One Component Cu-based Patents (Class 428/618)
  • Patent number: 11756845
    Abstract: A glass carrier-attached copper foil is provided that can achieve a desired circuit mounting board that reduces separation of a copper layer at the cut edge even if the copper foil is downsized to dimensions enabling mount of a circuit, and has an intended circuit pattern with a fine pitch. The glass carrier-attached copper foil includes a glass carrier, a release layer, and a copper layer with a thickness of 0.1 to 3.0 ?m. The glass carrier has, at least on its surface having the copper layer thereon, a plurality of flat regions each having a maximum height Rz of less than 1.0 ?m as measured in accordance with JIS B 0601-2001 and a rough region having a maximum height Rz of 1.0 to 30.0 ?m as measured in accordance with JIS B 0601-2001. The rough region has a pattern of lines that define the flat regions.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: September 12, 2023
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Yoshinori Matsuura, Takenori Yanai, Toshimi Nakamura
  • Patent number: 9241407
    Abstract: A tape film package is provided including an insulating pattern; a via contact in a via hole in the insulating pattern; first interconnection patterns extending from the via contact to a cutting surface of the insulating pattern; and second interconnection patterns connected to the via contact below the insulating pattern. The second interconnection patterns are parallel to the first interconnection patterns and spaced apart from the cutting surface of the insulating pattern.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: January 19, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-Kyu Ha, Youngshin Kwon, KwanJai Lee, Jae-Min Jung, KyongSoon Cho, Sang-Uk Han
  • Patent number: 8980414
    Abstract: The present invention provides a carrier-attached copper foil, wherein an ultrathin copper foil is not peeled from the carrier prior to the lamination to an insulating substrate, but can be peeled from the carrier after the lamination to the insulating substrate. A carrier-attached copper foil comprising a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer, wherein the intermediate foil is configured with a Ni layer in contact with an interface of the copper foil carrier and a Cr layer in contact with an interface of the ultrathin copper layer, said Ni layer containing 1,000-40,000 ?g/dm2 of Ni and said Cr layer containing 10-100 ?g/dm2 of Cr is provided.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: March 17, 2015
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Tomota Nagaura, Kazuhiko Sakaguchi
  • Patent number: 8946911
    Abstract: There is provided an electrode pad including: a connection terminal part; a first plating layer including palladium phosphorus (Pd—P) formed on the connection terminal part; and a second plating layer including palladium (Pd) formed on the first plating layer.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: February 3, 2015
    Assignee: Samsung Electro-Machanics Co., Ltd.
    Inventors: Jung Youn Pang, Shimoji Teruaki, Eun Heay Lee, Seong Min Cho, Chi Seong Kim
  • Patent number: 8808873
    Abstract: In an embodiment of the invention, a method for manufacturing a carrier-attached copper foil is provided. The method includes providing a carrier foil including stainless steel, titanium, aluminum, nickel or alloy thereof with a surface oxide layer, and forming a copper foil onto the carrier foil to prepare the carrier-attached copper foil.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: August 19, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Yu-Chung Chen, Yi-Ling Lo, Hung-Kun Lee, Tzu-Ping Cheng
  • Patent number: 8759986
    Abstract: Provided is a substrate structure including: a base substrate on which a conductive pattern is formed; a first plating layer covering the conductive pattern; and a second plating layer covering the first plating layer, wherein the first plating layer includes an electroless reduction plating layer.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: June 24, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Chul Min Lee, Won Hyung Park, Kyung Jin Heo, Dek Gin Yang, Jin Su Yeo, Sung Wook Chun
  • Patent number: 8668994
    Abstract: Provided is a rolled copper foil or electrolytic copper foil for an electronic circuit to be used for forming a circuit by etching, wherein the copper foil comprises a nickel or nickel alloy layer with a lower etching rate than copper formed on an etching side of the rolled copper foil or electrolytic copper foil, and a heat resistance layer composed of zinc or zinc alloy or its oxide formed on the nickel or nickel alloy layer.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: March 11, 2014
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Keisuke Yamanishi, Kengo Kaminaga, Ryo Fukuchi
  • Patent number: 8580390
    Abstract: Provided is a rolled copper foil or electrolytic copper foil for an electronic circuit to be used for forming a circuit by etching, wherein the copper foil comprises a heat resistance layer composed of zinc or zinc alloy or its oxide formed on an etching side of the rolled copper foil or electrolytic copper foil, and a layer of nickel or nickel alloy, which is a metal or alloy with a lower etching rate than copper, formed on the heat resistance layer.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: November 12, 2013
