 24, 1996
    Date of Patent: January 5, 1999
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Ronald J. Tonucci, Douglas H. Pearson
  • Patent number: 5851599
    Abstract: A battery electrode substrate which is constituted of a porous metallic body structure having communicating pores at a porosity of at least 90% and an Fe/Ni multilayer structure wherein the skeletal portion of the porous metallic body is composed mainly of Fe and has an Ni covering layer on the surface thereof while pores communicating with the inside and outside of Fe skeletal portion exist in the Fe skeletal portion and the inside of the pores is covered with Ni. The electrode substrate is produced by applying an iron oxide powder of at most 20 .mu.m in an average particle size on a porous resin core body; heat treating the core to remove an organic resin component while simultaneously sintering Fe to obtain a porous Fe body; and then covering the Fe skeletal portion with Ni by electroplating. In this process, the iron oxide can be used in combination with carbon powder. Further, a nickel porous sintered body can also be produced using nickel oxide in place of iron oxide.
    Type: Grant
    Filed: September 20, 1996
    Date of Patent: December 22, 1998
    Assignees: Sumitomo Electric Industries Co., Ltd., Matsushita Electric Industrial Co., Ltd.
    Inventors: Keizo Harada, Kenichi Watanabe, Shosaku Yamanaka, Kiyoshi Hayashi, Nobuyasu Morishita, Hiroki Takeshima, Hideo Kaiya, Munehisa Ikoma
  • Patent number: 5849367
    Abstract: An elemental titanium-free liner and cavity cleansing process is provided that allows for the elimination of conventional sputter etch and elemental titanium depositions. A low power plasma etch provides for pre-conditioning/cleansing of cavities such as contacts and vias. A refractory metal is provided as a cavity liner. Preferably, the liner is comprised of several discrete refractory metal liner layers, each having a thickness of about 25-100 .ANG., that can be applied by CVD and/or PVD. A low power plasma cleanse is preferably interposed between each liner layer deposition. A suitable metal plug can be deposited and directed into the cavity to complete cavity filling. Preferably, the metal plug is an elemental aluminum or aluminum alloy plug that is deposited by CVD and force-filled into the cavity to reduce the incidence of micro-voids within the cavity.Elimination of the conventional sputter etch and the high temperature processing (temp..gtoreq..sup..about. 400.degree. C.
    Type: Grant
    Filed: December 11, 1996
    Date of Patent: December 15, 1998
    Assignee: Texas Instruments Incorporated
    Inventors: Girish A. Dixit, Anthony J. Konecni
  • Patent number: 5837354
    Abstract: A flexible metallized product having a base material made of a soft resin material comprising polypropylene mixed with diene or polypropylene mixed with rubber, a base coat layer formed on the surface of the base material, a metal thin film layer formed on the surface of the base coat layer and a top coat layer covering the metal thin film layer. The metal thin film layer is made of a corrosion resistant metal such as chromium. The metal thin film layer has a thickness of at least 150 .ANG. and no greater than 800 .ANG. by means of a vacuum vapor deposition or sputtering. The metal thin film layer is constituted by a plurality of metal particles. The metal particles are disposed such that adjacent metal particles are in contact with one another to form a grain boundary therebetween.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: November 17, 1998
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Yasuhiko Ogisu, Yukitaka Hasegawa
  • Patent number: 5830587
    Abstract: A process resulting in enhanced pole performance, relative to permalloy poles, in narrow track magnetic devices. A preferred process includes increasing the anisotropy field of the pole material while maintaining an acceptable coercivity level and near zero magnetostriction. One embodiment utilizes a NiCoFe alloy containing 22% cobalt by weight, heat treated in an easy axis magnetic field in a non-oxidizing atmosphere. This process achieves favorable domain structures at narrow pole tip widths.
    Type: Grant
    Filed: November 4, 1996
    Date of Patent: November 3, 1998
    Assignee: MKE-Quantum Components Colorado, LLC
    Inventors: Harold B. Shukovsky, Michelle Martin, Michael Mallary, Alan Lee Sidman
  • Patent number: 5827786
    Abstract: In forming an insulating film upon a selected region of a sample, a gaseous vapor is directed over the selected region for depositing a compound of the gaseous vapor containing elements of the insulating film. A charged particle beam is directed toward the selected region in order to decompose the deposited compound and provide the desired insulating film.
    Type: Grant
    Filed: April 28, 1997
    Date of Patent: October 27, 1998
    Assignee: FEI Company
    Inventor: Joseph Puretz
  • Patent number: 5817367
    Abstract: A method of forming a thin film of copper on a substrate includes a first step of conducting a chemical vapor deposition (CVD) process using a metal organic (MO) source while applying a first bias voltage to the surface of the substrate and a second step of conducting a chemical vapor deposition process using a metal organic source while applying a second bias voltage to the substrate, wherein the second bias voltage is opposite in polarity to the first bias voltage. The process may include a third step of conducting a chemical vapor deposition process using a metal organic source while applying a third bias voltage to the substrate, where the third bias voltage has the same polarity as the first bias voltage.
