Metal Or Metal Alloy Substrate Patents (Class 427/556)
  • Patent number: 6548122
    Abstract: Methods and apparatus are provided in which a metal precursor is formed in a process that includes the following steps: depositing a metal precursor on a substrate; adding an energy to reduce the metal precursor and to precipitate metal on the substrate as a continuous metal layer; and selecting the metal precursor and the energy such that the purity of the continuous metal layer is greater than 85%, and/or the deposited layer has an electrical conductivity substantially that of a pure metal. Methods and apparatus are also provided in which a metal is deposited onto a substrate by a process which includes the following steps: depositing the metal precursor onto the substrate in a desired pattern; and applying sufficient energy to decompose the precursor to precipitate metal in a continuous metal layer in the desired pattern.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: April 15, 2003
    Assignee: SRI International
    Inventors: Sunity Sharma, Subhash Narang, Kuldip Bhasin, Madan Lal Sharma
  • Patent number: 6531188
    Abstract: Process for producing a multi-layer lacquer finish, in which a surfacer coating compound is applied to a substrate optionally pre-coated with a priming layer and/or further coating layers, and a top coating comprising a color-imparting and/or special-effect-imparting base lacquer layer and a transparent clear lacquer layer, or a top coating comprising a pigmented one-layer top lacquer, is then applied, in which the surfacer coating compound which is used is one which either contains binders which are curable exclusively by free radical and/or cationic polymerization, wherein the said binders are cured by means of high-energy radiation, or is one which contains binders which are curable by free radical and/or cationic polymerization, wherein the said binders are cured by means of high-energy radiation, and additionally contains chemically cross-linking binders.
    Type: Grant
    Filed: August 3, 2000
    Date of Patent: March 11, 2003
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Karin Maag, Helmut Löffler, Werner Lenhard
  • Patent number: 6517888
    Abstract: The present invention is directed to a method for manufacturing a medical device having a coated portion which comprises obtaining a structure having an inner surface and an outer surface; coating at least a portion of the inner or outer surface with a first coating material; and ablating the coated tubular structure with a laser to form at least one opening therein to form the coated portion. A plate can be used instead of the structure, and the plate is folded to form the structure after the ablation. A plurality of medical devices, made of any materials and having uniform coating(s), can be easily manufactured by the method of the present invention.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: February 11, 2003
    Assignee: Scimed Life Systems, Inc.
    Inventor: Jan Weber
  • Patent number: 6503574
    Abstract: An article having a substrate is protected by a thermal barrier coating system. An interfacial layer contacts the upper surface of the substrate. The interfacial layer may comprise a bond coat only, or a bond coat and an overlay coat. The interfacial layer has on its upper surface a preselected, controllable pattern of three-dimensional features, such as grooves in a parallel array or in two angularly offset arrays. The features are formed by an ablation process using an ultraviolet laser such as an excimer laser. A ceramic thermal barrier coating is deposited over the pattern of features on the upper surface of the interfacial layer.
    Type: Grant
    Filed: December 22, 1994
    Date of Patent: January 7, 2003
    Assignee: General Electric Co.
    Inventors: David William Skelly, Bangalore Aswatha Nagaraj, David John Wortman, David Vincent Rigney, Seetha Ramaiah Mannava, Rudolfo Viguie, Robert William Bruce, Warren Arthur Nelson, Curtis Alan Johnson, Bhupendra Kumar Gupta
  • Patent number: 6503556
    Abstract: Methods of forming a coating onto an implantable device or endoluminal prosthesis, such as a stent, are provided. The coating may be used for the delivery of an active ingredient. The coating may have a selected pattern of interstices for allowing a fluid to seep through the coating in the direction of the pattern created.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: January 7, 2003
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Sameer Harish, Steven Wu, Deborra Sanders Millare, Judy Guruwaiya, Stephen Pacetti, Syed Faiyaz Ahmed Hossainy
  • Patent number: 6500497
    Abstract: A method of producing a patterned magnetic nanostructure is disclosed. The method includes providing a substrate having a non-magnetic single layer or multi layer film that can be converted into a magnetic state by annealing and/or mixing. The method further includes positioning a mask having a desired pattern and resolution associated with the patterned magnetic nanostructure on or over the film. The method additionally includes subjecting the mask-covered substrate to a beam of radiation (focussed or unfocussed) having sufficient energy to locally anneal and/or mix the non-magnetic or weak-magnetic single-layer or multi layer film. Because of the mask effect, only the desired portions of the non-magnetic film are exposed to the beam of radiation. As such, the desired portions of the non-magnetic film are changed from a non-magnetic to a magnetic state to produce an array of magnetic elements in a non-magnetic matrix. The size of each magnetic element is dependent on the resolution of mask.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: December 31, 2002
    Assignee: Data Storage Institute
    Inventors: Jian-Ping Wang, Tie Jun Zhou, Tow Chong Chong
  • Patent number: 6497985
    Abstract: The present invention relates to a method for marking metallic alloys using laser alloying. Specifically, the present invention is directed toward the use of laser alloying steel or aluminum alloys with a mark that provides protection against wear and corrosion and greater permanency.