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Keisuke Yamanishi, Kengo Kaminaga, Ryo Fukuchi
  • Patent number: 8568861
    Abstract: The present invention relates to a metallic laminate and a manufacturing method of a light emitting diode package using the same. The present invention provides a metallic laminate including: a core layer made of an insulating material; a metal layer disposed on one surface of the core layer; a heat radiating metal layer disposed on the other surface of the core layer; and a protective metal oxide layer disposed along an outer surface of the heat radiating metal layer and made of an oxide of the heat radiating metal layer.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: October 29, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Myung Gun Chong, Cheol Ho Heo, Sang Hyuk Son, Dae Hyung You
  • Patent number: 8524378
    Abstract: Provided is a copper foil for a printed circuit with an electrodeposited ternary-alloy layer composed of copper, cobalt and nickel formed on a surface of the copper foil, wherein the electrodeposited layer comprises dendritic particles grown on the copper foil surface, and the entire surface of the copper foil is covered with particles having an area as seen from above the copper foil surface of 0.1 to 0.5 ?m2 at a density of 1000 particles/10000 ?m2 or less, particles exceeding 0.5 ?m2 at a density of 100 particles/10000 ?m2 or less, and particles less than 0.1 ?m2 as the remainder. Roughening particles formed dendritically in a roughening treatment based on copper-cobalt-nickel alloy plating are inhibited from shedding from the copper foil surface, and the phenomenon known as powder falling and uneven treatment are thereby inhibited.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: September 3, 2013
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Hideta Arai, Naoki Higuchi
  • Patent number: 8481171
    Abstract: The present invention relates to a metallic laminate and a manufacturing method of a light emitting diode package using the same. The present invention provides a metallic laminate including: a core layer made of an insulating material; a metal layer disposed on one surface of the core layer; a heat radiating metal layer disposed on the other surface of the core layer; and a protective metal oxide layer disposed along an outer surface of the heat radiating metal layer and made of an oxide of the heat radiating metal layer.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: July 9, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Myung Gun Chong, Cheol Ho Heo, Sang Hyuk Son, Dae Hyung You
  • Patent number: 8435645
    Abstract: A dielectric device comprises a substrate made of a metal and an oxide dielectric layer mounted on a surface of the substrate. The surface of the substrate has metal oxide regions distributed like islands, while the oxide dielectric layer is in close contact with the substrate through the metal oxide regions. Since adhesion is higher in an area where the substrate and the oxide dielectric layer are in close contact with each other through the metal oxide regions distributed like islands on the surface of the substrate, the adhesion between the substrate and oxide dielectric layer in the dielectric device is enhanced. As compared with a case where a rough surface is formed on a metal foil, the metal oxide region and the substrate are inhibited from forming a rough surface, whereby leakage characteristics can be kept from being deteriorated by the rough surface.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: May 7, 2013
    Assignee: TDK Corporation
    Inventors: Akira Shibue, Tomohiko Kato, Shinichiro Kakei, Yasunobu Oikawa, Kenji Horino
  • Patent number: 8409726
    Abstract: Provided is a printed circuit board (PCB) with multiple metallic layers and a method of manufacturing the PCB to improve adhesion between a metal film and a polymer film, on which a circuit pattern is formed. The PCB includes: a first metal film; a polymer film formed on one surface of the first metal film; and a second metal film, interposed between the first metal film and the polymer film, having a first surface facing the first metal film and a second surface facing the polymer film, wherein the second surface is rougher than the first surface.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: April 2, 2013
    Assignee: Samsung Techwin Co., Ltd.
    Inventors: Chang-han Shim, Sung-il Kang, Se-chuel Park
  • Patent number: 8163400
    Abstract: The present invention provides a plated article that has a thin seed layer having a uniform thickness, formed by electroless plating and allowing formation of ultrafine wiring, and that avoids the complicated formation of a bilayer of a barrier layer and a catalytic metal layer prior to forming the seed layer. The present invention also provides a method for manufacturing the plated article. The plated article has an alloy thin film formed on a substrate and containing a catalytically active metal (A) for electroless plating and a metal (B) capable of undergoing displacement plating with a metal ion contained in an electroless plating solution, and a metal thin film formed on the alloy thin film by electroless displacement and reduction plating. The alloy thin film of the catalytically active metal (A) and the metal (B) capable of displacement plating has a composition comprising 5at% to 40at% of the metal (A).
