Metal, Metal Alloy, Or Metal Oxide Containing Coating Material Patents (Class 427/564)
  • Patent number: 9461195
    Abstract: The invention relates to a method for producing a solar cell having a substrate made of silicon, which substrate has a silicon oxide layer present on the surface of the substrate and an antireflection layer applied to the silicon oxide layer, which antireflection layer is deposited onto the dielectric passivation layer in a process chamber. According to the invention, in order to achieve a stability of corresponding solar cells or solar cell modules produced therefrom against a potential induced degradation (PID), the dielectric passivation layer is formed from the surface of the substrate in the process chamber by means of a plasma containing an oxidizing gas.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: October 4, 2016
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Jens Dirk Moschner, Henning Nagel, Agata Lachowicz, Markus Fiedler
  • Patent number: 9429410
    Abstract: A process for producing a beam element of a co-ordinate measuring machine, comprising the steps of applying a machinable metal coating by spraying on a structural substrate made of ceramic material, impregnating the coating with a resin, and executing on the coating a surface-finishing machining operation and a treatment of surface hardening.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: August 30, 2016
    Assignee: HEXAGON METROLOGY S.P.A.
    Inventor: Alberto Tarizzo
  • Publication number: 20140287327
    Abstract: The present invention provides a method of coating a substrate for a lithium secondary battery with inorganic particles, comprising charging the inorganic particles to form charged inorganic particles; transferring the charged inorganic particles on the substrate for a lithium secondary battery to form a coating layer; and fixing the coating layer with heat and pressure. Such a coating method according to one embodiment of the present invention uses electrostatic force without the addition of a solvent, and therefore, non use of a solvent can result in cost-reducing effects since there is no burden on the handling and storing of the solvent, and since a drying procedure after slurry coating is not needed, it allows for the preparation of a lithium secondary battery in a highly effective and rapid manner.
    Type: Application
    Filed: June 9, 2014
    Publication date: September 25, 2014
    Inventors: Joo-Sung Lee, Jong-Hun Kim, Jeong-Min Ha, Bo-Kyung Ryu, Jin-Woo Kim
  • Patent number: 8580354
    Abstract: A plasma processing chamber particularly useful for pre-treating low-k dielectric films and refractory metal films subject to oxidation prior to deposition of other layers. A remote plasma source (RPS) excites a processing gas into a plasma and delivers it through a supply tube to a manifold in back of a showerhead faceplate. The chamber is configured for oxidizing and reducing plasmas in the same or different processes when oxygen and hydrogen are selectively supplied to the RPS. The supply tube and showerhead may be formed of dielectric oxides which may be passivated by a water vapor plasma from the remote plasma source. In one novel process, a protective hydroxide coating is formed on refractory metals by alternating neutral plasmas of hydrogen and oxygen.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: November 12, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Xinyu Fu, Jick M. Yu
  • Patent number: 8568572
    Abstract: A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: October 29, 2013
    Assignee: The Regents of the University of California
    Inventors: Andre Anders, Joakim Andersson
  • Publication number: 20130236659
    Abstract: Methods for vapor depositing high temperature coatings on gas turbine components are provided, as are methods for producing pre-alloyed pucks for usage in vapor deposition processes. In one embodiment, the method includes the step of producing a pre-alloyed puck including a master alloy and a high vaporization temperature refractory metal, which has a vaporization temperature greater than each of the master alloy constituents. The pre-alloyed puck is placed over an ingot and heated to a temperature greater than the melt point of the pre-alloyed puck and less than the vaporization temperature of the high vaporization temperature refractory metal to transform the puck and a portion of the ingot into a molten pool and to produce a vapor stream containing the constituents of the master alloy and the ingot. The vapor stream is exposed to a gas turbine engine component to deposit the high temperature coating over at least one surface thereof.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 12, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Michelle Ernst, Dean Marszal, Paul Mravcak, Fred Knoch, Rudolfo Viguie