    Type: Grant
    Filed: June 9, 1999
    Date of Patent: December 24, 2002
    Assignee: University of Tennessee Research Corporation
    Inventors: Mary Helen McCay, T. Dwayne McCay, John A. Hopkins, Narendra B. Dahotre, C. Michael Sharp, John Brice Bible, Frederick A. Schwartz
  • Patent number: 6495195
    Abstract: A thermoplastic film for LCM tissue transfer is thermally coupled to a broadband energy-absorbing material. The broadband energy-absorbing material may either be introduced into the film composition as a dopant or may be in thermal contact with the film.
    Type: Grant
    Filed: February 14, 1997
    Date of Patent: December 17, 2002
    Assignee: Arcturus Engineering, Inc.
    Inventors: Thomas M. Baer, David F. Head, John S. Toeppen
  • Publication number: 20020132105
    Abstract: An anodized micro-pore aluminum tag bearing indicia thereon wherein the micro-pore anodized aluminum has its micro-pores filled with the cured reside of a composition, which contains silicone resin having pendant groups selected from one or more of methyl groups or phenyl groups. The composition in the micro-pores was cured to a degree effective for marking by blackening thereof with a, e.g., CO2, laser beam, in the form of indicia thereon. The surface of the tag preferably is substantially free of said composition. The method for treating the surface of the anodized micro-pore aluminum tag for forming indicia thereon commences by applying the composition to the surface. Excess of the composition from the surface is removed to leave composition resident in said micro-pores. The composition in the micro-pores then is at least partially cured. A laser then can create the indicia by blackening the composition in the micro-pores.
    Type: Application
    Filed: March 19, 2001
    Publication date: September 19, 2002
    Inventors: John A. Robertson, Edward S. O'Neal, Ken R. Vaughn, Christopher D. Speakman
  • Patent number: 6451421
    Abstract: An anodized micro-pore aluminum tag bearing indicia thereon wherein the micro-pore anodized aluminum has its micro-pores filled with the cured reside of a composition, which contains silicone resin having pendant groups selected from one or more of methyl groups or phenyl groups. The composition in the micro-pores was cured to a degree effective for marking by blackening thereof with a, e.g., CO2, laser beam, in the form of indicia thereon. The surface of the tag preferably is substantially free of said composition. The method for treating the surface of the anodized micro-pore aluminum tag for forming indicia thereon commences by applying the composition to the surface. Excess of the composition from the surface is removed to leave composition resident in said micro-pores. The composition in the micro-pores then is at least partially cured. A laser then can create the indicia by blackening the composition in the micro-pores.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: September 17, 2002
    Assignee: Infosight Corporation
    Inventors: John A. Robertson, Edward S. O'Neal, Ken R. Vaughn, Christopher D. Speakman
  • Publication number: 20020106309
    Abstract: A test tube comprises a tube body of unitary construction including an enclosed sidewall and an integral bottom surface that together define a tubular container having an open top. The bottom surface has a concave interior surface and a planar exterior surface upon which machine readable data is encoded within a multi-layered opaque coating that is deposited onto the planar exterior surface to uniquely identify the test tube. The machine readable data is preferably an open (i.e., non-proprietary) data matrix code. This code is applied to the test tube by depositing a multi-layer coating onto the planar exterior of the tube bottom surface. The multi-layer coating may include a first layer of opaque material that is deposited onto the planar exterior surface, and a second layer of opaque material that is deposited onto the first layer. The machine readable code is formed in the multi-layered coating by removing portions of the second layer.
    Type: Application
    Filed: January 24, 2002
    Publication date: August 8, 2002
    Applicant: Matrix Technologies Corporation
    Inventors: Gregory Mathus, Daniel J. Seguin, Victor A. Torti
  • Patent number: 6410105
    Abstract: Overhang and undercut features, as well as cavities, channels, pipes and three-dimensional voids and other structures are fabricated using a laser-aided direct-metal deposition (DMD) processes. In the preferred embodiment, this is accomplished through the selective deposition of a lower melting point sacrificial material. Following the integrated deposition of both sacrificial and non-sacrificial materials using DMD, the part is soaked in a furnace at a temperature sufficiently high to melt out the sacrificial material. As preferred options, the heating is performed in an inert gas environment to minimize oxidation, with a gas spray also being used to blow out remaining deposits. Using this technique, articles having integral sensors and cooling channels may be used as part of an automated system for controlling the temperature, stress and strain during the shaping or forming of a product using the resultant smart die or mold.