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: April 24, 2012
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Atsushi Yabe, Junichi Ito, Yoshiyuki Hisumi, Junnosuke Sekiguchi, Toru Imori
  • Patent number: 8153271
    Abstract: The invention relates to a coated article which has (i) at least one electrically non-conducting base layer, (ii) at least one layer of copper and/or a copper alloy, and (iii) a layer which contains at least one electrically conductive polymer, wherein the copper or copper alloy layer (ii) is positioned between the base layer (i) and the layer containing the conductive polymer (iii), and which is characterized in that the layer (iii) contains at least one precious metal or at least one semiprecious metal or a mixture thereof. The invention also relates to a process for its production and also its use for the prevention of corrosion and to preserve the solderability of printed circuit boards.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: April 10, 2012
    Assignee: Ormecon GmbH
    Inventor: Bernhard Wessling
  • Patent number: 7998238
    Abstract: A sintered sliding member comprises a back metal (21a) and a ferrous sintered sliding body (20) which is sintering-bonded to the back metal (21a). The ferrous sintered sliding body (20) has martensite phase having a solid soluble carbon concentration of 0.15 to 0.5 wt % and contains carbide in a content of 5 to 50% by volume. The sintered sliding member is excellent in abrasion resistance, seizing resistance and heat crack resistance.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: August 16, 2011
    Assignee: Komatsu Ltd.
    Inventors: Takemori Takayama, Tetsuo Ohnishi, Kazuo Okamura
  • Patent number: 7985488
    Abstract: An ultrathin copper foil with a carrier not causing blistering at a release layer interface, having a low carrier peeling force, friendly to the environment, and enabling easy peeling of a carrier foil and an ultrathin copper foil even under a high temperature environment and a printed circuit board enabling a stable production quality of a base of a printed circuit board for fine pattern applications using the ultrathin copper foil with the carrier, that is, a ultrathin copper foil with a carrier comprising a carrier foil, a diffusion prevention layer, a release layer, and an ultrathin copper foil, wherein the release layer is formed by a metal A for retaining a release property and a metal B for facilitating plating of the ultrathin copper foil, a content “a” of the metal A and a content “b” of the metal B forming the release layer satisfying an equation: 10?a/(a+b)*100?70 and a printed circuit board prepared by using such a ultrathin copper foil with a carrier.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: July 26, 2011
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Yuuji Suzuki, Takami Moteki, Kazuhiro Hoshino, Satoshi Fujisawa, Akira Kawakami
  • Patent number: 7964289
    Abstract: A printed wiring board having a conductor circuit comprising a copper layer adjacent to an insulating layer and an electroless gold plating, wherein the insulating layer has ten-point mean surface roughness (Rz) of 2.0 ?m or less is provided. According to the present invention, there is no such a defect that gold plating is deposited on a resin, and fine wiring formation with accuracy is realized.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: June 21, 2011
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Kenji Takai, Norio Moriike, Kenichi Kamiyama, Katsuyuki Masuda, Kiyoshi Hasegawa
  • Patent number: 7749611
    Abstract: In one aspect, a copper foil for lamination to a dielectric substrate includes a layer deposited on a surface of the copper foil. The layer is formed from chromium and zinc ions or oxides and is treated with an aqueous solution containing at least 0.5% silane. In another aspect, a peel strength enhancement coating is disposed between a copper foil laminate and a dielectric substrate. The peel strength enhancement coating comprises a metal and metal oxide mixture containing a metal selected from groups 5B, 6B, and 7B of the periodic table of the elements. The effective thickness of the peel strength enhancement coating is that thickness capable of providing less than or equal to 10% loss of peel strength, when measured in accordance with IPC-TM-650 Method 2.4.8.5 using a ? inch wide test specimen, after being immersed in 4N HCl at about 60° C. for 6 hours.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: July 6, 2010
    Assignee: GBC Metals, L.L.C.