  • Patent number: 8449950
    Abstract: A method and apparatus for forming an electrochemical layer of a thin film battery is provided. A precursor mixture comprising precursor particles dispersed in a carrying medium is activated in an activation chamber by application of an electric field to ionize at least a portion of the precursor mixture. The activated precursor mixture is then mixed with a combustible gas mixture to add thermal energy to the precursor particles, converting them to nanocrystals, which deposit on a substrate. A second precursor may be blended with the nanocrystals as they deposit on the surface to enhance adhesion and conductivity.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: May 28, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Quanyuan Shang, Lu Yang, Karl M. Brown, Donald J. K. Olgado, Victor Pebenito, Hooman Bolandi, Tetsuya Ishikawa, Robert Z. Bachrach, Liang-Yuh Chen
  • Patent number: 8399065
    Abstract: A method and apparatus for forming an electrochemical layer of a thin film battery is provided. A precursor mixture comprising electrochemically active precursor particles dispersed in a carrying medium is provided to a processing chamber and thermally treated using a combustible gas mixture also provided to the chamber. The precursor is converted to nanocrystals by the thermal energy, and the nanocrystals are deposited on a substrate. A second precursor may be blended with the nanocrystals as they deposit on the surface to enhance adhesion and conductivity.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: March 19, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Quanyuan Shang, Lu Yang, Karl M. Brown, Donald J. K. Olgado, Victor Pebenito, Hooman Bolandi, Tetsuya Ishikawa, Robert Z. Bachrach, Liang-Yuh Chen
  • Patent number: 8394197
    Abstract: Enhanced corrosion resistance is achieved in a coating by using a germanium-containing precursor and hollow cathode techniques to form a first layer directly on the surface of a workpiece, prior to forming an outer layer, such as a layer of diamond-like carbon (DLC). The use of a germanium or germanium-carbide precursor reduces film stress and enables an increase in the thickness of the subsequently formed DLC. Germanium incorporation also reduces the porosity of the layer. In one embodiment, a cap layer containing germanium is added after the DLC in order to further reduce the susceptibility of the coating to chemical penetration from the top.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: March 12, 2013
    Assignee: Sub-One Technology, Inc.
    Inventors: Andrew W. Tudhope, Thomas B. Casserly, Karthik Boinapally, Deepak Upadhyaya, William J. Boardman
  • Publication number: 20130040067
    Abstract: Processes, systems, and apparatuses are disclosed for forming products from atomized metals and alloys. A stream of molten alloy and/or a series of droplets of molten alloy are produced. The molten alloy is atomized to produce electrically-charged particles of the molten alloy by impinging electrons on the stream of molten alloy and/or the series of droplets of molten alloy. The electrically-charged molten alloy particles are accelerated with at least one of an electrostatic field and an electromagnetic field. The accelerating molten alloy particles are cooled to a temperature that is less than a solidus temperature of the molten alloy particles so that the molten alloy particles solidify while accelerating. The solid alloy particles are impacted onto a substrate and the impacting particles deform and metallurgically bond to the substrate to produce a solid alloy preform.
    Type: Application
    Filed: August 11, 2011
    Publication date: February 14, 2013
    Applicant: ATI Properties, Inc.
    Inventors: Richard L. Kennedy, Robin M. Forbes Jones
  • Publication number: 20130017342
    Abstract: A method for producing, by means of plasma, nanostructured thin layers particularly of the hierarchically organized type, and an apparatus for implementing the method, are described. At least a first chamber (10) is provide in which are present an injector (14) of a reagent gas, means (31, 31?) for feeding inert gases, and an antenna (16) for the creation of a plasma in said first chamber. Enclosing said first chamber is a second chamber (11) to which a pumping system is connected, containing a housing for the substrate (35) on which the nanostructured film is produced. A wall (12) separates said first chamber from said second chamber and has at least one opening (13). The injector and antenna are arranged in the first chamber with a geometry such that the distance between the outlet of said injector is at a distance of no more than 5 cm from the plane of the surface of said antenna farther from said wall, and said surface is at a distance of no more than 5 cm from said opening.
