Manganese Component Is Active Material Patents (Class 429/224)
  • Publication number: 20150010820
    Abstract: According to one embodiment, there is provided an active material including monoclinic niobium titanium composite oxide particles and a carbon material layer. The monoclinic niobium titanium composite oxide particles can absorb and release Li ions or Na ions and satisfy Formula (1) below. The carbon material layer covers at least a part of surfaces of the niobium titanium composite oxide particles and satisfies Formula (2) below: 0.5?(?/?)?2??(1) 0?(?/?)?0.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 8, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Norio Takami, Yasuhiro Harada, Kazuki Ise, Yorikazu Yoshida
  • Publication number: 20150010822
    Abstract: The present invention relates to a lithium-ion battery comprising a positive electrode containing, as a principal component, a lithium oxide having a layered rock-salt structure and represented by chemical formula: LixM1yM2zO2-d, wherein 1.16?x?1.32, 0.33?y?0.63, 0.06?z?0.50, M1 represents a metal ion selected from Mn, Ti and Zr, or a mixture thereof, and M2 represents a metal ion selected from Fe, Co, Ni and Mn, or a mixture thereof; and a negative electrode containing, as a principal component, a material capable of intercalating/deintercalating lithium ions, wherein an oxygen deficiency (d) of the positive electrode is not less than 0.05 and not more than 0.20.
    Type: Application
    Filed: February 1, 2013
    Publication date: January 8, 2015
    Inventors: Kentaro Nakahara, Sadanori Hattori
  • Publication number: 20150010818
    Abstract: A rechargeable lithium battery that includes: a negative electrode including a negative active material, and a positive electrode including a positive active material and activated carbon. When the positive active material includes a lithium nickel-based oxide, a lithium cobalt-based oxide, a lithium manganese-based oxide, a lithium titanium-based oxide, a lithium nickel manganese-based oxide, a lithium nickel cobalt manganese-based oxide, a lithium nickel cobalt aluminum-based oxide, or a combination thereof, the average particle diameter of the activated carbon is greater than about 100% and less than about 1000% of the average particle diameter of the positive active material. When the positive active material includes a lithium iron phosphate-based compound, the average particle diameter of the activated carbon is greater than or equal to about 1000% and less than or equal to about 3000% of the average particle diameter of the positive active material.
    Type: Application
    Filed: November 27, 2013
    Publication date: January 8, 2015
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Jung-Woo An, Sumihito Ishida, Joon-Kil Son
  • Publication number: 20150010832
    Abstract: The invention relates to Chevrel-phase materials and methods of preparing these materials utilizing a precursor approach. The Chevrel-phase materials are useful in assembling electrodes, e.g., cathodes, for use in electrochemical cells, such as rechargeable batteries. The Chevrel-phase materials have a general formula of Mo6Z8 and the precursors have a general formula of MxMo6Z8. The cathode containing the Chevrel-phase material in accordance with the invention can be combined with a magnesium-containing anode and an electrolyte.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 8, 2015
    Applicant: UNIVERSITY OF PITTSBURGH - OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION
    Inventors: Prashant N. Kumta, Partha Saha, Moni Kanchan Datta, Ayyakkannu Manivannan
  • Publication number: 20150004472
    Abstract: Lithium-rich compounds that are precursors for positive electrodes for lithium cells and batteries comprise a Li2O-containing compound as one component, and a second charged or partially-charged component, selected preferably from a metal oxide, a lithium-metal-oxide, a metal phosphate or metal sulfate compound. Li2O is extracted from the electrode precursors to activate the electrode either by electrochemical methods or by chemical methods. Methods for synthesizing and activating the electrodes, electrochemical cells, and batteries containing such electrodes also are described.
    Type: Application
    Filed: August 8, 2014
    Publication date: January 1, 2015
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Michael M. THACKERAY, Christopher S. JOHNSON, Sun-Ho KANG
  • Publication number: 20150004493
    Abstract: Disclosed are an electrode assembly including a cathode, an anode, and a separator disposed between the cathode and the anode Wherein the anode includes lithium titanium oxide (LTO) as an anode active material and the separator is a non-woven separator, and a lithium secondary battery including the same.