    Inventors: William L. Brenneman, Andrew Vacco, Szuchain F. Chen
  • Patent number: 7682703
    Abstract: A method of selectively and electrolessly depositing a metal onto a substrate having a metallic microstructured surface is disclosed. The method includes forming a self-assembled monolayer on the metallic microstructured surface, exposing the self-assembled monolayer to an electroless plating solution including a soluble form of a deposit metal, and depositing electrolessly the deposit metal selectively on the metallic microstructured surface. Article formed from this method are also disclosed.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: March 23, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Matthew H. Frey, Khanh P. Nguyen
  • Patent number: 7547479
    Abstract: A coated article, which contains (i) at least one electrically non-conductive base layer, (ii) at least one layer of copper and/or a copper alloy, and (iii) a tin-containing layer, wherein the layer (ii) is positioned between the layer (i) and the layer (iii). The article is characterized in that the tin-containing layer (iii) contains at least one other metal.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: June 16, 2009
    Assignee: Ormecon GmbH
    Inventor: Bernhard Wessling
  • Patent number: 7455915
    Abstract: Application of a conductive material with a compliant underlayer onto selected pads of a substrate, includes forming at least one padstack, by patterning a sheet including a stack of material layers. Padstacks may include a first conductive top layer, one or more underlying layers, and a bottom attachment layer, such as a solder layer. At least one flexible, or compliant, layer is disposed in the sheet between the top and attachment layers. The compliant layer may be a conductive elastomer. The top layer of the padstacks are adhered to a soluble tape, and this composite structure is moved into place over the circuit board by means of a pick and place operation. The placement of the padstacks is followed by a solder reflow to adhere the padstacks to the contact pads of the substrate, and by a wash cycle with a solvent to remove the soluble tape.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: November 25, 2008
    Inventor: Morgan T. Johnson
  • Publication number: 20070154730
    Abstract: A method of cross-linking a composition comprising firstly a polyethylene-based silane-grafted polymer, and secondly a filler. The invention is remarkable in that the cross-linking method consists in mixing the composition with a condensation catalyst constituted by lauryl stannoxane of formula [(C4H9)2Sn(OOCC11H23)]2O.
    Type: Application
    Filed: October 18, 2006
    Publication date: July 5, 2007
    Inventors: Christele Kensicher, Linda Boudiaf
  • Patent number: 7223481
    Abstract: An object of the present invention is to produce an ultra-thin copper foil with a carrier which has few pinholes and small surface roughness and which has an the thickness of less than 5 ?m, and to produce the method of producing the foil, and further to produce a printed circuit board for fine pattern, a multilayer printed circuit board and a chip on film circuit board by using the ultra-thin copper foil with a carrier. The present invention provides an ultra-thin copper foil with a carrier produced by stacking a peeling layer and an ultra thin copper foil in order on the surface of a carrier copper foil which is made smooth so that the mean surface roughness of at least one side is Rz of 0.01 to 2.0 ?m by the chemical polishing, the electrochemical dissolution, or the smoothing plating processing method independently, combining two or more, or further combining the mechanical polishing.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: May 29, 2007
    Assignee: Furukawa Circuit Foil Co., Inc.
    Inventors: Yuuji Suzuki, Akira Matsuda
  • Patent number: 7175920
    Abstract: The present invention is to provide an ultra-thin copper foil with a carrier which comprises a release layer, a diffusion preventive layer and a copper electroplating layer laminated in this order, or a diffusion preventive layer, a release layer and a copper electroplating layer laminated in this order on the surface of a carrier foil, wherein a surface of the copper electroplating layer is roughened; a copper-clad laminated board comprising the ultra-thin copper foil with a carrier being laminated on a resin substrate; a printed wiring board comprising the copper-clad laminated board on the ultra-thin copper foil of which is formed a wiring pattern; and a multi-layered printed wiring board which comprising a plural number of the above printed wiring board being laminated.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: February 13, 2007
    Assignee: Circuit Foil Japan Co., Ltd.
    Inventors: Akitoshi Suzuki, Shin Fukuda, Kazuhiro Hoshino, Tadao Nakaoka
  • Patent number: 7026059
    Abstract: The present invention is to provide an ultra-thin copper foil with a carrier which comprises a release layer, a diffusion preventive layer and a copper electroplating layer laminated in this order, or a diffusion preventive layer, a release layer and a copper electroplating layer laminated in this order on the surface of a carrier foil, wherein a surface of the copper electroplating layer is roughened; a copper-clad laminated board comprising the ultra-thin copper foil with a carrier being laminated on a resin substrate; a printed wiring board comprising the copper-clad laminated board on the ultra-thin copper foil of which is formed a wiring pattern; and a multi-layered printed wiring board which comprising a plural number of the above printed wiring board being laminated.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: April 11, 2006
    Assignee: Circuit Foil Japan Co., Ltd.