    Type: Application
    Filed: November 30, 2010
    Publication date: January 17, 2013
    Applicants: POLITECNICO DI MILANO, UNIVERSITA' DEGLI STUDI DI MILANO BICOCCA
    Inventors: Claudia Riccardi, Moreno Piselli, Francesco Sirio Fumagalli, Fabio Di Fonzo, Carlo Enrico Bottani
  • Publication number: 20120219727
    Abstract: The formation of a barrier layer within individual channels or cavities of a microfluidic device is described. The barrier layer is effected through a gas phase deposition process, desirably implemented in a plasma environment using a gas plasma reactor. Judicious selection of a precursor compound used within the gas plasma reactor can provide for generation of a layer on the individual surfaces. Desirably the surface or barrier layer is generated through the chemical adsorption of a metalloid oxide such as a silicon oxide layer on the surface of the individual channels or cavities.
    Type: Application
    Filed: June 18, 2010
    Publication date: August 30, 2012
    Applicant: Dublin City University
    Inventors: Ram Prasad Gandhiraman, Lourdes Basabe-Desmonts, Asif Riaz, Luke Lee, Ivan Dimov, Jens Ducree, Stephen Michael Daniels
  • Patent number: 8182862
    Abstract: An ion source impinging on the surface of the substrate to be coated is used to enhance a MOCVD, PVD or other process for the preparation of superconducting materials.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: May 22, 2012
    Assignee: SuperPower Inc.
    Inventors: Venkat Selvamanickam, Hee-Gyoun Lee
  • Publication number: 20110294672
    Abstract: The invention relates to platinum complexes, to a method for preparing the same and to the use thereof for the chemical vapour deposition of metal platinum. The chemical vapour deposition of platinum onto a substrate is made from a platinum organometallic compound that includes a ligand with a cyclic structure including at least two non-adjacent C?C double bonds, and the platinum organometallic compound has a square-plane structure in which the platinum is bonded to each of the C?C double bonds of the ligand, thereby forming a (C?C)—Pt—(C?C) of 60° to 70°.
    Type: Application
    Filed: January 8, 2010
    Publication date: December 1, 2011
    Applicant: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Pascal Doppelt, Cyril Thurier
  • Patent number: 8058189
    Abstract: A method and apparatus for resisting ballistic impact including an outer energy absorbing assembly having a plurality of interconnected fibers, and a barrier positioned behind the outer energy absorbing assembly. A movement restraint is positioned behind the barrier and a dampener is positioned intermediate the barrier and the restraint.
    Type: Grant
    Filed: February 9, 2008
    Date of Patent: November 15, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Khosrow Nematollahi, Robert L. Hager
  • Patent number: 7985449
    Abstract: A process is described for depositing a metal film on a substrate surface having a diffusion barrier layer deposited thereupon. In one embodiment of the present invention, the process includes: providing a surface of the diffusion barrier layer that is substantially free of an elemental metal and forming the metal film on at least a portion of the surface via deposition by using a organometallic precursor. In certain embodiments, the diffusion barrier layer may be exposed to an adhesion promoting agent prior to or during at least a portion of the forming step. Suitable adhesion promoting agents include nitrogen, nitrogen-containing compounds, carbon-containing compounds, carbon and nitrogen containing compounds, silicon-containing compounds, silicon and carbon containing compounds, silicon, carbon, and nitrogen containing compounds, or mixtures thereof. The process of the present invention provides substrates having enhanced adhesion between the diffusion barrier layer and the metal film.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: July 26, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Diwakar Garg, Hansong Cheng, John Anthony Thomas Norman, Eduardo Machado, Pablo Ordejon
  • Patent number: 7847207
    Abstract: An easy and controllable method and system to attach a carbon nanotube to a scanning probe tip such as a scanning probe microscopy (SPM) tip using a focus ion beam (FIB) technique. The method and system includes selecting a carbon fiber by a Focus Ion Beam micromanipulator, picking up the carbon fiber with the nanotube tip, forming a slot on an SPM tip, and inserting the carbon fiber with the nanotube tip into the slot.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: December 7, 2010
