Next To Group Viii Or Ib Metal-base Component Patents (Class 428/652)
  • Patent number: 10266926
    Abstract: A cast nickel-base superalloy that includes iron added substitutionally for nickel. The cast nickel base superalloy comprises, in weight percent about 1-6% iron, about 7.5-19.1% cobalt, about 7-22.5% chromium, about 1.2-6.2% aluminum, optionally up to about 5% titanium, optionally up to about 6.5% tantalum, optionally up to about 1% Nb, about 2-6% W, optionally up to about 3% Re, optionally up to about 4% Mo, about 0.05-0.18% C, optionally up to about 0.15% Hf, about 0.004-0.015 B, optionally up to about 0.1% Zr, and the balance Ni and incidental impurities. The superalloy is characterized by a ?? solvus temperature that is within 5% of the ?? solvus temperature of the superalloy that does not include 1-6% Fe and a mole fraction of ?? that is within 15% of the mole fraction of the superalloy that does not include 1-6% Fe.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: April 23, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ganjiang Feng, Jon Conrad Schaeffer, Michael Douglas Arnett
  • Patent number: 10131011
    Abstract: A method for joining a first metal part (11) with a second metal part (12), the metal parts (11,12) having a solidus temperature above 1100 QC. The method comprises: applying a melting depressant composition (14) on a surface (15) of the first metal part (11), the melting depressant composition (14) comprising a melting depressant component that comprises at least 25 wt % boron and silicon for decreasing a melting temperature of the first metal part (11); bringing (202) the second metal part (12) into contact with the melting depressant composition (14) at a contact point (16) on said surface (15); heating the first and second metal parts (11,12) to a temperature above 1100 QC; and allowing a melted metal layer (210) of the first metal component (11) to solidify, such that a joint (25) is obtained at the contact point (16). The melting depressant composition and related products are also described.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: November 20, 2018
    Assignee: ALFA LAVAL CORPORATE AB
    Inventors: Per Sjödin, Kristian Walter
  • Patent number: 9273527
    Abstract: A slip component for a downhole tool has a bearing surface hard surface treated. The slip component, which can be a slip or other component of a slip mechanism used on a packer, bridge plug, or other downhole tool, is composed of a metallic base material such as magnesium, aluminum, an aluminum alloy, or a magnesium alloy. To hard surface treat the slip component, at least the bearing surface is positioned relative to an electro sparking apparatus. Using the electrosparking apparatus, an external layer is bonded at least on the bearing. In a further embodiment, an intermediate layer can be first bonded onto at least the bearing surface by ion sputtering an intermediate material onto the metallic base material of the slip component. Then, an external layer can be bonded at least on the intermediate layer by electrospark deposition.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: March 1, 2016
    Assignee: Weatherford Technology Holdings, LLC
    Inventor: Robert P. Badrak
  • Patent number: 9234295
    Abstract: The method of forming an oxidation resistant coating layer is for forming an oxidation resistant coating layer containing aluminum on a surface layer of a member (A) formed of metallic material. The method includes a plating treatment step (S1) of plating aluminum on a surface of the member (A) in a solvent, and a heat treatment step (S2) of heat-treating the member (A) whose surface has been plated by the plating treatment step (S1).
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: January 12, 2016
    Assignee: IHI CORPORATION
    Inventors: Akihiro Sato, Yoshihiro Tsuda, Hiroaki Iwata, Akira Tateno, Hiroki Yoshizawa, Tetsuji Hirato
  • Patent number: 9097076
    Abstract: A slip component for a downhole tool has a bearing surface that is hard surface treated. The slip component, which can be a slip or other component of a slip mechanism used on a packer, bridge plug, or other downhole tool, is composed of a non-metallic base material, such as plastic, composite, or ceramic. To hard surface treat the slip component, at least the bearing surface is positioned relative to an ion sputtering apparatus. An intermediate layer is first bonded onto the bearing surface by ion sputtering an intermediate material onto the non-metallic base material of the slip component. Then, the bearing surface of the slip component is positioned relative to an electrosparking apparatus, which has an electrode composed of a selected external material for depositing on the slip component. Using the electrosparking apparatus, an external layer is bonded at least on the bearing surface.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: August 4, 2015
    Assignee: Weatherford Technology Holdings, LLC
    Inventor: Robert P. Badrak
  • Publication number: 20150137390
    Abstract: A ribbon, preferably a bonding ribbon for bonding in microelectronics, contains a first layer containing copper, a coating layer containing aluminum superimposed over the first layer, and an intermediate layer. In a cross-sectional view of the ribbon, the area share of the first layer is from 50 to 96% and the aspect ratio between the width and the height of the ribbon in a cross-sectional view is from 0.03 to less than 0.8. The ribbon has a cross-sectional area of 25,000 ?m2 to 800,000 ?m2. The intermediate layer contains at least one intermetallic phase containing materials of the first and coating layers. The invention further relates to a process for making a wire, to a wire obtained by the process, to an electric device containing the wire, to a propelled device comprising said electric device and to a process of connecting two elements through the wire by wedge-bonding.