    Type: Application
    Filed: September 18, 2014
    Publication date: January 1, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Daehong Kim, Youn Kyoung Lee, Soo Hyun Lim, Tae Jin Park
  • Publication number: 20150003033
    Abstract: An energy storage device includes an electrode made from an active material in which a plurality of channels have been etched. The channels are coated with an electrically functional substance selected from a conductor and an electrolyte.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Inventors: Yang Liu, Priyanka Pande, Bum Ki Moon, Michael C. Graf, Donald S. Gardner, Nicolas Cirigliano, Shanthi Murali, Zhaohui Chen
  • Publication number: 20150004487
    Abstract: Disclosed is an electrode for secondary batteries including an electrode mixture including an electrode active material, binder and conductive material coated on a current collector wherein a conductive material is coated to a thickness of 1 to 80 ?m on the current collector and the electrode mixture is coated on a coating layer of the conductive material so as to improve electrical conductivity.
    Type: Application
    Filed: September 18, 2014
    Publication date: January 1, 2015
    Applicant: LG Chem, Ltd.
    Inventors: Min Hee Lee, Tae Jin Park, Daehong Kim
  • Patent number: 8920969
    Abstract: An alkaline electrochemical cell having an anode including electrochemically active anode material, a cathode including electrochemically active cathode material, a separator between the anode and the cathode, and an electrolyte. The electrolyte includes a hydroxide dissolved in water. The separator in combination with the electrolyte has an initial area-specific resistance between about 100 mOhm-cm2 and about 220 mOhm-cm2.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: December 30, 2014
    Assignee: The Gillette Company
    Inventors: Nikolai Nikolaevich Issaev, James Joseph Cervera, Michael Pozin
  • Patent number: 8920974
    Abstract: Disclosed is a cathode material comprising a mixture of an oxide powder (a) defined herein and an oxide powder (b) selected from the group consisting of an oxide powder (b1) defined herein and an oxide powder (b2) defined herein and a combination thereof wherein a mix ratio of the two oxide powders (oxide powder (a):oxide powder (b)) is 50:50 to 90:10. The cathode material uses a combination of an oxide powder (a) and 50% or less of an oxide powder (b) which can exert high capacity, high cycle stability, superior storage stability and high-temperature stability, thus advantageously exhibiting high energy density and realizing high capacity batteries.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: December 30, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Suengeun Choi, Eunyoung Goh, Hyang Mok Lee, Heegyoung Kang, Sangbaek Ryu, Kiwoong Kim
  • Patent number: 8920973
    Abstract: A positive electrode active material for nonaqueous electrolyte secondary batteries includes a coating layer containing at least nickel (Ni) and/or manganese (Mn) on the surface of a complex oxide particle containing lithium (Li) and cobalt (Co), wherein a binding energy value obtained by analysis of a surface state by an ESCA surface analysis on the surface of the coating layer is 642.0 eV or more and not more than 642.5 eV in an Mn2p3 peak, and a peak interval of Co—Mn is 137.6 eV or more and not more than 138.0 eV.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: December 30, 2014
    Assignee: Sony Corporation
    Inventor: Yuki Takei
  • Patent number: 8920976
    Abstract: A nonaqueous electrolyte secondary battery disclosed in the present application includes: a positive electrode capable of absorbing and releasing lithium, containing a positive electrode active material composed of a lithium-containing transition metal oxide having a layered crystalline structure; and a negative electrode capable of absorbing and releasing lithium, containing a negative electrode active material composed of a lithium-containing transition metal oxide obtained by substituting some of Ti element of a lithium-containing titanium oxide having a spinel crystalline structure with one or more element different from Ti, wherein a retention of the negative electrode is set to be greater than a retention of the positive electrode, and an irreversible capacity rate of the negative electrode is set to be greater than an irreversible capacity rate of the positive electrode, whereby a discharge ends by negative electrode limitation.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: December 30, 2014
    Assignee: Panasonic Corporation
    Inventors: Natsumi Goto, Takashi Takeuchi, Masaki Hasegawa
  • Publication number: 20140377656
    Abstract: Disclosed is a lithium secondary battery including an electrode assembly including a cathode, an anode, and a separator disposed between the cathode and the anode and an electrolyte, wherein the anode includes a lithium titanium oxide (LTO) as an anode active material, and the lithium secondary battery has a charge cut-off voltage of 3.3 to 4 V and, when the charge cut-off voltage is reached, the anode has a potential of 0.75 to 1.545 V within a range within which a potential of the cathode does not exceed 4.95 V.