    Inventors: Akitoshi Suzuki, Shin Fukuda, Kazuhiro Hoshino, Tadao Nakaoka
  • Patent number: 7005195
    Abstract: A material and method for adhering at least two materials that includes the step of interposing at least one intermediate layer between the two materials and associated adhesion material. The materials to be adhered exhibit at least one characteristic dissimilarity and the intermediate material interposed contains at least one shape memory alloy, the shape memory alloy capable of exhibiting superelasticity.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: February 28, 2006
    Assignees: General Motors Corporation, Michigan State University
    Inventors: Yang-Tse Cheng, Wangyang Ni, Leonid Charles Lev, Michael J. Lukitsch, David S. Grummon, Anita M. Weiner
  • Patent number: 6994918
    Abstract: A component for use in manufacturing circuit boards, such as printed circuit boards, or flex substrates is adapted for use with pick-and-place equipment to provide a first material overlay disposed over a second material base layer. Such a component may include a first electrically conductive material disposed over a second electrically conductive material, and a soluble tape backing disposed over and attached to the second electrically conductive material. The component may be attached to a circuit board by solder relow, after which the soluble tape backing is removed. Although typical embodiments involve electrically conductive materials, it is noted that an electrically insulating material can also be disposed over and attached to an underlying material which itself is disposed on a circuit board.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: February 7, 2006
    Inventor: Morgan T. Johnson
  • Patent number: 6984456
    Abstract: There is provided a flexible printed wiring board including an insulating layer having a high optical transmittance, a high adhesion strength and a high migration resistance, and suitable for a chip on film (hereafter referred to as COF). In a flexible printed wiring board for COF, having an insulating layer on which a conductive layer of an electrodeposited copper foil is laminated, and an optical transmittance of 50% or more of the insulating layer in the etched region when a circuit is formed by etching said conductive layer, electrodeposited copper foil was made to have a rust-proofing layer of a nickel-zinc alloy on the adhering surface to be adhered to the insulating layer; the surface roughness (Rz) of the adhering surface was made to be 0.05 to 1.5 ?m, and the specular gloss was made to be 250 or more when the incident angle is 60°.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: January 10, 2006
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Kazuyuki Okada, Yasuji Hara, Akira Uchiyama, Masaru Takahashi
  • Patent number: 6924043
    Abstract: An ultra-thin copper foil with a carrier having a peeling layer able to withstand even high temperature working in the case of using a high heat resistant resin, enabling the carrier foil and the ultra-thin copper foil to be easily peeled apart, and reduced in the number of pinholes by uniform plating without impairing the peelability of the peeling layer, that is, an ultra-thin copper foil with a carrier comprised of a carrier foil, a peeling layer, and an ultra-thin copper foil, wherein the peeling layer and the ultra-thin copper foil are provided between them with a strike plating layer at the surface on the peeling layer side, an ultra-thin layer of copper is provided on this according to need, and an ultra-thin copper foil comprised of copper or a copper alloy or a phosphorus-containing copper or phosphorus-containing copper alloy is provided.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: August 2, 2005
    Assignee: Furkawa Circuit Foil Co., Ltd.
    Inventors: Yuuji Suzuki, Akira Matsuda
  • Patent number: 6919137
    Abstract: A soldering method achieving a high-strength joint between a solder and an nickel/gold electroless plated surface is disclosed. The nickel/gold electroless plated layer is soldered using a solder including tin (Sn), silver (Ag), and copper (Cu). At a solder joint, a layer sturcture of nickel layer/intermetallic compound layer/solder layer is formed. The intermetallic compound layer is composed mainly of tin (Sn) and copper (Cu), and further including nickel (Ni). The intermetallic compound layer has cauliflower-shaped surfaces formed in a solder-layer's side thereof.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: July 19, 2005
    Assignee: NEC Corporation
    Inventors: Kazuyuki Kawashima, Yasunori Tanaka
  • Patent number: 6831024
    Abstract: The conductive fabric is fabricated by preparing a base fibrous fabric substrate having the form of a woven, non-woven, or mesh sheet, forming a first layer formed on the fibrous fabric substrate in accordance with an electroless plating process, the first layer being made of copper, and forming a second layer as an externally exposed layer, on the first layer continuously, the second layer being made of gold or platinum.