    Type: Application
    Filed: May 7, 2013
    Publication date: May 21, 2015
    Inventors: Eugen Milke, Peter Prenosil, Sven Thomas
  • Publication number: 20150118090
    Abstract: Carbon dioxide compressors having one or more coatings with wear surfaces having electroless surface coatings are provided. Alternatively, propane compressors are contemplated having wear surface coatings. The coating is electrolessly applied and may comprise nickel and wear resistant particles, such as boron nitride. The electroless surface coatings for use with compressor machines improve corrosion and wear resistance, as well as anti-friction properties for compressors processing CO2 or C3H8 containing refrigerants. In certain aspects, a scroll machine has an Oldham coupling and/or lower bearing comprising aluminum and has an electroless surface coating comprising nickel boron nitride particles disposed on one or more wear surfaces. In other aspects, a reciprocating compressor has a wear surface, such as on a connecting rod and/or piston coated with an electrolessly applied nickel and boron nitride particle layer. Methods for making the electroless surface coatings are also provided.
    Type: Application
    Filed: October 29, 2014
    Publication date: April 30, 2015
    Inventors: Carl Joseph Lachey, Eric Anthony Maurer
  • Publication number: 20150086807
    Abstract: The present invention provides an isothermal processing method for making an isothermal processed copper clad aluminum composite comprising: providing an aluminum component and a copper component; cleaning the aluminum component and shape finishing the aluminum component; extruding the aluminum component into a core aluminum billet; cleaning the copper component; transforming the copper component into a copper cladding layer; cladding longitudinal and circumferential surfaces of the core aluminum billet with the copper cladding layer and molding the core aluminum billet and the copper cladding layer together to form a copper cladded aluminum billet; and transforming the copper cladded aluminum billet into an isothermal processed copper cladded aluminum composite through isothermal rolling and annealing. The present invention also provides an isothermal processed copper cladded aluminum composite and a system for manufacturing an isothermal processed copper cladded aluminum composite.
    Type: Application
    Filed: September 20, 2014
    Publication date: March 26, 2015
    Inventors: Jay Song, Haitao Wu
  • Publication number: 20150056467
    Abstract: The invention relates to a method for producing a nickel aluminide coating on a metal substrate. Said method includes the following steps: a) coating the substrate with a nickel deposit; b) applying an aluminum sheet onto the nickel deposit from step a) so as to form an assembly made up of the substrate coated with the nickel deposit and the aluminum sheet; and c) subjecting said assembly to heat treatment at a temperature that is lower than the melting point of aluminum, and at a low pressure so as to induce a reaction between the aluminum and the nickel and thus form a ?-NiAl nickel aluminide layer mounted on a nickel layer. The invention is particularly of use for protecting the materials used in turbines of aircraft engines.
    Type: Application
    Filed: March 27, 2013
    Publication date: February 26, 2015
    Inventors: Pascal Bilhe, Marie-Pierre Bacos, Pierre Josso
  • Patent number: 8915761
    Abstract: A connector terminal which can achieve high mechanical connection strength and stabilized low electrical connection resistance when it is crimped to an aluminum electric wire, and in addition, can suppress electrical contact resistance low when it is fitted to a mating connector terminal is provided. In a connector terminal (1A) having an electrical contact section (10) which is brought into contact and conducted with a mating connector terminal by fitting to the mating connector terminal, and a conductor crimping section (12) which is crimped to the conductor of an electric wire, a metal material which constitutes the terminal uses aluminum or an aluminum alloy as a base material (100), a Zn layer (101) having a thickness in the range from 0.1 ?m to 2.0 ?m by electroless plating and a Cu layer (102) having a thickness in the range from 0.5 ?m to 1.0 ?m by electrolytic plating are formed in sequence on the surface of the base material (100), and an Sn layer (105) having a thickness in the range from 0.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: December 23, 2014
    Assignee: Yazaki Corporation
    Inventor: Naoki Kakuta
  • Publication number: 20140370222
    Abstract: There is provided a heat-dissipation sheet assembly comprising a heat-dissipation sheet layer having good heat conductivity and a protection layer(s) electrodeposited on one or both sides of the heat-dissipation sheet layer. When the heat-dissipation sheet layer is immersed in an aqueous solution for electrodeposition added with a material for electrodeposition and electric current is permitted to flow in the aqueous solution, the protection layer(s) is electrodeposited on the one or both sides of the heat-dissipation sheet layer. The heat-dissipation sheet assembly can be attached to a heat-generating unit by applying an adhesion layer to an underside of the heat-dissipation sheet assembly.