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Lee Chow, Guang-Yu Chai
  • Patent number: 7838061
    Abstract: Disclosed herein is a method of fabricating a high temperature superconducting film in a vacuum chamber through auxiliary cluster beam spraying using an evaporation method, wherein a high temperature superconducting material is deposited on a substrate in a vapor state by evaporating the high temperature superconducting material, and at the same time, a cluster beam material is formed into gas atoms by heating the cluster beam material charged in a housing, and the formed gas atoms pass through a nozzle of an inlet of the housing and then are sprayed and grown on the substrate in the form of the cluster beam, thereby forming pinning centers in the high temperature superconducting film.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: November 23, 2010
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Sang Soo Oh, Ho Seop Kim, Kyu Jung Song, Do Jun Youm, Sun Mi Lim, Yong Hwan Jung, Sang Moo Lee, Ye Hyun Jung, Jae Eun Yoo
  • Patent number: 7767271
    Abstract: A method for producing a metallized image on a sheet material includes impregnating the material with a metal salts-containing solution and exposing the specified material points to a pulse laser radiation. The interaction of the pulses with the solution within a laser spot irritates a photochemical reaction resulting in a metal ion reduction into the elementary state thereof by associating the required number of electrons and deposition of metallic film which is firmly fixed to the filler of the sheet material in the laser spot area on the material surface. In case of sufficient laser radiation power, a recess is formed on the sheet material surface, and the metallic film is deposited on the bottom of the recess.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: August 3, 2010
    Inventors: Sergei Nikolaevich Maximovsky, Grigory Avramovich Radutsky
  • Patent number: 7678428
    Abstract: A method of forming a thermally insulating layer system on a metallic substrate surface is disclosed.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: March 16, 2010
    Assignee: Sulzer Metco AG
    Inventors: Gerard Barbezat, Arno Refke, Michael Loch
  • Publication number: 20100062181
    Abstract: A metal film production method supplies a source gas containing a halogen, such as a chlorine, to the interior of a chamber such that the source gas is intermittently supplied, to form a Cu component of a precursor into a film on a substrate, while suppressing a relative increase in etching particles. Thus, the source gas is supplied in the full presence of plasma particles contributing to film formation. Moreover, the source gas is supplied in a state in which a Cu film formed is not etched with the etching particles. Consequently, the Cu film is reliably increased with respect to the film formation time to increase the film formation speed. The temperature of the substrate is less than that of the etched member.
    Type: Application
    Filed: November 13, 2009
    Publication date: March 11, 2010
    Applicant: CANON ANELVA CORPORATION
    Inventors: Hitoshi Sakamoto, Naoki Yahata, Yoshiyuki Ooba
  • Publication number: 20090324848
    Abstract: A source gas is supplied into a chamber through a nozzle, and electromagnetic waves are thrown from a plasma antenna into the chamber. The resulting Cl2 gas plasma causes an etching reaction to a plurality of copper protrusions, which are arranged between a substrate and a ceiling member in a discontinuous state relative to the flowing direction of electricity in the plasma antenna, to form a precursor (CuxCly). The precursor (CuxCly) transported toward the substrate controlled to a lower temperature than the temperature of an etched member is converted into only Cu ions by a reduction reaction, and directed at the substrate to form a thin Cu film on the surface of the substrate. The speed of film formation is fast, the cost is markedly decreased, and the resulting thin Cu film is of high quality.
    Type: Application
    Filed: July 29, 2009
    Publication date: December 31, 2009
    Applicant: CANON ANELVA CORPORATION
    Inventors: Ryuichi Matsuda, Naoki Yahata, Hitoshi Sakamoto
  • Publication number: 20090317557
    Abstract: Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.