    Type: Grant
    Filed: January 2, 2003
    Date of Patent: December 14, 2004
    Assignees: AMIC Co., Ltd.
    Inventor: Sun-Ki Kim
  • Patent number: 6805964
    Abstract: In one embodiment, the present invention relates to a composite article, comprising a metal foil having a first side and a second side; a protective film of at least one inert silane, titanate or zirconate overlying the first side of the metal foil; and a metal sheet having a first side and a second side, the first side overlying the protective film. In another embodiment, the present invention relates to a method of increasing tarnish resistance of metal foil comprising contacting the metal foil with an inert silane, titanate or zirconate compound to form a protective film having a thickness from about 0.001 microns to about 1 micron on a surface of the metal foil; and attaching the foil to a metal sheet.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: October 19, 2004
    Assignee: Nikko Materials USA, Inc.
    Inventors: Sidney J. Clouser, Michael A. Centanni
  • Publication number: 20040191603
    Abstract: A niobium-clad bipolar plate for use in a proton exchange membrane fuel cell is disclosed, whereby the electrically conductive, corrosion resistant niobium cladding protects a highly electrically conductive base metal in a harsh environment for the purpose of communicating electrical energy from the cathode of one membrane-electrode assembly to the anode of a second membrane-electrode assembly. Alternatively, the niobium-clad bipolar plate can include a titanium interlayer, interposed between the niobium cladding and the base metal. Also disclosed is a system for producing electricity using a niobium-clad bipolar plate in combination with numerous membrane-electrode assemblies to provide electrical energy and a proton exchange membrane fuel cell comprising a niobium clad-bipolar plate.
    Type: Application
    Filed: March 25, 2003
    Publication date: September 30, 2004
    Inventors: Joseph G. Kaiser, Robert P. Willis
  • Patent number: 6746785
    Abstract: A metal layer is bonded to the ferrite core of an inductive component. A defined electric potential is thereby set for the ferrite core of an inductive component and/or the damping of the inductive component is reduced which is caused by losses induced from its magnetic field.
    Type: Grant
    Filed: March 10, 1999
    Date of Patent: June 8, 2004
    Assignee: Siemens Aktiengessellschaft
    Inventor: Tristan Werner
  • Patent number: 6737153
    Abstract: A circuit board comprising a composite resin and a metal plate, the metal plate forming circuit patterns. The composite resin comprises 70-95 parts by weight of inorganic filler, and 5-30 parts by weight of a resin composition including a thermosetting resin and a hardener. The metal plate is surface treated to reinforce the adhesion at least at one surface contacting with the composite resin. The composite resin fills spaces between the circuit patterns, and the composite resin composition and the metal plate form a plane at a side of the metal plate for mounting components. Since the resin composition including the inorganic filler is also present in the spaces between circuit patterns of a metal plate, heat dissipation characteristic of the circuit board is extremely high, and is suited for electronic apparatus containing heat generating parts such as power circuit.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: May 18, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masaki Suzumura, Fumiaki Hashimoto
  • Publication number: 20040076776
    Abstract: A fuel tank for a motor vehicle is fabricated from an austenitic stainless steel sheet having elongation of 50% or more after fracture by a uniaxial stretching test with a work-hardening coefficient of 4000N/mm2 or a ferritic stainless steel sheet having elongation of 30% or more after fracture with Lankford value of 1.3 or more. The stainless steel sheets are reformed to a complicated shape of a fuel tank without work flaws such as cracks or break-down. Excellent corrosion-resistance of stainless steel itself is maintained in the fabricated fuel tank. Consequently, the proposed fuel tank is used without diffusion of gasoline to the open air over a long term.
    Type: Application
    Filed: September 26, 2003
    Publication date: April 22, 2004
    Inventors: Hanji Ishikawa, Shigeru Morikawa, Toshiro Adachi, Naoto Hiramatsu, Satoshi Suzuki
  • Publication number: 20040053019
    Abstract: The object is to provide a copper foil excellent in the property of selective etching between a resistor layer and a copper layer required in production of a printed-wiring board, and also excellent in UL heat resistance. For this purpose, a copper foil for printed-wiring board comprising a nodular treatment side on one side, wherein a nickel-zinc alloy layer is formed on the nodular treatment side is used for applications of printed-wiring boards. At the same time, a production method suitable for production of the copper foil is provided.