    Type: Grant
    Filed: May 15, 2000
    Date of Patent: June 25, 2002
    Inventors: Jyoti Mazumder, Timothy Skszek, Joseph K. Kelly, Joohyun Choi
  • Patent number: 6402476
    Abstract: A turbine blade and a method for its production. In order to protect the turbine blade from being damaged by particles carried in the gas, surfaces of the turbine blade are melted down to a predetermined depth in order to form a defined amorphous region on a crystalline structure of a base material. The surfaces are then cooled down at a predetermined temperature reduction rate per unit time.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: June 11, 2002
    Assignee: Alstom
    Inventors: Hans-Peter Bossmann, Otto-Ernst Bernhardi, Hans-Joachim Schmutzler, Harald Reiss, Raiko Milanovic, Ludwig Weiler, Christoph Sommer, Marianne Sommer
  • Patent number: 6399280
    Abstract: According to the present invention there is provided a method for making a lithographic printing plate comprising the steps of applying a first magnetic field to a dry, light absorbing powder, which comprises a magnetic material and a hydrophobic thermoplastic binder, thereby coating said powder on a surface of a metal support; image-wise exposing to light the powder in contact with the surface of the metal support, thereby increasing the adhesion of the powder to the surface of the metal support, without substantially ablating the powder; and removing the non-exposed magnetic powder from the surface of the metal support under action of a second magnetic field with a polarity substantially opposite to the first magnetic field.
    Type: Grant
    Filed: October 24, 2000
    Date of Patent: June 4, 2002
    Assignee: Agfa-Gevaert
    Inventors: Joan Vermeersch, Augustin Meisters, Stefaan De Meutter
  • Patent number: 6395350
    Abstract: Mesoporous transition metal oxide thin films and methods for producing these films are provided. Also provided are methods of fabricating useful chemical sensors and electrochromic devices from the thin films of the invention. Certain mesoporous transition metal oxide molecular sieves may be used as targets for pulsed laser ablation under controlled atmosphere, resulting in deposition of a thin film of the target material upon a substrate of choice. The thin films possess a mesoporous structure which may be enhanced by means of a hydrothermal treatment. The thin films also may be treated with a means of removing the templating agent used during synthesis of the mesoporous target material.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: May 28, 2002
    Assignee: Board of Regents, The University of Texas System
    Inventors: Kenneth J. Balkus, Jr., Mary E. Kinsel
  • Patent number: 6368718
    Abstract: An anti-corrosive coating for structural steel components contains 3 to 80 wt. % of a binder including polymeric material, and 20 to 97 wt. % of a filler including semiconductive elements or compounds. A process for welding a steel component coated with such an anti-corrosive coating involves temporarily energizing the semiconductive material of the coating into its conductive state and then carrying out the welding process, e.g. electric spot welding, while the semiconductive material is in the conductive state. Thereby, the coating does not hamper the electric welding operation. The step of energizing the semiconductive material is achieved by temporarily applying an external energy such as localized heating or incident light radiation having a photon energy corresponding to an energy band gap of the semiconductive material.
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: April 9, 2002
    Assignee: DaimlerChrysler AG
    Inventor: Christina Schmidt
  • Patent number: 6344246
    Abstract: Robotic cladding of an underlying substrate with a composite metallic surface layer on a prepatterned interface with the substrate, is performed by a laser induced surface improvement process whereby a particulate ceramic additive introduced into a matrix mixture forms the surface layer with a permanent non-skid property bonded by intermixing of molten portions of such matrix mixture and the substrate at the interface, enhanced by prepatterning of such interface.
    Type: Grant
    Filed: May 10, 2000
    Date of Patent: February 5, 2002
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Eugene C. Fischer, Vincent J. Castelli, Dale A. Sowell
  • Patent number: 6313436
    Abstract: A method of laser marking metals, plastics, ceramic materials, glazes, glass ceramics, and glasses of any desired form, which comprises applying to the material to be marked a variable thickness layer of marking material containing energy absorbing enhancers then irradiating said layer with a laser or diode based energy source such that the radiation is directed onto said layer in accordance with the form of the marking to be applied, and using a laser or diode based energy source of a wavelength which is sufficiently absorbed by the marking material so as to create a bonding of the marking material to the surface of the workpiece at the irradiated areas.
    Type: Grant
    Filed: January 5, 2000
    Date of Patent: November 6, 2001
    Assignee: Thermark, LLC
    Inventor: Paul Wollcott Harrison
  • Publication number: 20010036587
    Abstract: The present invention relates to a method for marking metallic alloys using laser alloying. Specifically, the present invention is directed toward the use of laser alloying steel or aluminum alloys with a mark that provides protection against wear and corrosion and greater permanency.
    Type: Application
    Filed: June 9, 1999
    Publication date: November 1, 2001
    Inventors: MARY HELEN MCCAY, T. DWAYNE MCCAY, JOHN A. HOPKINS, NARENDRA B. DAHOTRE, C. MICHAEL SHARP, JOHN BRICE BIBLE, FREDERICK A. SCHWARTZ
  • Patent number: 6299707
    Abstract: This invention is directed toward a method for enhancing the wear resistance of an aluminum cylinder bore comprising laser alloying of the cylinder bore with selected precursors. The present invention is particularly well suited for enhancing the wear resistance caused by corrosion in an aluminum block engine comprising aluminum cylinder bores.