    Type: Application
    Filed: June 20, 2008
    Publication date: December 24, 2009
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., University of New Mexico
    Inventors: Claudia Luhrs, Jonathan Phillips, Monique N. Richard
  • Patent number: 7601216
    Abstract: A method for forming a patterned noble metal coating on a gas diffusion medium substantially free of ionomeric components comprising subjecting an electrically conductive web with a patterned mask overlaid thereto to a first ion beam having an energy not higher than 500 eV, and to a second beam having an energy of at least 500 eV, containing the ions of at least one noble metal and a gas diffusion electrode.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: October 13, 2009
    Assignee: BASF Fuel Cell GmbH
    Inventors: Andrea F. Gulla, Robert J. Allen
  • Patent number: 7578889
    Abstract: Systematic and effective methodology to clean capacitively coupled plasma reactor electrodes and reduce surface roughness so that the cleaned electrodes meet surface contamination specifications and manufacturing yields are enhanced. Pre-cleaning of tools used in the cleaning process helps prevent contamination of the electrode being cleaned.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: August 25, 2009
    Assignee: Lam Research Corporation
    Inventors: Hong Shih, Yaobo Yin, Shun Jackson Wu, Armen Avoyan, John E. Daugherty, Linda Jiang
  • Patent number: 7527824
    Abstract: A method for producing composite, shelled, alloy and compound nanoparticles as well as nanostructured films of composite, shelled, alloy and compound nanoparticles by using laser ablation of microparticles is disclosed.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: May 5, 2009
    Inventors: Michael F. Becker, John W. Keto, Desiderio Kovar
  • Patent number: 7524533
    Abstract: A process is described for depositing a metal film on a substrate surface having a diffusion barrier layer deposited thereupon. In one embodiment, the process includes: providing a surface of the diffusion barrier layer that is substantially free of an elemental metal and forming the metal film on at least a portion of the surface via deposition by using a organometallic precursor. In certain embodiments, the surface of the diffusion barrier layer may be exposed to an adhesion promoting agent prior to or during at least a portion of the forming step. Suitable adhesion promoting agents include nitrogen, nitrogen-containing compounds, carbon-containing compounds, carbon and nitrogen containing compounds, silicon-containing compounds, silicon and carbon containing compounds, silicon, carbon, and nitrogen containing compounds, and mixtures thereof. The process of the present invention provides substrates having enhanced adhesion between the diffusion barrier layer and the metal film.
    Type: Grant
    Filed: April 9, 2004
    Date of Patent: April 28, 2009
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Diwakar Garg, Hansong Cheng, John Anthony Thomas Norman, Eduardo Machado, Pablo Ordejon
  • Patent number: 7465478
    Abstract: A method of processing a workpiece includes placing the workpiece on a workpiece support pedestal in a main chamber with a gas distribution showerhead, introducing a process gas into a remote plasma source chamber and generating a plasma in the remote plasma source chamber, transporting plasma-generated species from the remote plasma source chamber to the gas distribution showerhead so as to distribute the plasma-generated species into the main chamber through the gas distribution showerhead, and applying plasma RF power into the main chamber.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Hiroji Hanawa, Kartik Ramaswamy, Andrew Nguyen, Amir Al-Bayati, Biagio Gallo
  • Patent number: 7419546
    Abstract: A method for forming a noble metal coating on a gas diffusion medium substantially free of ionomeric components comprising subjecting an electrically conductive web to a first ion beam having an energy not higher than 500 eV, then to a second beam having an energy of at least 500 eV, containing the ions of at least one noble metal and electrodes provided by the method.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: September 2, 2008
    Assignee: BASF Fuel Cell GmbH
    Inventors: Andrea F. Gulla, Robert J. Allen, Emory De Castro, Enrico Ramunni
  • Patent number: 7323229
    Abstract: The invention relates to a method for coating a substrate with a layer of a material, such as a metal, in which a quantity of electrically conductive material is vaporized in a space with a low background pressure and energy is supplied to the material which is to be vaporized in order to vaporize this material. According to the invention, the material which is to be vaporized, while it is being vaporized, is kept floating, without support, in the space and is enclosed in an alternating electromagnetic field, the alternating electromagnetic field being generated with the aid of a high-frequency alternating current. The invention also relates to a device for coating a substrate and to a substrate.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: January 29, 2008
    Assignee: Corus Technology BV
    Inventors: Johannes Alphonsus Franciscus Schade Van Westrum, Gerardus Gleijm
  • Patent number: 7311946
    Abstract: A process is described for depositing a metal film on a substrate surface having a diffusion barrier layer deposited thereupon. In one embodiment of the present invention, the process includes: providing a surface of the diffusion barrier layer that is substantially free of an elemental metal and forming the metal film on at least a portion of the surface via deposition by using a organometallic precursor. In certain embodiments, the diffusion barrier layer may be exposed to an adhesion promoting agent prior to or during at least a portion of the forming step. Suitable adhesion promoting agents include nitrogen, nitrogen-containing compounds, carbon-containing compounds, carbon and nitrogen containing compounds, silicon-containing compounds, silicon and carbon containing compounds, silicon, carbon, and nitrogen containing compounds, or mixtures thereof. The process of the present invention provides substrates having enhanced adhesion between the diffusion barrier layer and the metal film.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: December 25, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Diwakar Garg, Hansong Cheng, John Anthony Thomas Norman, Eduardo Machado, Pablo Ordejon
  • Patent number: 7112453
    Abstract: This invention provides methods of retentate chromatography for resolving analytes in a sample. The methods involve adsorbing the analytes to a substrate under a plurality of different selectivity conditions, and detecting the analytes retained on the substrate by desorption spectrometry. The methods are useful in biology and medicine, including clinical diagnostics and drug discovery.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: September 26, 2006
    Assignee: Ciphergen Biosystems, Inc.