    Type: Application
    Filed: July 28, 2013
    Publication date: December 18, 2014
    Applicant: A-TECH SOLUTION CO., LTD
    Inventors: Jong Seop Kim, Ki Sung Lee
  • Publication number: 20140345559
    Abstract: A mechanical component for an internal combustion engine includes a mechanical component body made of one of aluminum and aluminum alloy and used for the internal combustion engine, a nickel plating layer formed to cover a surface of a predetermined portion of the mechanical component body, and a reforming layer formed between the surface of the predetermined portion of the mechanical component body and the nickel plating layer.
    Type: Application
    Filed: May 27, 2014
    Publication date: November 27, 2014
    Applicant: Aisin Seiki Kabushiki Kaisha
    Inventors: Hajime MINAKI, Hiroaki Sasayama, Akihiro Okamoto, Takuya Niimi
  • Patent number: 8883318
    Abstract: An aluminum bonding alloy is an Ni—Mg alloy for bonding aluminum and a non-aluminum metal selected from steel, copper, nickel or titanium. The Ni—Mg alloy consists essentially of 0.08-0.90 mass % Mg, and the balance of Ni and inevitable impurities. A clad material includes a non-aluminum metal layer made of the non-aluminum metal and a bonding alloy layer made of the aluminum bonding alloy. The non-aluminum metal layer and the bonding alloy layer are bonded together by pressure welding and diffusion bonding.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: November 11, 2014
    Assignee: Neomax Materials Co., Ltd.
    Inventors: Shinji Yamamoto, Masaaki Ishio
  • Publication number: 20140311769
    Abstract: A composite conductor 10, including an internal layer 11 having a conductive material A, the conductive material A having fatigue strength of at least 150 MPa after being subjected to 106 cycles of cyclic loading in a fatigue test, and an external layer 12 having a conductive material B, the external layer coating the internal layer 11, the conductive material B having tensile strength higher than that of the conductive material A, the tensile strength being at least 250 MPa, in which the composite conductor 10 has fracture resistance to a sudden load and impact as well as bending durability.
    Type: Application
    Filed: December 6, 2012
    Publication date: October 23, 2014
    Applicants: DYDEN CORPORATION, FUKUOKA PREFECTURAL GOVERNMENT, NATIONAL UNIVERSITY CORPORATION KUMAMOTO UNIVERSITY
    Inventors: Hiroyuki In, Fumiyo Annou, Daisuke Matsunaga, Hiromoto Kitahara, Shinji Ando, Masayuki Tsushida, Toshifumi Ogawa
  • Publication number: 20140308541
    Abstract: A bonded body made of an aluminum alloy and a copper alloy and obtained by employing the aluminum alloy as one member to be bonded and the copper alloy as the other member to be bonded, the one bonded member and the other bonded member being bonded to each other through metallic connection, wherein the one bonded member is made of comprising an aluminum alloy containing Cu: 3.0 mass % to 8.0 mass % and Si: 0.1 mass % to 10 mass % with balance being Al and unavoidable inevitable impurities, and satisfying the chemical formula: C+2.4×S?7.8 where C (mass %) is a Cu concentration and S (mass %) is a Si composition concentration is satisfied, and the other bonded member comprises a copper alloy having a higher solidus temperature than the one bonded member. A bonding method for the bonded body is provided.
    Type: Application
    Filed: November 28, 2012
    Publication date: October 16, 2014
    Inventors: Kotaro Kitawaki, Takashi Murase
  • Patent number: 8828555
    Abstract: The present invention is directed to a method for forming a patterned conductive film, which comprises the step of bringing a substrate having a layer made of platinum microcrystal particles formed thereon in a pattern and a complex of an amine compound and an aluminum hydride into contact with each other at a temperature of 50 to 120° C. According to the present invention, there is provided a method for forming a patterned conductive layer, which can ensure electrical bonding with a substrate and also can be suitably applied to various electronic devices, simply without requiring a massive and heavy apparatus.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: September 9, 2014
    Assignees: Japan Science and Technology Agency, JSR Corporation
    Inventors: Tatsuya Shimoda, Yasuo Matsuki, Zhongrong Shen
  • Publication number: 20140248509
    Abstract: Compositions are provided that exhibit an austenitic nickel microstructure. The compositions comprise Ni, Cr, Mo and at least one element selected from the group consisting of Al, Si, and Ti. Feedstock having the composition may be in the form of a cored wire or wires, a solid wire or wires, or a powder.