    Type: Grant
    Filed: May 24, 1999
    Date of Patent: October 9, 2001
    Assignee: The University of Tennessee Research Corporation
    Inventors: Mary Helen McCay, T. Dwayne McCay, John A. Hopkins, Narendra B. Dahotre, Frederick A. Schwartz, John Brice Bible
  • Patent number: 6299947
    Abstract: A method in accordance with our invention for providing texture bumps on a substrate comprises the step of forming elliptical ridge-shaped bumps on the substrate. In one embodiment, substrate is used in the manufacture of a magnetic disk used in a disk drive. The elliptical bumps cause less vibration of the read-write head than circular bumps. The elliptical bumps also provide reduced friction between the disk and a read-write head during use.
    Type: Grant
    Filed: January 20, 1999
    Date of Patent: October 9, 2001
    Assignee: Komag, Inc.
    Inventors: Shoji Suzuki, David Treves, David Vigdor Salamon, Dan Frusescu, Rony Thomas
  • Patent number: 6284067
    Abstract: This invention relates to a method of using a laser to produce alloyed bands or strips on the surface of a piston for an internal combustion engine. More specifically, the present invention relates to a laser alloying method to produce superior wear resistant properties for an aluminum internal combustion engine piston.
    Type: Grant
    Filed: July 2, 1999
    Date of Patent: September 4, 2001
    Assignee: The University of Tennessee Research Corporation
    Inventors: Frederick A. Schwartz, Mary Helen McCay, T. Dwayne McCay, Narendra B. Dahotre, John Brice Bible, John A. Hopkins
  • Patent number: 6274206
    Abstract: Energy, such as from one or more lasers, is directed at the surface of a substrate to mobilize and vaporize a constituent element (e.g., carbide) within the substrate (e.g., steel). The vaporized constituent element is reacted by the energy to alter its physical structure (e.g., from carbon to diamond) to that of a composite material which is diffused back into the substrate as a composite material. An additional secondary element, which can be the same as or different from the constituent element, may optionally be directed (e.g., sprayed) onto the substrate to augment, enhance and/or modify the formation of the composite material, as well as to supply sufficient or additional material for fabricating one or more coatings on the surface of the substrate. The process can be carried out in an ambient environment (e.g., without a vacuum), and without pre-heating or post-cooling of the substrate.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: August 14, 2001
    Assignee: QQC, Inc.
    Inventors: Manuel C. Turchan, Pravin Mistry
  • Patent number: 6245432
    Abstract: The present invention provides a circuit substrate and a circuit-formed suspension substrate comprising the circuit substrate, the circuit substrate comprising a metal foil substrate and an insulating layer composed of a polyimide resin formed on the metal foil substrate, wherein the polyimide resin is one obtained by the reaction of (A) p-phenylene diamine and (B) acid anhydrides of (a) 3,4,3′,4′-biphenyltetracarboxylic acid dianhydride and (b) 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane. Since a coefficient of linear thermal expansion of the polyimide resin is close to that of various metal foils, the circuit substrate causes no cracking on the resin layer and scarcely causes warpage, and the resin layer does not separate.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: June 12, 2001
    Assignee: Nitro Denko Corporation
    Inventors: Yasuhito Funada, Toshihiko Omote
  • Patent number: 6203861
    Abstract: A one-step rapid manufacuring process is used to create three dimensional prototyping parts. Material such as metal, ceramics and the like powder, and wire, and the like, is delivered to a laser beam-material interaction region where it is melted and deposited on a substrate. The melted and deposited material is placed on a XYZ workstation. Three dimensional parts are created by moving the XYZ workstation relative to the laser beam while simultaneously feeding powdered alloys, first in the XY and then in the Z plane. Beam shaping focussing optics can be used to tailor the intensity distribution of the laser beam to the requirements of the deposition layers, and can be used to create parts with desired mechanical or thermodynamic properties. Additional beam splitting and recombining optics can be used to allow powder to be fed at a perpendicular angle to the substrate.
    Type: Grant
    Filed: December 28, 1998
    Date of Patent: March 20, 2001
    Assignee: University of Central Florida
    Inventors: Aravinda Kar, Srikanth Sankaranarayanan, Franz-Josef Kahlen
  • Patent number: 6146715
    Abstract: A method of fabricating an organic EL display panel accomplishes pixelation without using a shadow mask, and without exposing active EL elements to solvents from photoresist, or developing and stripping solutions. A first electrode layer and an insulating layer are formed on a transparent substrate. Portions of the insulating layer are removed at predetermined regions using at least one laser beam. An organic function layer and a second electrode layer are then formed on the predetermined regions. The first electrode layer, the organic layer and the second electrode layer form a sub-pixel. Additional sub-pixels are formed using the same method.
    Type: Grant
    Filed: March 3, 1999
    Date of Patent: November 14, 2000
    Assignee: LG Electronics Inc.