    Inventors: T. William Hutchens, Tai-Tung Yip
  • Patent number: 7048973
    Abstract: A copper film vapor phase deposition method includes the steps of exposing high-purity copper to a plasma of a gas containing chlorine gas to etch the high-purity copper, thereby generating active CuxCly, wherein x is 1 to 3, y is 1 to 3, gas, and forming a copper film by transporting the CuxCly gas onto the surface of a substrate to be processed. By using inexpensive high-purity copper and inexpensive chlorine, hydrogen chloride, or chlorine and hydrogen as source gases, a copper film containing no residual impurity such as carbon and having high film quality can be formed with high reproducibility.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: May 23, 2006
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hitoshi Sakamoto, Naoki Yahata
  • Patent number: 7037560
    Abstract: A film forming and film modifying method utilizing a film forming apparatus which has an alcohol supply unit to form a metal oxide film on a semiconductor wafer in a vacuum atmosphere in which a vaporized metal oxide film material and a vaporized alcohol exist. The film modifying method irradiates a UV ray on ozone to generate active oxygen atoms, thus modifying the metal oxide film by exposing the metal oxide film to the active oxygen atoms in a vacuum atmosphere.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: May 2, 2006
    Assignee: Tokyo Electron Limited
    Inventors: Hiroshi Shinriki, Masahito Sugiura
  • Patent number: 6905736
    Abstract: The method for the fabrication of nano scale temperature sensors and nano scale heaters using focused ion beam (FIB) techniques. The process used to deposit metal nano strips to form a sensor is ion beam assisted chemical vapor deposition (CVD). The FIB Ga+ ion beam can be used to decompose W(CO)6 molecules to deposit a tungsten nano-strip on a suitable substrate. The same substrate can also be used for Pt nano-strip deposition. The precursors for the Pt can be trimethyl platinum (CH3)3Pt in the present case. Because of the Ga+ beam used in the deposition, both Pt and W nano-strips can contain a certain percentage of Ga impurities, which we denoted as Pt(Ga) and W(Ga) respectively. Our characterization of the response of this Pt(Ga)/W(Ga) nano scale junction indicates it has a temperature coefficient of approximately 5.4 mV/° C. This is a factor of approximately 130 larger than the conventional K-type thermocouples.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: June 14, 2005
    Assignee: University of Central Florida
    Inventors: Lee Chow, Dan Zhou, Fred Stevie
  • Patent number: 6899928
    Abstract: The present invention is directed towards a process and apparatus for epitaxial deposition of a material, e.g., a layer of MgO, onto a substrate such as a flexible metal substrate, using dual ion beams for the ion beam assisted deposition whereby thick layers can be deposited without degradation of the desired properties by the material. The ability to deposit thicker layers without loss of properties provides a significantly broader deposition window for the process.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: May 31, 2005
    Assignee: The Regents of the University of California
    Inventors: James R. Groves, Paul N. Arendt, Robert H. Hammond
  • Patent number: 6838125
    Abstract: A method for depositing a film on a substrate is provided. In one aspect, the method includes providing a metal-containing precursor to an activation zone, and activating the metal-containing precursor to form an activated precursor. The activated precursor gas is transported to a reaction chamber, and a film is deposited on the substrate using a cyclical deposition process, wherein the activated precursor gas and a reducing gas are alternately adsorbed on the substrate. Also provided is a method of depositing a film on a substrate using an activated reducing gas.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: January 4, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Hua Chung, Ling Chen, Vincent W. Ku
  • Patent number: 6797336
    Abstract: The present invention is a method and apparatus for the synthesis of multi-component substances, comprising entities of at least two elements, molecules, grains, crystals, structural units, or phases of matter, in which the scale of the distribution of the elements, molecules, or phases of matter may range from on the order of nanometers or less, to about one millimeter, depending upon the specific materials and process conditions that are chosen. The method and apparatus of the present invention further provides processes for preparing these compositions of matter as thin films or particles.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: September 28, 2004
    Assignee: AMBP Tech Corporation
    Inventors: James F. Garvey, Gary S. Tompa, Stuart G. MacDonald, Robert L. DeLeon
  • Patent number: 6737121