    Type: Application
    Filed: September 5, 2014
    Publication date: December 25, 2014
    Inventors: Soo Hyun LIM, Jae Hyun LEE, Jihyun KIM
  • Publication number: 20140377657
    Abstract: Disclosed is a lithium secondary battery including: an electrode assembly including a cathode including a cathode mixture layer formed on a cathode current collector, an anode including an anode mixture layer formed on an anode current collector, and a separator disposed between the cathode and the anode; and an electrolyte, wherein the anode includes lithium titanium oxide (LTO) as an anode active material, and four planes of the cathode mixture layer have the same or greater length than four planes of the anode mixture layer and thus the cathode mixture layer has the same or greater area than the anode mixture layer.
    Type: Application
    Filed: September 10, 2014
    Publication date: December 25, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Soo Hyun Lim, Jae Hyun Lee, Jihyun Kim
  • Publication number: 20140377655
    Abstract: A composite cathode active material, a method of preparing the composite cathode active material, a cathode including the composite cathode active material, and a lithium battery including the cathode. The composite cathode active material includes a lithium intercalatable material; and a garnet oxide, wherein an amount of the garnet oxide is about 1.9 wt % or less, based on a total weight of the composite cathode active material.
    Type: Application
    Filed: April 25, 2014
    Publication date: December 25, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jun-young MUN, Jae-myung LEE, Gue-sung KIM, Yoon-sok KANG, Myung-hoon KIM, Jun-ho PARK, Jin-hwan PARK, Jae-gu YOON, Byung-jin CHOI
  • Publication number: 20140377659
    Abstract: Disclosed herein are cathode formulations comprising a lithium ion-based electroactive material having a D50 ranging from 1 ?m to 6 ?m; and carbon black having BET surface area ranging from 130 to 700 m2/g and an OAN ranging from 150 mL/100 g to 300 mL/100 g. Also disclosed are cathode formulations comprising a first lithium ion-based electroactive material having a particle size distribution of 1 ?m?D50?5 ?m, and a second lithium ion-based electroactive material having a particle size distribution of 5 ?m<D50?15 ?m. Cathodes comprising these active materials can exhibit a maximum pulse power in W/kg and W/L of the mixture higher than maximum pulse power of the first or second electroactive material individually, or an energy density in Wh/kg and Wh/L of the mixture higher than energy density of the first or second electroactive material individually. The cathode formulations can further comprise carbon black having BET surface area ranging from 130 to 700 m2/g.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 25, 2014
    Inventors: Miodrag Oljaca, Berislav Blizanac, Aurelien DuPasquier, Ryan C. Wall, Arek Suszko, Kenneth Koehlert
  • Publication number: 20140377658
    Abstract: Disclosed is a method of manufacturing an electrode for a secondary battery including an electrode mixture including an electrode active material, binder and conductive material coated on a current collector. Provided are a method including surface-treating the current collector such that an aluminum oxide (Al2O3) layer of 40 nm or less is formed on the current collector so as to enhance adhesion between the electrode mixture and the current collector, and an electrode for a secondary battery manufactured using the same.
    Type: Application
    Filed: September 11, 2014
    Publication date: December 25, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Daehong Kim, Jae Hyun Lee, Tae Jin Park
  • Patent number: 8916294
    Abstract: Lithium rich metal oxyfluorides are described with high specific capacity and, good cycling properties. The materials have particularly good high rate capabilities. The fluorine dopant can be introduced in a low temperature process to yield the materials with desirable cycling properties. In some embodiments, the positive electrode active materials have a composition represented approximately by the formula Li1+xNi?Mn?Co?A?O2?zFz where: x is from about 0.02 to about 0.19, ? is from about 0.1 to about 0.4, ? is from about 0.35 to about 0.869, ? is from about 0.01 to about 0.2, ? is from 0.0 to about 0.1 and z is from about 0.01 to about 0.2, where A is Mg, Zn, Al, Ga, B, Zr, Ti, Ca, Ce, Y, Nb or combinations thereof.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: December 23, 2014
    Assignee: Envia Systems, Inc.