    Inventors: Chang Nam Kim, Yoon Heung Tak, Sung Tae Kim
  • Patent number: 6127005
    Abstract: Coating and filler materials for localized thermal processing of glazed ceramics and other brittle and low thermal conductivity materials. The coating materials include oxide compositions that exhibit coefficients of thermal expansion which are less than about 8.times.10.sup.-6 /.degree. C. and glass transition temperatures which are less than about 400.degree. C. The filler materials include particulate oxide materials which do not substantially react during localized thermal processing of glazed ceramics and other brittle and low thermal conductivity materials. The coating and filler materials are useable together as a composite material for repairing cavities having depths greater than about 2 mm.
    Type: Grant
    Filed: January 8, 1999
    Date of Patent: October 3, 2000
    Assignee: Rutgers University
    Inventors: Richard Long Lehman, Yuya Umezu, Jie Li, Daniel Ely Murnick, James Colaizzi
  • Patent number: 6086726
    Abstract: The present invention provides a surface modification method that provides beneficial changes in surface properties, can modify a surface to a greater depth than previous methods, and that is suitable for industrial application. The present method comprises applying a thin-film coating to a surface of a substrate, then subjecting the coated surface to an ion beam. The ion beam power pulse heats the coated surface, leading to alloying between the material in the coating and the material of the substrate. Rapid cooling of the alloyed layer after an ion beam pulse can lead to formation of metastable alloys and microstructures not accessible by conventional alloying methods or intense ion beam treatment of the substrate alone.
    Type: Grant
    Filed: May 19, 1998
    Date of Patent: July 11, 2000
    Assignee: Sandia Corporation
    Inventors: Timothy J. Renk, Neil R. Sorensen, Donna Cowell Senft, Rudolph G. Buchheit, Jr., Michael O. Thompson, Kenneth S. Grabowski
  • Patent number: 6074571
    Abstract: A method and apparatus for repairing black dot defects connected to a circuit pattern in photomasks such as a photomask having a patterned chromium film on a glass substrate comprises using an energy source in the form of an energy beam to first sever the connected black dot defect from the chrome pattern forming a space between the defect and the chrome pattern. The remaining severed black dot defect is then removed using the same or different energy beam to remove the remainder of the chrome defect. An apparatus for removing black dot defects and photomasks produced by the method and apparatus of the invention are also provided.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: June 13, 2000
    Assignee: International Business Machines Corporation
    Inventor: Jacek Smolinski
  • Patent number: 6020045
    Abstract: A magnetic recording medium is provided with a textured surface comprising a landing zone, a data zone, and a transition zone having protrusions which gradually decrease in height and diameter in progressing from the landing zone to the data zone. The transition zone can be formed by laser texturing and controlling the peak power of a pulsed laser beam and/or rotating speed of the surface undergoing texturing.
    Type: Grant
    Filed: September 24, 1996
    Date of Patent: February 1, 2000
    Assignee: Seagate Technology, Inc.
    Inventors: Ga-Lane Chen, Jialuo Jack Xuan
  • Patent number: 6013336
    Abstract: A process for creating a "distant bump array" surface texture in a magnetic recording disk for reducing stiction and the disk so textured. The texturing process uses a tightly focused diode-pumped Nd:YLF or Nd:YVO.sub.4 or other solid-state laser that is pulsed with a 0.3-90 nanosecond pulse train to produce a plurality of distantly-spaced bumps in the disk surface. The bump creation process is highly controllable, permitting repeated creation of a preselected bump profile such as a smooth dimple or one with a central protrusion useful for low stiction without close spacing or elevated "roughness". Some bump profiles permit texturing of the data-storage region of the disk surface for low stiction without materially affecting magnetic data storage density.
    Type: Grant
    Filed: January 8, 1998
    Date of Patent: January 11, 2000
    Assignee: International Business Machines Corporation
    Inventors: Peter Michael Baumgart, Wing Pun Leung, Thao Anh Nguyen, Andrew Ching Tam
  • Patent number: 5968608
    Abstract: A magnetic recording medium is textured with a pulsed laser light beam through a multiple lens focusing system. The use of a multiple lens focusing system enables the formation of a plurality of relatively uniform protrusions smaller than those obtained with a single lens focusing system, thereby avoiding abrupt local profile changes. In an embodiment, the laser light beam is split, as by offsetting the lenses, to obtain a plurality of pairs of even smaller protrusions than obtained with a laser light beam having a centralized energy profile. The pulsed, multiple lens focused laser light beam can be used to texture a substrate, underlayer or magnetic layer. The resulting laser textured magnetic recording medium exhibits improved flying stability, glide performance and reliability.
    Type: Grant
    Filed: June 27, 1996
    Date of Patent: October 19, 1999
    Assignee: Seagate Technology, Inc.
    Inventors: Jialuo Jack Xuan, Ga-Lane Chen
  • Patent number: 5968603
    Abstract: A process for manufacturing wear and corrosion-protected surfaces on plasticized screws for injection molding machines forms the wear-resistent layers over the entire screw surface in two steps. A laser technique is used to melt additives into the surfaces of the screw rib, flank and top as well as the screw base by high-speed flame spring with hard metallic and/or ceramic substances.