    Type: Application
    Filed: April 25, 2003
    Publication date: March 18, 2004
    Inventors: Takuya Yamamoto, Masaru Takahashi, Masamichi Yamada
  • Patent number: 6645606
    Abstract: A substrate has a first surface and a second surface. A plurality of pads is formed on the first surfaces. Each pads has a Cu plating layer and an Au plating layer that is directly formed on the Cu plating layer. Al wiring or Au wiring is bonded with the pads. The thickness of the Au plating layer that is bonded with the Al wiring is less than 0.5 &mgr;m. Thickness of the Au plating layer that is bonded with the Au wiring is 0.05 &mgr;m or more.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: November 11, 2003
    Assignee: Denso Corporation
    Inventors: Tetsuo Nakano, Yukihiro Maeda, Yasutomi Asai, Takashi Nagasaka
  • Patent number: 6605369
    Abstract: The present invention is directed to provision of a surface-treated copper foil exhibiting a maximum effect of a silane coupling agent which is adsorbed onto the copper foil and is employed in order to enhance adhesion between the copper foil and a substrate during manufacture of printed wiring boards. The invention is also directed to provision of a method for producing such a copper foil. To attain these goals, a surface-treated copper foil for producing printed wiring boards is provided, wherein an anti-corrosion treatment comprises forming a zinc layer or a zinc alloy layer on a surface of the copper foil and forming an electrodeposited chromate layer on the zinc or zinc alloy layer; forming a silane-coupling-agent-adsorbed layer on the electrodeposited chromate layer without causing the electrodeposited chromate layer of the nodular-treated surface to dry; and drying.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: August 12, 2003
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Naotomi Takahashi, Yutaka Hirasawa
  • Patent number: 6579591
    Abstract: This invention relates to a method of forming a substrate with preparing a surface capable of making a cocontinuous bond comprising the steps of 1) obtaining a copper or copper alloy substrate and 2) applying an etching composition which comprises (a) an acid, (b) an oxidizing agent, (c) a copper complexing agent, and (d) a copper complex, wherein the copper complex is present in an amount which precipitates when applied to the copper or copper alloy substrate. The method also includes the step of 3) treating the substrate with a coating composition and/or 4) applying a stripping composition to the substrate. The invention also relates to copper articles, having surface porosity, including multilayer articles such as printed circuit boards and compositions used in the method. The present invention provides microporous copper or copper alloy substrates which have improved adhesion properties to organic material.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: June 17, 2003
    Assignee: Atotech Deutschland GmbH
    Inventors: Craig V. Bishop, George S. Bokisa, Robert J. Durante, John R. Kochilla
  • Publication number: 20030108764
    Abstract: A method for enhancing the adhesion between a metal surface and a circuit board substrate comprises contacting the metal surface with adhesion promoting solution comprising poly(vinyl butyral) having a molecular weight of about 70,000 to about 200,000 and a carrier; allowing the carrier to evaporate and forming an adhesion promoting layer; contacting the adhesion promoting layer with a curable thermosetting circuit board substrate composition; and curing the thermosetting composition. Use of an adhesion promoting layer comprising poly(vinyl butyral) having a molecular weight of about 70,000 to about 200,000 causes a large increase in both the tensile bond strength between the metal surface and thermoset resin and the uniformity of the tensile bond strength.
    Type: Application
    Filed: December 4, 2001
    Publication date: June 12, 2003
    Inventors: John Thomas Neill, Luis Daniel Borges
  • Patent number: 6537675
    Abstract: In one embodiment, the present invention relates to a composite article, comprising a metal foil having a first side and a second side; a protective film of at least one inert silane, titanate or zirconate overlying the first side of the metal foil; and a metal sheet having a first side and a second side, the first side overlying the protective film. In another embodiment, the present invention relates to a method of increasing tarnish resistance of metal foil comprising contacting the metal foil with an inert silane, titanate or zirconate compound to form a protective film having a thickness from about 0.001 microns to about 1 micron on a surface of the metal foil; and attaching the foil to a metal sheet.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: March 25, 2003
    Assignee: Ga-Tek, Inc.