    Type: Application
    Filed: May 15, 2014
    Publication date: September 4, 2014
    Applicant: Scoperta, Inc.
    Inventors: Justin Lee Cheney, Grzegorz Jan Kusinski
  • Publication number: 20140220380
    Abstract: A slide component, used in internal combustion engines, provided with a metal-based substrate material and a protective liner (R), with the slide component having at least two main elements, the first one composed by an element with high resistance to corrosion, and the second element providing increase of the resistance to wear and/or presenting lower friction than the substrate material, both of them covering at least one of the surfaces of the slide component.
    Type: Application
    Filed: March 29, 2012
    Publication date: August 7, 2014
    Applicants: MAHLE METAL LEVE S/A, MAHLE INTERNATIONAL GMBH
    Inventors: José Valentim Lima Sarabanda, Edmo Soares, Juliano Avelar Araujo
  • Patent number: 8728627
    Abstract: There is provided a manufacturing method of an aluminum structure, including a conductive treatment process of forming an electrically conductive layer on a surface of a resin molded body, the electrically conductive layer being made of one or more metals selected from the group consisting of gold, silver, platinum, rhodium, ruthenium, palladium, nickel, copper, cobalt, iron, and aluminum, and a plating process of plating the resin molded body subjected to the conductive treatment process with aluminum in a molten salt bath. The manufacturing method of an aluminum structure allows aluminum plating on the surface of even a porous resin molded body having a three-dimensional network structure. In particular, there is also provided a manufacturing method of an aluminum structure that can form porous aluminum having a large area.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: May 20, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akihisa Hosoe, Koji Nitta, Kazuki Okuno, Tomoyuki Awazu, Shinji Inazawa
  • Publication number: 20140134455
    Abstract: An article may include a substrate, a diffusion barrier layer formed on the substrate, and a protective layer formed on the diffusion barrier coating. The diffusion barrier layer may include iridium.
    Type: Application
    Filed: April 13, 2012
    Publication date: May 15, 2014
    Applicant: ROLLS-ROYCE CORPORATION
    Inventors: Ann Bolcavage, Randolph C. Helmink
  • Publication number: 20140127911
    Abstract: A palladium plated aluminum component of a semiconductor plasma processing chamber comprises a substrate including at least an aluminum or aluminum alloy surface, and a palladium plating on the aluminum or aluminum alloy surface of the substrate. The palladium plating comprises an exposed surface of the component and/or a mating surface of the component.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 8, 2014
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Hong Shih, Lin Xu, Rajinder Dhindsa, Travis Taylor, John Daugherty
  • Patent number: 8691395
    Abstract: A composite material for brazing having features of: forming a homogenous distribution of components in the brazing filler material even after brazing; having an excellent workability; offering low manufacturing costs; and having satisfactory corrosion resistivity as desired. The composite material for brazing has a lamination of a brazing filler material layer thereon, wherein the brazing filler material layer is a layer of alloy that includes copper, aluminum, and nickel.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: April 8, 2014
    Assignee: Hitachi Cable, Ltd.
    Inventors: Hideyuki Sagawa, Kazuma Kuroki, Hiromitsu Kuroda
  • Publication number: 20140072827
    Abstract: A mixed powder of an Ni—Al alloy and alumina is produced by heating a first mixed powder, which is prepared by mixing an Ni—Al mixed powder as prepared by mixing an Al powder with Ni in such a manner that Al therein could fall within a range of from 25 atomic % to 60 atomic %, and an alumina powder in a range of from 40% by mass to 60% by mass, in vacuum or in an inert gas atmosphere at a temperature falling within a range of from 600° C. to 1300° C. for at least 1 hour, and then grinding the resulting product.
    Type: Application
    Filed: March 27, 2013
    Publication date: March 13, 2014
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventor: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
  • Patent number: 8663813
    Abstract: A seamless composite metal tube comprises an inner layer (1) consisting of copper or a copper alloy, an outer layer (5) consisting of aluminium or an aluminium alloy, and at least three different intermediate intermetallic layers (2, 3, 4) each consisting of copper and aluminium, wherein the concentration of copper decreases from the inner layer (1) to the outer layer (5) in the radial direction of the tube.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: March 4, 2014
    Assignee: Halcor Metal Works S.A.