    Inventors: Sujeet Kumar, Herman Lopez, Subramanian Venkatachalam, Deepak Karthikeyan
  • Patent number: 8916295
    Abstract: The positive electrode active material includes a compound represented by the following composition formula: [Li1.5][Li0.5(1-x)Mn1-xM1.5x]O3 (wherein x satisfies 0.1?x?0.5, and M is represented by Ni?Co?Mn? in which ?, ? and ? satisfy 0<??0.5, 0???0.33 and 0<??0.5, respectively), wherein a half width of the peak of a (001) crystal plane of the compound measured by X-ray diffraction is in a range from 0.14 to 0.33 inclusive, and an average primary particle diameter of the compound is in a range from 0.03 ?m to 0.4 ?m inclusive.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: December 23, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Atsushi Ito, Kenzo Oshihara, Yasuhiko Ohsawa
  • Patent number: 8916296
    Abstract: The present application is directed to mesoporous carbon materials comprising bi-functional catalysts. The mesoporous carbon materials find utility in any number of electrical devices, for example, in lithium-air batteries. Methods for making the disclosed carbon materials, and devices comprising the same, are also disclosed.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: December 23, 2014
    Assignee: EnerG2 Technologies, Inc.
    Inventors: Aaron M. Feaver, Henry R. Costantino, Richard D. Varjian
  • Publication number: 20140370360
    Abstract: A secondary battery includes a first electrode, a second electrode, an ion transmission member in contact with the first electrode and the second electrode, and a hole transmission member in contact with the first electrode and the second electrode. Suitably, the first electrode contains a composite oxide. The composite oxide contains alkali metal or alkali earth metal. The composite oxide contains a p-type composite oxide as a p-type semiconductor.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 18, 2014
    Inventors: Si MENGQUN, Zhou YING
  • Publication number: 20140370386
    Abstract: Disclosed is a Si-based alloy anode material for lithium ion secondary batteries, including an alloy phase with a Si principal phase including Si and a compound phase including two or more elements, which includes a first additional element A selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb and Mg and a low-melting second additional element B selected from S, Se, Te, Sn, In, Ga, Pb, Bi, Zn, Al. This compound phase includes (i) a first compound phase including Si and the first additional element A; a second compound phase including the first additional element A and the second additional element B; and one or both of a third compound phase including two or more of the second additional elements B and a single phase of the second additional element B.
    Type: Application
    Filed: January 30, 2013
    Publication date: December 18, 2014
    Inventors: Tomoki Hirono, Tetsuro Kariya, Toshiyuki Sawada
  • Publication number: 20140370349
    Abstract: The present disclosure provides a sheet-form electrode for a secondary battery, comprising a current collector; an electrode active material layer formed on one surface of the current collector; and a first porous supporting layer formed on the electrode active material layer. The sheet-form electrode for a secondary battery according to the present disclosure has supporting layers on at least one surface thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.
    Type: Application
    Filed: August 29, 2014
    Publication date: December 18, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Yo-Han Kwon, Hye-Ran Jung, Eun-Kyung Kim, Je-Young Kim, Hyo-Mi Kim
  • Publication number: 20140370389
    Abstract: A positive electrode active material includes: center cores containing a composite oxide containing alkali metal or alkali earth metal; and eutectic layers containing a eutectic substance composed of at least two types of composite oxides containing the alkali metal or the alkali earth metal and configured to cover the center cores. Preferably, the eutectic layers have a thickness of 4 nm or larger and 800 nm or smaller. The composite oxides forming the eutectic substance include the composite oxide of the center cores.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 18, 2014
    Applicant: GREENFUL NEW ENERGY CO., LTD.