    Type: Grant
    Filed: December 23, 1996
    Date of Patent: October 6, 1998
    Assignee: LG Semicon., Ltd.
    Inventors: Soung Soon Chun, Chong Ook Park, Dong Won Kim, Won Jun Lee, Sa Kyun Rha, Kyung Il Lee
  • Patent number: 5807613
    Abstract: There is disclosed a process for forming aluminide diffusion coatings containing reactive elements on metal substrates such as iron, nickel or cobalt based alloys for protection against high temperature oxidation or corrosive environments. The process includes depositing a mixed metal coating containing aluminum and at least one reactive element onto the metal substrate and heat treating the coated substrate to induce interdiffusion of elements between the substrate and the deposited metal coating. In one aspect of the invention, the reactive element is yttrium and the metal coating is deposited by ion plating yttrium-aluminum by thermal evaporation from a yttrium-aluminum source. The coated substrate is heat treated between 500.degree.-1200.degree. C. to form a reactive element modified-aluminide diffusion coating having a thin outer Al.sub.2 O.sub.3 coating formed thereon.
    Type: Grant
    Filed: November 1, 1996
    Date of Patent: September 15, 1998
    Assignee: Cametoid Advanced Technologies, Inc.
    Inventors: Alina C. Aguero, Maria N. Korotkin
  • Patent number: 5780110
    Abstract: A method for manufacturing an article for use in a gas tubine engine is disclosed, which comprises applying a metallic bond coating on a superalloy substrate; surface doping a surface of the bond coating with at least one element selected from the group consisting of Fe, Cr and Y by plating, ion implantation, MOCVD and sputttering; and then applying an insulative ceramic coating on the bond coating.
    Type: Grant
    Filed: March 18, 1997
    Date of Patent: July 14, 1998
    Assignee: General Electric Company
    Inventors: Jon C. Schaeffer, William B. Connor, Robert D. Field
  • Patent number: 5777372
    Abstract: A diamond film biosensor has a transducer that is partially or totally composed of semiconducting diamond film and/or undoped diamond film. A bioidentifier is fixed partly or entirely on the surface of said semiconducting diamond film and/or undoped diamond film. The peripheral circuits are partly or entirely composed of undoped diamond film and/or semiconducting diamond film. The diamond film biosensor can detect chemical substances and biosubstances with a high sensitivity and fast response, has a long lifetime, and is reusable.
    Type: Grant
    Filed: March 1, 1996
    Date of Patent: July 7, 1998
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventor: Koji Kobashi
  • Patent number: 5773099
    Abstract: A dental care material comprising a titanium sintered body has no harmful effects on the human body and easily produces products with complicated shapes having a high level of strength. A mixture of titanium powder and an organic binder is injection molded and subjected to binder removal and sintering processes to form a bracket for orthodontic or dental implant materials. Pure titanium powder, with an average granule diameter of no more than 40 .mu.m, a carbon content by weight of no more than 0.3%, and an oxygen content by weight of no more than 0.6%, preferably is used to produce a titanium sintered body of combined carbon and oxygen content by weight of no more than 1.0%. Colored layers can be formed on the surface of the titanium sintered body using various methods as needed.
    Type: Grant
    Filed: April 25, 1996
    Date of Patent: June 30, 1998
    Assignees: Injex Corporation, Matsumoto Dental College
    Inventors: Naoki Tanaka, Hiroshi Ohtsubo, Michio Ito
  • Patent number: 5744202
    Abstract: A method for enhancing hydrogenation of oxide-encapsulated materials includes forming an injection layer having a low reflectivity of monatomic hydrogen on an oxide-encapsulated material, and hydrogenating the material with an atomic hydrogen source such as a hydrogen plasma. The method results in a significant decrease in hydrogenation time required to passivate the oxide-encapsulated materials.
    Type: Grant
    Filed: September 30, 1996
    Date of Patent: April 28, 1998
    Assignee: Xerox Corporation
    Inventor: Norbert H. Nickel
  • Patent number: 5695827
    Abstract: A process invention for protecting alpha-2 and gamma titanium aluminide alloy specimens subjected to high temperature oxidation comprises providing an ion beam having an energy range from about 100 keV to about 170 keV. The ion beam incorporates an elemental species capable of promoting alumina formation. The ion beam is exposed to the specimen so as to implant a dose in a range from about 2.times.10.sup.16 to about 8.times.lO.sup.17 ions/cm.sup.2 for a sufficient time period to form a surface alloy of the elemental species and titanium aluminide near the surface of the specimen.
    Type: Grant
    Filed: July 1, 1991
    Date of Patent: December 9, 1997
    Assignee: Boeing North American, Inc.
    Inventor: Hoda Shalaby
  • Patent number: 5691008
    Abstract: A magnetic recording medium fabrication device includes a cooling drum around which a substrate runs while being cooled thereby, an ion gun arranged upstream to a vapor deposition station for kicking out particles absorbed on the plane of the substrate, a cooling body arranged between the cooling drum and ion gun for absorbing kicked out particles and a vapor deposition means for depositing a magnetic layer on the substrate at the vapor deposition station. The magnetic particles forming the magnetic layer that have residual magnetization vectors within .+-.10.degree. of the easy axis direction including the magnetic anisotropy of the medium are greater than or equal to 70% and less than or equal to 90% of the total amount of magnetic particles.