    Inventors: John Biris, George Hinopoulos, Apostolos Kaimenopoulos
  • Publication number: 20140030634
    Abstract: An inexpensive bonding method is provided to bond materials constituted of an aluminum-based metal to each other at a low temperature and a low pressure while inhibiting deformation, without requiring the use of a flux and minimizing the influence on the base materials and the periphery. Also provided are various bonded parts obtained by the bonding method. An insert material comprising Zn as an element that undergoes a eutectic reaction with Al is interposed between two materials constituted of an aluminum-based metal. The two materials are heated, while being pressed against each other, to a temperature at which the eutectic reaction takes place, thereby generating, at the bonding interface between the two materials, a melt due to the eutectic reaction with some of the Al contained in the base materials and discharging the Al oxide films from the bonding interface together with the melt. Thus, the two materials are bonded.
    Type: Application
    Filed: August 30, 2011
    Publication date: January 30, 2014
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Toshikazu Nanbu, Kenji Miyamoto, Masayuki Inoue, Chika Yamamoto, Yoshitaka Uehara, Akio Hirose
  • Patent number: 8632890
    Abstract: A method for forming a nickel aluminide based coating on a metallic substrate includes providing a first source for providing a significant portion of the aluminum content for a coating precursor and a separate nickel alloy source for providing substantially all the nickel and additional alloying elements for the coating precursor. Cathodic arc (ion plasma) deposition techniques may be utilized to provide the coating precursor on a metallic substrate. The coating precursor may be provided in discrete layers, or from a co-deposition process. Subsequent processing or heat treatment forms the nickel aluminide based coating from the coating precursor.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: January 21, 2014
    Assignee: General Electric Company
    Inventors: Brian Thomas Hazel, Don Mark Lipkin, Michael Howard Rucker, Rudolfo Viguie
  • Publication number: 20140017512
    Abstract: A button or fastener member is provided wherein aluminum or an aluminum alloy is used as raw material, a first copper plating layer is formed directly over the entire surface of said raw material, and a second copper plating layer is formed directly on top of the first copper plating layer, with the aforementioned second copper plating layer being thicker than the aforementioned first copper plating layer.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 16, 2014
    Applicant: YKK CORPORATION OF AMERICA
    Inventors: Masayuki Iimori, Michael David Hopper
  • Publication number: 20130345062
    Abstract: A superconducting wire (1; 31), contains NbTi superconducting material and Cu, with one enclosing tube (2), in particular, a copper enclosing tube. At least three Al blocks (3a-3c) are disposed peripherally distributed in the enclosing tube (2) and at least three sections containing NbTi (4a-4c) are also disposed peripherally distributed in the enclosing tube (2) and separate the Al blocks (3a-3c) from one another in the peripheral direction. The Al blocks (3a-3c) each make large-surface contact with their adjacent sections containing NbTi (4a-4c). A stabilized NbTi superconducting wire is thereby provided, which has low weight and which can be manufactured at low cost. The superconducting wire has a reduced risk of crack formation, in particular, during wire drawing.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 26, 2013
    Inventor: Andreas Szulczyk
  • Publication number: 20130330567
    Abstract: The invention relates to reactive metallic systems and to methods of producing reactive metallic systems. Such systems consist of metallic particles in the form of powders or pastes, or of metallic multilayer structures. To prevent the reaction product of the described self-propagating reactions from being a brittle material, it is suggested in the invention that the reactive metallic system be designed as a multilayer structure made up of thin layers of ruthenium and aluminium deposited sequentially one upon the other, or as a powder consisting of ruthenium and aluminium particles. The object is established according to the invention by selecting Ru/Al as the basic system. The strongest exothermic reaction and thus the greatest amount of liberated heat are to be expected from stoichiometrically constructed reactive systems. The heat of formation is highest here.
    Type: Application
    Filed: December 1, 2011
    Publication date: December 12, 2013
    Applicant: UNIVERSITAET DES SAARLANDES
    Inventors: Karsten Woll, Frank Muecklich
  • Patent number: 8545992
    Abstract: An aluminum article includes a substrate made of aluminum or aluminum alloy, a Ni—Cu—P alloy layer formed on the substrate, and a Ni—P alloy layer directly formed on the Ni—Cu—P alloy layer. The Ni—Cu—P alloy layer consists substantially of nickel, copper, and phosphorus and has a crystalline state. The Ni—P alloy layer consists substantially of nickel and phosphorus and has an amorphous structure. A method for making the aluminum article is also provided.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: October 1, 2013
    Assignees: Shenzhen Futaihong Precision Industry Co., Ltd., FIH (Hong Kong) Limited
    Inventor: Da-Hua Cao
  • Publication number: 20130157072
    Abstract: There are provided a sliding member that is enhanced in adhesiveness between the surface of a base member formed of aluminum or aluminum alloy and silver coating with a simple construction, and a method of manufacturing the sliding member. In a piston 1 having a sliding face 22 which slides in a cylinder bore 3, a silver coating layer 21 constituting the sliding face 22 is provided on the outer peripheral surface 11 of a main body 10 formed of aluminum alloy, and the silver coating layer 21 is formed by coating slurry having silver particles 23 dispersed in terpineol on the outer peripheral surface 11 of the main body 10 and heating the coated slurry and the main body 10 to remove terpineol in the slurry and fuse the silver particles 23 with one another.