    Inventors: Si MENGQUN, Zhou YING
  • Patent number: 8911902
    Abstract: A nickel (Ni)-based positive electrode active material, a method of preparing the same, and a lithium battery using the Ni-based positive electrode active material.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: December 16, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Do-Hyung Park, Seon-Young Kwon, Min-Han Kim, Ji-Hyun Kim, Chang-Hyuk Kim, Jeong-Seop Lee, Yoon-Chang Kim
  • Patent number: 8911901
    Abstract: The object of the present invention is to inhibit occurrence of structural collapse caused by volumetric change of primary particles of negative electrode active material and to improve adhesion between negative electrode active material and electrically conductive agent and between negative electrode mix layer and collector, whereby improvement of life is attained in negative electrode for non-aqueous secondary battery and non-aqueous secondary battery. In the negative electrode for non-aqueous secondary battery of the present invention, the negative electrode active material comprises silicon and/or tin, and at least one element selected from elements which do not react with lithium and has pores in both of the inner core portion and the outer peripheral portion of primary particles and a material which cures by a heat treatment is used as a binder.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: December 16, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Nakabayashi, Shin Takahashi
  • Patent number: 8911903
    Abstract: A cathode active material is provided. The cathode active material includes: a composite oxide particle including at least lithium and cobalt; a coating layer which is provided in at least a part of the composite oxide particle and includes an oxide including lithium and a coating element of at least one of nickel and manganese; and a surface layer which is provided in at least a part of the coating layer and includes at least one element selected from the group consisting of silicon, tin, phosphorus, magnesium, boron, zinc, tungsten, aluminum, titanium, and zirconium.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: December 16, 2014
    Assignee: Sony Corporation
    Inventors: Haruo Watanabe, Tomoyo Ooyama, Masanori Soma, Kenji Ogisu
  • Publication number: 20140363736
    Abstract: A lithium secondary battery of the present invention may simultaneously improve high output and high capacity characteristics by including a first active material layer having high output characteristics and a second active material layer having high capacity characteristics respectively on a cathode collector and an anode collector.
    Type: Application
    Filed: August 26, 2014
    Publication date: December 11, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Ji Sun Kim, Min Ho Youn, Dong Seok Shin, Hyo Seok Park
  • Patent number: 8906557
    Abstract: Anode active materials and methods of preparing the same are provided. One anode active material includes a carbonaceous material capable of improving battery cycle characteristics. The carbonaceous material bonds to and coats metal active material particles and fibrous metallic particles to suppress volumetric changes.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: December 9, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Gue-sung Kim, Yong-nam Ham, Han-su Kim, Dong-min Im
  • Patent number: 8906553
    Abstract: A cathode electrode material for use in rechargeable Li-ion batteries, based on the integration of two Li-based materials of NASICON- and Spinel-type structures, is described in the present invention. The structure and composition of the cathode can be described by a core material and a surface coating surrounding the core material, wherein the core of the cathode particle is of the formula LiMn2-xNixO4?? (0.5?x?0 & 0???1) and having a spinel crystal structure, the surface coating is of the formula Li1+xMxTi2-x(PO4)3 (M: is a trivalent cation, 0.5?x?0) having a NASICON-type crystal structure.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: December 9, 2014
    Assignee: NEI Corporation
    Inventors: Nader Marandian Hagh, Farid Badway, Ganesh Skandan
  • Publication number: 20140356720
    Abstract: A substituted lithium-manganese metal phosphate of formula LiFexMn1-x-yMyPO4 in which M is a bivalent metal from the group Sn, Pb, Zn, Ca, Sr, Ba, Co, Ti and Cd and wherein: x<1, y<0.3 and x+y<1, a process for producing it as well as its use as cathode material in a secondary lithium-ion battery.
    Type: Application
    Filed: January 28, 2011
    Publication date: December 4, 2014
    Applicant: SUED-CHEMIE IP GMBH & CO. KG
    Inventors: Gerhard Nuspl, Nicholas Tran, Jasmin Dollinger, Christian Vogler
  • Publication number: 20140356695
    Abstract: There is provided a battery including a positive electrode, a negative electrode, a separator at least including a porous film, and an electrolyte. The positive electrode includes a positive electrode current collector having a pair of surfaces, and a positive electrode active material layer provided on each of the surfaces of the positive electrode current collector. The positive electrode active material layer contains a positive electrode active material. The positive electrode active material layer has an area density S [mg/cm2] more than or equal to 30 mg/cm2. The porous film included in the separator has a porosity ? [%] and an air permeability t [sec/100 cc] which satisfy a predetermined formula.
    Type: Application
    Filed: May 19, 2014
    Publication date: December 4, 2014
    Applicant: Sony Corporation
    Inventors: Tomohiro ABE, Motomi SUZUKI
  • Publication number: 20140356717
    Abstract: The present invention is directed to a lithium ion secondary battery positive electrode, a lithium ion secondary battery, a vehicle mounting the same, and an electric power storage system, which improve the electron conductivity even inside an active material formed into a secondary particle.