    Inventors: Sidney J. Clouser, Michael A. Centanni
  • Patent number: 6485843
    Abstract: A surface-mount device attach method for attaching solder ball-grid array or solder column-grid array surface-mount devices to a printed circuit board where the conventional solder mask structure is replaced with a layer of plated nickel to prevent printed circuit board warping caused by the mismatch in the coefficients of thermal expansion between the conventional solder mask and the printed circuit board. A native nickel-oxide layer that forms on the surface of the exposed portions of the plated nickel layer functions as a solder dam.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: November 26, 2002
    Assignee: Altera Corporation
    Inventor: Mohammad Eslamy
  • Patent number: 6475629
    Abstract: Adhesive film useful for the production of semiconductor devices is produced from a siloxane-modified polyamideimide resin composition, comprising 100 parts by weight of a siloxane-modified polyamideimide resin and 1 to 200 parts by weight of a thermosetting resin ingredient.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: November 5, 2002
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Kazumasa Takeuchi, Tetsuya Saito, Ken Nanaumi
  • Patent number: 6455177
    Abstract: A stabilized GMR device includes a GMR stack having a first and a second edge. Stabilization means are positioned adjacent to the first and the second edge of the GMR stack for stabilizing the GMR stack. The GMR stack includes a first layer of ferromagnetic material and a second layer of ferromagnetic material. A spacer layer is positioned between the first and the second ferromagnetic layers. A buffer layer is positioned adjacent to the first magnetic layer and a cap layer is positioned adjacent to the second ferromagnetic layer. The stabilization means include a first coupler layer positioned adjacent to the first edge of the GMR stack and a second coupler layer positioned adjacent to the second edge of the GMR stack. The stabilization means also include a first ferromagnetic layer positioned adjacent to the first coupler layer and a second ferromagnetic layer positioned adjacent to the second coupler layer.
    Type: Grant
    Filed: December 3, 1999
    Date of Patent: September 24, 2002
    Assignee: Seagate Technology LLC
    Inventors: Brenda A. Everitt, Arthur V. Pohm
  • Patent number: 6329072
    Abstract: A printed circuit board comprising a metal copper film having 105 to 109 micropores per square centimeter wherein the metal copper film is prepared by dipping a plating object into an electroless copper plating solution comprising a copper ion, a complexing agent, a hypophosphorus acid compound, a metallic catalyst for initiating the reductive reaction, and a compound containing an acetylenic bond.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: December 11, 2001
    Assignees: Ebara-Udylite Co., Ltd.
    Inventors: Hideo Honma, Tomoyuki Fujinami, Nobuo Ebina
  • Patent number: 6329074
    Abstract: This invention provides a copper foil for a printed wiring board, which comprises a copper foil, an alloy layer (A) comprising copper, zinc, tin and nickel which is formed on a surface of the copper foil, said surface to be brought into contact with a substrate for a printed wiring board, and a chromate layer which is formed on a surface of the alloy layer (A,. The copper foil for a printed wiring board has the following features: even if a printed wiring board is produced using a long-term stored copper foil, the interface between the copper foil and the substrate is only slightly corroded with chemicals; even if the copper foil contacts a varnish containing an organic acid, e.g., a varnish for an acrylic resin, in the formation of a copper-clad laminate, the bond strength is sufficient. Even if a printed circuit board made by using the copper foil is placed in a high temperature environment, e.g.
    Type: Grant
    Filed: November 29, 1999
    Date of Patent: December 11, 2001
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Kazuhisa Fujiwara, Hiroshi Tan, Mitsuo Fujii, Masanobu Tsushima
  • Patent number: 6326685
    Abstract: A reduced CTE composite structure is made by providing a matrix material whose CTE is to be reduced, adding negative CTE bodies to the matrix material and mechanically coupling the matrix material to the negative CTE bodies as by deforming the composite structure. A preferred application is to make an improved composite material for use as a heat sink for semiconductor substrates with a minimum of thermal expansion mismatch.
    Type: Grant
    Filed: May 4, 1998
    Date of Patent: December 4, 2001
    Assignee: Agere Systems Guardian Corp.
    Inventors: Sungho Jin, Hareesh Mavoori
  • Patent number: 6218030
    Abstract: A soldered product having secure reliable joints, without the use of flux, is disclosed. The soldered product includes a first member having a connected portion and a second member, also having a connected portion, facing the first member. The connected portions of the first and second members are electrically connected by a connecting material. A layer of hydrocarbon, including alkane, alkene or alkyne, is disposed around the periphery of the connecting material.
    Type: Grant
    Filed: August 7, 1997
    Date of Patent: April 17, 2001
    Assignee: Nippondenso Co., Ltd.
    Inventors: Toshihiro Miyake, Koji Kondo, Takashi Kurahashi, Nozomu Okumura, Makoto Takagi