    Type: Application
    Filed: July 26, 2011
    Publication date: June 20, 2013
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Ryotaro Takada, Yoshitaka Tsujii, Mayumi Saruyama
  • Publication number: 20130149550
    Abstract: An aluminum article includes a substrate made of aluminum or aluminum alloy, a Ni—Cu—P alloy layer formed on the substrate, and a Ni—P alloy layer directly formed on the Ni—Cu—P alloy layer. The Ni—Cu—P alloy layer consists substantially of nickel, copper, and phosphorus and has a crystalline state. The Ni—P alloy layer consists substantially of nickel and phosphorus and has an amorphous structure. A method for making the aluminum article is also provided.
    Type: Application
    Filed: May 18, 2012
    Publication date: June 13, 2013
    Applicants: FIH (HONG KONG) LIMITED, SHENZHEN FUTAIHONG PRECISION INDUSTRY CO., LTD.
    Inventor: DA-HUA CAO
  • Publication number: 20130122324
    Abstract: A surface treatment method for aluminum or aluminum alloy includes the following steps: An aluminum or aluminum alloy substrate is provided. A metallic nickel layer is formed on the aluminum or aluminum alloy substrate by replacement reaction using a water solution. The water solution substantially comprises nickel sulfate, sodium citrate, potassium sodium tartrate, and sodium hydroxide. An electroless nickel layer is then formed on the metallic nickel layer by electroless nickel plating. An article manufactured by the method is also provided.
    Type: Application
    Filed: June 19, 2012
    Publication date: May 16, 2013
    Applicants: FIH (HONG KONG) LIMITED, SHENZHEN FUTAIHONG PRECISION INDUSTRY CO., LTD.
    Inventor: DA-HUA CAO
  • Publication number: 20130115072
    Abstract: In an exemplary embodiment, a high temperature oxidation and hot corrosion resistant MCrAlX alloy is disclosed, wherein M comprises cobalt and X comprises, by weight of the alloy, from about 0.001 percent to less than 0.19 percent yttrium. In these alloys, X may also optionally include silicon, including, by weight of the alloy, up to about 1.5 percent. In another exemplary embodiment, a coated article is disclosed. The coated article includes a substrate having a surface. The article also includes a bond coat disposed on the surface. The bond coat comprises a high temperature oxidation and hot corrosion resistant MCrAlX alloy, wherein M comprises cobalt and X comprises, by weight of the alloy, from about 0.001 percent to less than 0.19 percent yttrium.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 9, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kivilcim Onal, David Vincent Bucci, Canan Uslu Hardwicke, David Austin Wark
  • Publication number: 20130115478
    Abstract: Free standing articles or articles at least partially coated with substantially porosity free, fine-grained and/or amorphous Co-bearing metallic materials optionally containing solid particulates dispersed therein, are disclosed. The electrodeposited metallic layers and/or patches comprising Co provide, enhance or restore strength, wear and/or lubricity of substrates without reducing the fatigue performance compared to either uncoated or equivalent thickness chromium coated substrate. The fine-grained and/or amorphous metallic coatings comprising Co are particularly suited for articles exposed to thermal cycling, fatigue and other stresses and/or in applications requiring anti-microbial properties.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 9, 2013
    Applicant: INTEGRAN TECHNOLOGIES, INC.
    Inventor: INTEGRAN TECHNOLOGIES, INC.
  • Patent number: 8422197
    Abstract: The instant article of manufacture is made by applying optical energy to one or more layers of nanoparticulate materials under predetermined conditions to produce a nanostructure. The nanostructure has layers of optically fused nanoparticles including a predetermined pore density, a predetermined pore size, or both. The predetermined conditions for applying the optical energy may include a predetermined voltage, a predetermined duration, a predetermined power density, or combinations thereof.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: April 16, 2013
    Assignee: Applied Nanotech Holdings, Inc.