    Type: Grant
    Filed: May 30, 1997
    Date of Patent: October 19, 1999
    Assignee: Engel Maschinenbau Gesellschaft m.b.H.
    Inventors: Otto Urbanek, Peter Baldinger
  • Patent number: 5952057
    Abstract: Compositions and methods for the introduction of alloying compounds into a metal substrate using a laser energy source is disclosed. The compositions comprise a viscous fluid mixture of a powdered silicate mineral composite, a powdered metallic or semi-metallic compound and a water insoluble or slightly water soluble liquid component capable of supporting a dispersion of the powdered silicate mineral composite and the powdered metallic or semi-metallic compound therein. The composition may be sprayed in bulk onto large surface areas of a metal substrate in need of repair prior to laser irradiation.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: September 14, 1999
    Inventor: Katherine D. Parks
  • Patent number: 5948484
    Abstract: An an improved process for surface modification of solid substrates, such as polymers and carbon-based materials, is disclosed. The preferred process comprises three steps: a first activation step wherein reactive hydrogen groups are formed in a surface layer of a polymeric or carbon-based material; a second silylation step wherein the reactive hydrogen groups are reacted with a silylating agent to form silicon-containing groups; and a third stabilization step wherein an upper portion of the activated, silylated layer is oxidatively converted to a silicon and oxygen enriched surface layer. The process can be performed using materials not having pre-existing reactive hydrogen groups or precursor groups. Modified materials according to the present invention have improved properties, such as erosion resistance and oxygen and water barrier properties, and are potentially useful in numerous industries, such as aerospace and packaging.
    Type: Grant
    Filed: June 5, 1997
    Date of Patent: September 7, 1999
    Inventors: Yuri Gudimenko, Jasha I. Kleiman, Grant R. Cool, Zelina A. Iskanderova, Roderick C. Tennyson
  • Patent number: 5935462
    Abstract: Apparatus and method for metal line deposition on a substrate. Laser ablation of a metal film coated on a first substrate removes metal ions from the film. The ions travel forward to a surface of a second substrate disposed opposite the metal film on the first substrate and are deposited on the second substrate. A positive electrode on the first substrate, a negative electrode on the second substrate, and a power supply create an electric field that is simultaneously applied across the first and second substrates to bond the metal ions to the second substrate. Bonding is enhanced by repeated reflecting a laser beam through the second substrate to heat the second substrate. The laser beam is reflected between a reflector and the deposited metal line.
    Type: Grant
    Filed: October 30, 1996
    Date of Patent: August 10, 1999
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Abdelkrim Tatah
  • Patent number: 5912057
    Abstract: In a cladding method for covering a surface of a base metal with a metal for coating by using a processing apparatus for supplying a levigated coating metal together with irradiating a laser beam, in a first step, a first layer of cladding is formed on a surface of the base metal, and in a second step, a second layer is formed on a cladding starting portion in the first layer in an overlapping manner. In the second step, the processing apparatus is moved to an upper position which is more apart from the base metal than in the first step. In the above manner, since the processing apparatus forms the second layer of cladding with moving the processing apparatus upward, a processing point is moved upward together with motion of the processing apparatus. As a result of this, a generation of a defect in an overlapping portion of the cladding and a neighborhood thereof can be prevented.
    Type: Grant
    Filed: July 18, 1997
    Date of Patent: June 15, 1999
    Assignee: Nissan Motor Co,. Ltd.
    Inventors: Kimio Nishimura, Hidenobu Matsuyama
  • Patent number: 5910235
    Abstract: A stationary vacuum deposition machine is used in a method for controlling the height of bumps formed in annular regions of substrates; the substrates are transported to the machine in a first condition in which each substrate is subject to a chemicapillary effect when subjected to localized thermal heating and melting. The machine includes a series of stations including an entrance station for receiving substrates into the machine, first and second predetermined stations, and a transport for operating in a cycle with each cycle including a transport phase and a stationary phase such that the transport causes all the substrates that are in the machine to be moved during the transport phase, and be temporarily held stationary during the stationary phase, such that during each stationary phase a predetermined one of the stations is occupied by one of the substrates while each of a plurality of others of the stations is occupied by a respective one of a plurality of others of the substrates.