    Abstract: According to an exemplary embodiment of the invention, a method of forming a plurality of layers on an article comprises steps of generating a plasma by forming an arc between a cathode and an anode; injecting a first material comprising an organic compound into the plasma to deposit a first layer on the article; injecting a second material comprising an organometallic material into the plasma to form a second layer on the first layer; and injecting a third material comprising a silicon containing organic compound into the plasma to deposit a third layer on the second layer. The invention also relates to an article of manufacture comprising a substrate; an interlayer disposed on the substrate; a second layer disposed on the interlayer, the second layer comprising an inorganic ultraviolet absorbing material; and a third layer disposed on the second layer, the third layer comprising an abrasion resistant material.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: May 18, 2004
    Assignee: General Electric Company
    Inventors: Barry Lee-Mean Yang, Charles Dominic Iacovangelo
  • Patent number: 6692794
    Abstract: This invention provides a composite having a hydrophilic film made of amorphous titanium oxide. A film is deposited on a substrate made of, for example, glass or synthetic resin. The film is composed of amorphous titanium oxide partially having structures in which a network of Ti—O—Ti bond is broken to give Ti—OH bond terminals.
    Type: Grant
    Filed: August 12, 2002
    Date of Patent: February 17, 2004
    Assignee: Murakami Corporation
    Inventors: Masatoshi Nakamura, Yoshinori Hatanaka
  • Patent number: 6673386
    Abstract: A method for forming a pattern on a surface of a panel substrate, includes electrically charging pattern-forming material particles, jetting out the electrically charged pattern-forming material particles through a nozzle by applying electrostatic force to the pattern-forming material particles to form a pattern, and fixing the pattern onto the panel substrate.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: January 6, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Daido Komyoji, Naoko Matsuda, Akira Fukano, Katsutoshi Ogawa, Akira Kumon, Hiroyuki Naka
  • Patent number: 6673722
    Abstract: An improved chemical vapor deposition or etching is shown in which cyclotron resonance and photo or plasma CVD cooperate to deposit a layer with high performance at a high deposition speed. The high deposition speed is attributed to the cyclotron resonance while the high performance is attributed to the CVDs.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: January 6, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 6656540
    Abstract: The present invention provides methods and apparatus for the formation of a thin noble metal film which can achieve a high rate of film growth, can use inexpensive raw materials, and do not allow any impurities to remain in the thin film.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: December 2, 2003
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hitoshi Sakamoto, Toshihiko Nishimori, Saneyuki Goya, Takao Abe, Noriaki Ueda
  • Patent number: 6638580
    Abstract: One embodiment of the invention involves introducing at least two metals into a chamber for forming an alloy layer over a substrate. This is accomplished by a variety of methods. In one embodiment, at least two metals are mixed and introduced into a chamber in which a focused ion beam contacts the two metals to form at least one alloy layer over a substrate. In another embodiment, at least two precursor gas sources are introduced into the chamber in which each precursor gas source contains a metal. The focused ion beam contacts the two precursor gases to form an alloy layer over the substrate. In yet another embodiment, a second metal layer is formed over a first metal layer to form a multi-metal layer. Thereafter, thermal treatment or introducing a focused ion beam to at least a portion of the multi-metal layer is performed to create at least one alloy layer over the substrate.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: October 28, 2003
    Assignee: Intel Corporation
    Inventor: Ilan Gavish
  • Patent number: 6616986
    Abstract: The present invention provides for sequential chemical vapor deposition by employing a reactor operated at low pressure, a pump to remove excess reactants, and a line to introduce gas into the reactor through a valve. A first reactant forms a monolayer on the part to be coated, while the second reactant passes through a radical generator which partially decomposes or activates the second reactant into a gaseous radical before it impinges on the monolayer. This second reactant does not necessarily form a monolayer but is available to react with the monolayer. A pump removes the excess second reactant and reaction products completing the process cycle. The process cycle can be repeated to grow the desired thickness of film.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: September 9, 2003
    Assignee: ASM America Inc.