    Inventors: Zvi Yaniv, Nan Jiang, James P. Novak, Richard L. Fink
  • Patent number: 8409723
    Abstract: A process for joining a brass part and a silicon carbide ceramics part, comprising steps of: providing parts comprising a brass part, a silicon carbide ceramics part, an aluminum foil and a nickel foil; bringing surfaces of the silicon carbide ceramics part, the aluminum foil, the nickel foil and the brass part into contact in turn; applying a joining pressure between about 10 MPa and 40 MPa to the parts; heating the parts at a rate below 50° C./min when a temperature of the parts is below about 300° C.; when the temperature of the parts is above about 300° C., heating the parts at a rate of about 80° C./min˜200° C./min until to a joining temperature of about 550° C. to about 650° C., and maintaining the joining temperature between about 15 minutes and 40 minutes.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: April 2, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Wen-Feng Hu
  • Publication number: 20130071686
    Abstract: An aluminum copper clad material has excellent bonding strength and includes an aluminum layer and a copper layer that are bonded without a nickel layer interposed therebetween. The aluminum layer and the copper layer that are diffusion-bonded via an Al—Cu intermetallic compound layer. The copper layer satisfies Dcs?0.5×Dcc, where Dcc represents the average crystal grain size of crystal grains in a central portion in the thickness direction of the copper layer, and Dcs represents the average crystal grain size of an interface adjacent portion C2 in the copper layer that is about 0.5 ?m apart from the interface between the copper layer and the intermetallic compound layer. The intermetallic compound layer has an average thickness of about 0.5 ?m to about 10 ?m.
    Type: Application
    Filed: June 2, 2011
    Publication date: March 21, 2013
    Inventors: Yoshimitsu Oda, Masaaki Ishio, Akio Hashimoto, Kenji Ikeuchi
  • Patent number: 8361634
    Abstract: A process for joining a bronze part and a silicon carbide ceramic part comprising: providing a bronze part, a SiC ceramic part, a Al foil and a Ni foil; placing the SiC ceramic part, the Al foil, the Ni foil, and the bronze part into a mold, the Al foil and the Ni foil located between the SiC ceramic part and the bronze part, the Al foil abutting against the SiC ceramic part, the Ni foil abutting against the bronze part and the Al foil; placing the mold into a chamber of an hot press sintering device, heating the chamber and pressing the bronze part, the SiC ceramic part, the Al foil, and the Ni foil at least until the bronze part, the SiC ceramic part, the Al foil and the Ni foil form a integral composite article.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: January 29, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Wen-Feng Hu
  • Patent number: 8277952
    Abstract: A sliding member for a compressor includes a base metal, a first layer and a second layer. The base metal is made of an aluminum-based metal. The first layer is formed on or over the base metal and made of a nickel-based plating layer containing at least one material of nitrogen (N), silicon (Si), titanium (Ti), chromium (Cr) and aluminum (Al) as an additive. The second layer is formed on the surface of the first layer and made of a diamond-like carbon layer containing the same additive as the additive contained in the first layer.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: October 2, 2012
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Takahiro Sugioka, Takayuki Kato, Atsushi Saito, Shino Okubo, Hiroaki Sato, Taichi Nakamizo
  • Patent number: 8273466
    Abstract: A non-cadmium multi-layered composite coating is disclosed. Such coating achieves desirable lubricity, retains electrical conductivity, meets high performance industry standards for corrosion resistance, and avoids certain environmental and health hazards. Further disclosed are methods of applying such coating on various substrates using a combination of electrolytic and electro-less plating techniques. Such coating may be advantageously applied in machining and electrical interconnects, and are particularly useful in the defense and consumer electronics and appliances industries.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: September 25, 2012
    Assignee: CSL, Inc.
    Inventors: Naishadh K. Saraiya, Mahesh Naik
  • Publication number: 20120202090
    Abstract: An aluminum bonding alloy is an Ni—Mg alloy for bonding aluminum and a non-aluminum metal selected from steel, copper, nickel or titanium. The Ni—Mg alloy consists essentially of 0.08-0.90 mass % Mg, and the balance of Ni and inevitable impurities. A clad material includes a non-aluminum metal layer made of the non-aluminum metal and a bonding alloy layer made of the aluminum bonding alloy. The non-aluminum metal layer and the bonding alloy layer are bonded together by pressure welding and diffusion bonding.
    Type: Application
    Filed: October 25, 2010
    Publication date: August 9, 2012
    Applicant: NEOMAX MATERIALS CO., LTD.
    Inventors: Shinji Yamamoto, Masaaki Ishio
  • Publication number: 20120164480
    Abstract: A coated article includes a substrate and an anti-corrosion layer formed on the substrate. The substrate is made of aluminum or aluminum alloy. The anti-corrosion layer is an aluminum-copper alloy layer implanted with manganese ions. The coated article has good corrosion resistance.