    Type: Grant
    Filed: September 12, 1997
    Date of Patent: June 8, 1999
    Assignee: Western Digital Corporation
    Inventors: Stella Zofia Gornicki, Douglas J. Krajnovich
  • Patent number: 5897719
    Abstract: A clad member is made up of a plate-like clad base material having on its surface a recessed portion, and solidified portions of a metallic material which is different in kind from the clad base material. The solidified portions are disposed in the recessed portion at a distance from each other and are bonded with the clad base material through melting. The clad member is manufactured by forming an elongated recessed portion on a surface of a plate-like clad base material. The recessed portion is filled with a comminuted metallic material which is different in kind from the clad base material. A laser beam is irradiated onto a plurality of regions which are separated from each other in a longitudinal direction of the recessed portion such that partly melted portions of the comminuted metallic material are generated to thereby bond the comminuted metallic material with the clad base material. The melted portions are solidified. The remaining non-molten portions of the comminuted metallic material are removed.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: April 27, 1999
    Assignee: Kabushiki Kaisha Kawai Gakki Seisakusho
    Inventor: Harumitsu Makita
  • Patent number: 5894038
    Abstract: The present invention is directed to a process for forming a layer of palladium on a substrate, comprising:preparing a solution of a palladium precursor, wherein the palladium precursor consists ofPd(OOCR.sup.1).sub.m (OOCR.sup.2).sub.nwhereinR.sup.1 is hydrogen, alkyl, alkenyl, alkynyl, --R.sup.3 COOH, alkyl from 1 to 5 carbons substituted with one or two hydroxyl groups,R.sup.2 is hydrogen, alkyl, alkenyl, alkynyl, --R.sup.3 COOH, alkyl from 1 to 5 carbon atoms substituted with one or two hydroxyl groups, --CHO,R.sup.3 is alkyl, and alkyl groups from 1 to 5 carbon atoms substituted with one or two hydroxyl groupsm and n are real numbers or fractions, and m+n=2;applying the palladium precursor to the surface of the substrate;decomposing the palladium precursor by subjecting the precursor to heat.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: April 13, 1999
    Assignee: The Whitaker Corporation
    Inventors: Sunity Kumar Sharma, Kuldip Kumar Bhasin, Subhash C. Narang, Asutosh Nigam
  • Patent number: 5855969
    Abstract: One aspect of the present invention is a method for marking metal or other product for its identification. This method includes the steps of: (a) forming on said product or on a tag to be attached to said product a layer of coating containing an additive that is darkenable under the action of a CO.sub.2 laser beam to form product identification indicia; (b) providing a raster-scanning infrared laser beam emitting CO.sub.2 laser that raster-scans in the Y-axis; (c) effecting impingement of said laser beam from said laser onto said coating layer, wherein one or more of said laser beam or said coating layer moves in the X-axis for said laser beam to form said product identification indicia from said additive that is darkened by said laser beam; and (d) if said coating layer was applied to a tag, attaching said tag to said product. The zone can be an area on the metal product that has been coated with a layer of the coating or can be a metal tag that has been coated with a layer of the coating.
    Type: Grant
    Filed: June 10, 1996
    Date of Patent: January 5, 1999
    Assignee: Infosight Corp.
    Inventor: John A. Robertson
  • Patent number: 5824374
    Abstract: The present invention involves in situ laser patterning of thin-film layers during sequential deposition of the different layers. The layers may be applied using any known method of film deposition. The method of the present invention involves laser ablation to remove unwanted portions of the coating layers, including color filter materials, that have been sequentially deposited onto substantially the entire surface of a substrate. By controlling the depth of the laser ablation removal of the deposited films, it is possible to remove any portion of a film or layers of films or coatings that have been sequentially coated onto the surface of the substrate and to thereby control the depth and location of color filter materials coated upon the substrate. This patterning process can be employed in conjunction with any film deposition technique known in the art, including vacuum, wet chemical or dry processing deposition techniques, but is preferred with vacuum deposition.
    Type: Grant
    Filed: July 22, 1996
    Date of Patent: October 20, 1998
    Assignee: Optical Coating Laboratory, Inc.
    Inventors: Richard Alan Bradley, Jr., Nancy Lee Schultz Yamasaki, Christopher Wayne Lantman, Bryant Hichwa
  • Patent number: 5763016
    Abstract: Water-free, gaseous sulfur trioxide is used as an agent to form patterns in organic coatings, films, and layers, including photoresists, by etching areas exposed to the agent through an overlying mask or by developing a latent image of the desired pattern using the agent as a dry-developer.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: June 9, 1998
    Assignee: Anon, Incorporated
    Inventors: Eric O. Levenson, Ahmad Waleh
  • Patent number: 5759641
    Abstract: A method of applying strengthening coatings to metallic or metal-containing surfaces is provided in which the surface (2) to which a strengthening coating is to be applied is first subjected to activation, then at least one strengthening coating layer (1) is applied to the surface thus prepared. Said layer is treated with a laser beam (3) having a diameter (d) ranging from 0.2 mm to half the diameter (d) of the laser beam (3) entering into focusing element (5), with a power of at least 0.5 kW, with a rate of relative travel (A) of the surface being treated (2) and the laser beam (3) of at least 50 mm/min, the distance (L) between the focal plane (f) of the focusing element (5) to the surface being treated (2) being less than or equal to half the focal distance (F).
    Type: Grant
    Filed: May 15, 1996
    Date of Patent: June 2, 1998
    Inventors: Ludmila Nikolaevna Dimitrienko, Maria Alexandrovna Zelenskaia, Evgeny Dmitrievich Izotov
  • Patent number: 5741559
    Abstract: The invention relates to a method and apparatus for improving properties of a solid material by providing shock waves therethrough. Laser shock processing is used to provide the shock waves. The method includes applying a water based coating to a portion of the surface of the solid material and then applying a transparent overlay to the coated portion of the solid material. A pulse of coherent laser energy is directed to the coated portion of the solid material to create a shock wave. A high speed jet of fluid is directed to coated portion of the solid material at times to remove the coating from the solid material. Additionally, the method may include directing a high speed jet of fluid to the surface of the solid material to dry the solid material.