    Type: Grant
    Filed: October 12, 1995
    Date of Patent: November 25, 1997
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kiyokazu Thoma, Kazunari Yoshimoto, Ryuji Sugita, Tatsuaki Ishida
  • Patent number: 5683758
    Abstract: A method of forming a via hole in a substrate includes forming an opening in a substrate thereby forming a slag and then heating the substrate to recombine the slag with the substrate.
    Type: Grant
    Filed: December 18, 1995
    Date of Patent: November 4, 1997
    Assignee: Lucent Technologies Inc.
    Inventors: Michael D. Evans, Tae Yong Kim, Henry Miles O'Bryan, Jr.
  • Patent number: 5683757
    Abstract: This invention provides an improved process for surface modification of polymers, graphites and carbon-based composite materials, and improved surface-modified materials produced by the process. The preferred surface modification process of the present invention comprises the steps of: high dose single or multiple implantation of the substrate with energetic ions, including ions of at least one metal or semi-metal element able to form a stable, non-volatile oxide; and oxidative full or partial conversion of an upper portion of the implanted layer to a continuous, resistant oxide-enriched surface layer. The process may also comprise the additional implantation of a hardening non-metal element to participate in the formation of a glass-like surface layer or to form a carbonized, hardened sub-layer.
    Type: Grant
    Filed: August 25, 1995
    Date of Patent: November 4, 1997
    Inventors: Zelina A. Iskanderova, Jasha I. Kleiman, Yuri Gudimenko, Grant Rheal Cool, Roderick C. Tennyson
  • Patent number: 5679410
    Abstract: A thin film magnetic recording medium is manufactured with vacuum deposition or sputtering technique. One or more reflectors are provided between the substrate and an evaporation source around a path through which evaporated atoms travel onto a substrate. When a thin film is deposited on a substrate, the one or more reflectors are heated above a melting point of an evaporation material to reflect evaporated atoms arriving them. Thus, atoms reflected by the one or more reflectors also contribute to deposition of a thin film as well as evaporated atoms arriving directly from the evaporation source, and deposition efficiency is improved. Such a reflector is also used to limit a boundary or the path through which evaporated atoms travel onto a substrate. Then, a range of incident angles of evaporated atoms onto the substrate is kept the same for a long time on deposition, and characteristics of the thin film are stable.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: October 21, 1997
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Ryuji Sugita, Kiyokazu Tohma, Tatsuaki Ishida, Kazunari Yoshimoto
  • Patent number: 5635255
    Abstract: Erosion and wear resistant iron alloy, comprising: Cr 20.0-36.0% by weight, B 2.5-5.0% by weight, Mn 0.5-3.2% by weight, Si 0.05-0.6 by weight, Mo 0.3-2.5% by weight, V 0.05-0.3% by weight, Nb 0.03-0.3% by weight, P 0.5% by weight or less, C 0.05-0.3% by weight, and a trace of unavoidable impurities, which confers superior corrosion and wear resistance upon abraded or corroded portions by coating or molding.
    Type: Grant
    Filed: November 28, 1995
    Date of Patent: June 3, 1997
    Assignee: Samsung Heavy Industries Co., Ltd.
    Inventors: Kwang W. Kwon, Kang H. Kim
  • Patent number: 5626920
    Abstract: A coated metal-substrate disk for magnetic-recording applications is disclosed having a first coating selected from the group consisting of nitrides, carbides, or borides of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, or tungsten, or the group consisting of aluminum nitride, silicon nitride, or silicon carbide on the metal substrate and a magnetic-recording material coating on the first coating. The first coatings are applied by evaporative reactive ion plating or by reactive sputtering.
    Type: Grant
    Filed: April 21, 1995
    Date of Patent: May 6, 1997
    Assignee: Tulip Memory Systems, Inc.
    Inventors: Richard D. Weir, Carl W. Nelson
  • Patent number: 5612098
    Abstract: A method of forming a magnetic structure having layers with different magnetization orientations provided by a common magnetic bias layer includes the steps of depositing an antiferromagnetic layer between first and second ferromagnetic layers. During the deposition of the first and second ferromagnetic layers, magnetization fields of different orientations are employed separately to induce different directions of magnetization in the first and second layers. The different directions of magnetization in the first and second layers are sustained, through the process of exchange coupling, by the interposed antiferromagnetic layer which serves as the bias layer. A magnetic structure thus fabricated, can be used as a read transducer capable of generating differential signals with common mode noise rejection, and can be used as a magnetic pole for a magnetic head with reduced Barkhausen noise.
    Type: Grant
    Filed: August 14, 1996
    Date of Patent: March 18, 1997
    Assignee: Read-Rite Corporation
    Inventors: Minshen Tan, Hua-Ching Tong, Francis H. Liu, Swie-In Tan