    Type: Application
    Filed: August 19, 2011
    Publication date: June 28, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, XIAO-QIANG CHEN
  • Publication number: 20120141826
    Abstract: A coated article includes a substrate, an anti-corrosion layer formed on the substrate, and a decorative layer formed on the anti-corrosion layer. The substrate is made of aluminum or aluminum alloy. The anti-corrosion layer is an aluminum-copper alloy layer. The coated article has improved corrosion resistance.
    Type: Application
    Filed: August 19, 2011
    Publication date: June 7, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, XIAO-QIANG CHEN
  • Patent number: 8182931
    Abstract: A coating process for fatigue critical components is provided. The coating process comprises the steps of providing a substrate having a first modulus of elasticity, depositing a layer of a material having a second modulus of elasticity less than the first modulus of elasticity onto the substrate, and depositing a coating over the material layer.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: May 22, 2012
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Aaron T. Nardi
  • Publication number: 20120121930
    Abstract: A composite material intended for components used in corrosive environments, wherein said material comprises a corrosion-resistant part and a load-bearing part, wherein said parts are disposed adjacent one another, wherein the corrosion-resistant part is a copper-aluminium alloy (Cu/Al) and wherein the load-bearing part is comprised of an iron-based (Fe), a nickel-based (Ni) or a cobalt-based (Co) alloy. The invention is characterized in that the diffusion barrier is disposed between the corrosion-resistant part and the load-bearing part, and in that the diffusion barrier contains one of the substances chromium (Cr) or iron (Fe) or iron (Fe) that contains one of the alloying substances chromium (Cr) or carbon (C).
    Type: Application
    Filed: August 16, 2006
    Publication date: May 17, 2012
    Inventors: Kenneth Göransson, Mats Lundberg
  • Patent number: 8173269
    Abstract: In an alloy coating film having a diffusion barrier layer and an aluminum reservoir layer on a substrate, the diffusion barrier layer is composed of a single phase that is a Re—Cr—Ni—Al system ? phase containing Al by less than 1 atomic %, or composed of a first phase which is the Re—Cr—Ni—Al system ? phase and one or more second phases selected from a ? phase, ?? phase and ? phase.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: May 8, 2012
    Assignee: DBC System Co., Ltd.
    Inventor: Toshio Narita
  • Publication number: 20120088121
    Abstract: A turbine component having a protective bilayer coating thereon comprising: a superalloy substrate; and a bilayer protective coating applied to the substrate wherein the bilayer protective coating comprises a first inner layer of platinum and aluminum; and a second outer oxidation-resistant layer applied over the first inner layer, the second outer layer comprising an MCrAlX alloy where M is selected from Fe, Ni and Co, and where X is yttrium or another rare earth element. A method of improving oxidation resistance of a Ni or Co-based superalloy turbine component comprising: depositing a bilayer protective coating on a turbine component by depositing a first inner platinum-aluminum layer on a surface of the turbine component; and depositing a second outer layer comprising an MCrAlX alloy over the first inner layer, wherein M is a metal selected from Fe, Ni and Co, and X is yttrium or another rare earth element.
    Type: Application
    Filed: September 12, 2011
    Publication date: April 12, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David V. BUCCI, Kathleen B. MOREY
  • Patent number: 8153272
    Abstract: A process for joining a brass part and a silicon carbide ceramic part comprising: providing a brass part, a SiC ceramic part, a Al foil and a Ni foil; placing the SiC ceramic part, the Al foil, the Ni foil, and the brass part into a mold, the Al foil and the Ni foil located between the SiC ceramic part and the brass part, the Al foil abutting against the SiC ceramic part, the Ni foil abutting against the brass part and the Al foil; placing the mold into a chamber of an hot press sintering device, heating the chamber and pressing the brass part, the SiC ceramic part, the Al foil, and the Ni foil at least until the brass part, the SiC ceramic part, the Al foil and the Ni foil form a integral composite article.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: April 10, 2012
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Wen-Feng Hu
  • Publication number: 20120070686
    Abstract: A method of welding including forming a filler material of a first oxide dispersoid metal, the first oxide dispersoid material having first strengthening particles that compensate for decreases in weld strength of friction stir welded oxide dispersoid metals; positioning the filler material between a first metal structure and a second metal structure each being comprised of at least a second oxide dispersoid metal; and friction welding the filler material, the first metal structure and the second metal structure to provide a weld.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 22, 2012
    Applicant: UT-BATTELLE, LLC
    Inventor: Weiju Ren