    Type: Grant
    Filed: October 23, 1995
    Date of Patent: April 21, 1998
    Assignee: LSP Technologies, Inc.
    Inventor: Jeff L. Dulaney
  • Patent number: 5731047
    Abstract: A method of forming a blind-via in a laminated substrate by forming a first conductive layer. A dielectric layer is then formed on the first conductive layer. An exposed second conductive layer is formed on the dielectric layer, with the second conductive layer having a preformed aperture. The dielectric layer is laser drilled through to the first conductive layer to form a blind-via at a location within the preformed aperture of the second conductive layer using a plurality of laser pulses. Each laser pulse has a first energy density per pulse that is greater than an ablation threshold of the dielectric layer and less than an ablation threshold of the first conductive layer. The first conductive layer is then laser drilled for a predetermined number of pulses. Each of the predetermined number of pulses has a second energy density per pulse that is greater than an ablation threshold of the first conductive layer.
    Type: Grant
    Filed: November 8, 1996
    Date of Patent: March 24, 1998
    Assignee: W.L. Gore & Associates, Inc.
    Inventor: David B. Noddin
  • Patent number: 5695828
    Abstract: A method for making a dielectric member with an integral, electrically conductive surface is made by molding a substrate from a zirconia alloy powder using a tape casting process. The resulting green substrate is sintered and after sintering may be cut to the final desired size and shape. Once the insulating ceramic substrate has been formed, the surface of the substrate is modified using infrared laser energy. Through the impingement of infrared laser radiation upon the surface of the ceramic substrate, an electrically conductive region is produced on the surface of the substrate. In such manner, the entire surface can be made electrically conductive or a particular pattern can be traced. As an integral part of the substrate, the surface will not delaminate from the substrate. Further, because the modified surface region and the substrate are both a zirconia, the coefficients of thermal expansion of the substrate and the modified surface region will be closely matched.
    Type: Grant
    Filed: November 21, 1996
    Date of Patent: December 9, 1997
    Assignee: Eastman Kodak Company
    Inventors: Syamal K. Ghosh, Gregory S. Jarrold, Dilip K. Chatterjee, David C. Press
  • Patent number: 5620754
    Abstract: Energy, such as from one or more lasers, is directed at the surface of a substrate to mobilize and vaporize a constituent element (e.g., carbide) within the substrate (e.g., steel). The vaporized constituent element is reacted by the energy to alter its physical structure (e.g., from carbon to diamond) to that of a composite material which is diffused back into the substrate as a composite material. An additional secondary element, which can be the same as or different from the constituent element, may optionally be directed (e.g., sprayed) onto the substrate to augment, enhance and/or modify the formation of the composite material, as well as to supply sufficient or additional material for fabricating one or more coatings on the surface of the substrate. The process can be carried out in an ambient environment (e.g., without a vacuum), and without pre-heating or post-cooling of the substrate.
    Type: Grant
    Filed: January 21, 1994
    Date of Patent: April 15, 1997
    Assignee: QQC, Inc.
    Inventors: Manuel C. Turchan, Pravin Mistry
  • Patent number: 5576069
    Abstract: A laser remelting process is provided to fabricate a metal article with a thermal-barrier ceramic top coat having improved oxidation resistance and surface properties. The process includes the combination of following two laser remelting treatments which are conducted while the metal substrate is at temperatures above 850.degree. C.: (1) Firstly, remelt a plasma-sprayed zirconia coating which is applied on a metal article by means of a high-power laser. The process step is assigned as a "primary laser remelting" step; (2) coat the treated surface with a thin layer of zirconia powder, then remelt the surface of the article while the metal substrate is preheated. The step is assigned as a "secondary laser remelting" step. The treated articles are well-suited for such applications as turbine blades and engine parts operated at high temperatures and corrosive environment.
    Type: Grant
    Filed: May 9, 1995
    Date of Patent: November 19, 1996
    Inventors: Chun Chen, Wen-Cheng Wei, Kai-Jai Chang
  • Patent number: 5503870
    Abstract: A method for producing a magnetic structure, such as a thin film magnetic head, in which the magnetic and electrical characteristics of magnetic material are tailored to produce magnetic and electrical characteristics in selected localized areas of the magnetic material. In a specific embodiment, the structure comprises a layer of magnetic material having an overlayer and an underlayer, and the magnetic characteristics of the material are modified by rapid thermal annealing.
    Type: Grant
    Filed: December 21, 1994
    Date of Patent: April 2, 1996
    Assignee: International Business Machines Corporation
    Inventors: Robert E. Fontana, Jr., Frances A. Houle, Ching H. Tsang