    Inventor: Arthur Sherman
  • Patent number: 6616985
    Abstract: An apparatus and method for injecting gas within a plasma reactor and tailoring the distribution of an active species generated by the remote plasma source over the substrate or wafer. The distribution may be uniform, wafer-edge concentrated, or wafer-center concentrated. A contoured plate or profiler modifies the distribution. The profiler is an axially symmetric plate, having a narrow top end and a wider bottom end, shaped to redistribute the gas flow incident upon it. The method for tailoring the distribution of the active species over the substrate includes predetermining the profiler diameter and adjusting the profiler height over the substrate.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: September 9, 2003
    Assignee: Novellus Systems, Inc.
    Inventors: Ronald Allan Powell, Gabriel I. Font-Rodriguez, Simon Selitser, Emerson Derryck Settles
  • Patent number: 6610368
    Abstract: Tanned leather is dry dressed by plasma deposition at atmospheric pressure of a matrix material such as ITO, a silicone, or polyurethane, upon the protein fibers of the surface of the leather and the collagen fiber skeleton below the surface protein fibers. The leather retains its toughness, elasticity, breathability and softness or hand.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: August 26, 2003
    Assignee: Lederfabrik Vogl GmbH
    Inventors: Werner Schmitz, Gottfried Holzer, Wolfgang Vogl
  • Publication number: 20030085020
    Abstract: A process for casting and preparing an ingot of a beta-phase NiAl-based material, particularly for use in PVD coating processes. The method entails melting a nickel-aluminum composition having an aluminum content below that required for stoichiometric beta-phase NiAl intermetallic so as to form a melt comprising nickel and Ni3Al. Aluminum is then added to the melt, causing an exothermic reaction between nickel and aluminum as the melt equilibrium shifts from Ni3Al to NiAl. However, the aluminum is added at a rate sufficiently low to avoid a violent exothermic reaction. The addition of aluminum continues until sufficient aluminum has been added to the melt to yield a beta-phase NiAl-based material. The beta-phase NiAl-based material is then solidified to form an ingot, which is then heated and pressed to close porosity and homogenize the microstructure of the ingot.
    Type: Application
    Filed: November 7, 2001
    Publication date: May 8, 2003
    Inventors: Ramgopal Darolia, Joseph David Rigney
  • Patent number: 6514347
    Abstract: A compensation ring 31 disposed to surround a periphery of a wafer W on a susceptor 30 is concentrically divided into an inside first compensation ring member 32 and an outside second compensation ring member 33. A width of a first compensation ring member 32 is made such thin as one to three times mean free path of treatment gas molecules, thereby suppressing heat transfer between a susceptor 30 and a second compensation ring member 33. A base of a second compensation ring member, through a layer of conductive silicone rubber 34, is made to come into an intimate contact with an upper surface of a susceptor 30, thus helping to cool.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: February 4, 2003
    Assignee: Tokyo Electron Limited
    Inventor: Kazuki Denpoh
  • Patent number: 6465052
    Abstract: A method for producing a nano-porous coating onto a substrate, including the steps of: (a) operating a twin-wire arc nozzle to heat and at least partially vaporize two wires of a metal for providing a stream of nanometer-sized vapor clusters of the metal into a chamber in which the substrate is disposed; (b) injecting a stream of reactive gas into the chamber to impinge upon the stream of metal vapor clusters and exothermically react therewith to produce substantially nanometer-sized metal compound or ceramic clusters; (c) operating heat treatment devices to heat treat the metal compound or ceramic clusters so that a non-zero proportion of the clusters is in a solid state when impinging upon the substrate; and (d) directing the metal compound or ceramic clusters to impinge and deposit onto the substrate for forming the nano-porous coating.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: October 15, 2002
    Assignee: Nanotek Instruments, Inc.
    Inventor: L. W. Wu