    Type: Application
    Filed: November 21, 2012
    Publication date: December 4, 2014
    Inventors: Akira Gunji, Shin Takahashi, Hiroaki Konishi, Xiaoliang Feng, Takuya Aoyagi
  • Publication number: 20140356714
    Abstract: The invention relates to a process for preparing a core-shell structured lithiated manganese oxide, comprising the steps of providing spinel LiMxMn2-xO4 particles, where M is one or more metal ions selected from the group consisting of Li, Mg, Cr, Al, Co, Ni, Zn, Cu, and La, and 0?x<1, as core particles, and subjecting the spinel particles to a heat-treatment with a reactive chemical reagent in the form of liquid or gas to form a shell layer on the surface of the core particles, and to the prepared core-shell structured lithiated manganese oxide, and its use as a cathode material for a lithium ion battery
    Type: Application
    Filed: January 16, 2012
    Publication date: December 4, 2014
    Applicant: ROBERT BOSCH GMBH
    Inventors: Roger Zhou, Yongyao Xia, Rongrong Jiang, Yonggang Wang, Wangjun Cui, Yuqian Dou, Long Chen
  • Publication number: 20140356713
    Abstract: The present invention relates to an anode active material with whole particle concentration gradient for a lithium secondary battery, a method for preparing same, and a lithium secondary battery having same, and more specifically, to a composite anode active material, a method for manufacturing same, and a lithium secondary battery having same, the composite anode active material having excellent lifetime characteristics and charge/discharge characteristics through the stabilization of crystal structure as the concentration of a metal comprising the anode active material shows concentration gradient in the whole particle, and having thermostability even in high temperatures.
    Type: Application
    Filed: August 19, 2014
    Publication date: December 4, 2014
    Inventors: Yang-Kook SUN, Hyung Joo NOH
  • Patent number: 8900757
    Abstract: A positive electrode capable of achieving both of high volumetric energy density and high volumetric power density and a lithium ion secondary battery using the same are provided. A lithium ion secondary battery includes a positive electrode including a current collector with a positive active material mixture layer applied on both faces thereof, the positive active material mixture layer including active material particles, conductive additive particles and a binder. The active material particles used have a value D of an average particle diameter D50 of the active material particles in the range from 1 to 10 ?m. The ratio b/a of the volume fraction b of the vacancy volume in the positive active material mixture layer to the volume fraction a of the active material particles in the positive active material mixture layer is in the range of ?0.01D+0.57?b/a??0.01D+0.97.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: December 2, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Ikuo Ozaki, Yoshimasa Koishikawa, Yoshihisa Okuda, Yuki Takei
  • Patent number: 8900752
    Abstract: A lead manganese-based cathode material is provided. Furthermore, a lithium or lithium ion rechargeable electrochemical cell is provided incorporating lead manganese-based cathode material in a positive electrode. In addition, a process for preparing a stable lead manganese-based cathode material is provided.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: December 2, 2014
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Terrill B. Atwater, Arek Suszko
  • Patent number: 8900753
    Abstract: A cathode material with excellent capacity and output characteristics and safety, and a lithium ion secondary battery using the same is provided. The invention relates to a cathode material which includes a mixture of a cathode active material having a large primary particle size with excellent capacity characteristics and represented by the composition formula: Lix1Nia1Mnb1Coc1O2, where 0.2?x1?1.2, 0.6?a1, 0.05?b1?0.3, 0.05?c1?0.3, and another cathode active material having a small primary particle size with excellent output characteristics and represented by the composition formula: Lix2Nia2Mnb2Coc2O2, where 0.2?x2?1.2, a2?0.5, 0.05?b2?0.5, 0.05?c2?0.5. The invention also relates to a lithium ion secondary battery using the cathode material.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: December 2, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Hiroaki Konishi, Toyotaka Yuasa, Mitsuru Kobayashi
  • Publication number: 20140349170
    Abstract: Disclosed are a method of manufacturing an electrode for secondary batteries that includes surface-treating a current collector so as to have a morphology wherein a surface roughness Ra of 0.001 ?m to 10 ?m is formed over the entire surface thereof to enhance adhesion between an electrode active material and the current collector and an electrode for secondary batteries that is manufactured using the method.
    Type: Application
    Filed: August 7, 2014
    Publication date: November 27, 2014
    Inventors: Daehong Kim, Jae Hyun Lee, Jihyun Kim
  • Publication number: 20140349187
    Abstract: A secondary battery capable of obtaining superior battery characteristics is provided. The secondary battery of the present technology includes a cathode, an anode including an active material, and an electrolytic solution. The active material includes a core section and covering section, the core section being capable of inserting and extracting lithium ions, and the covering section being provided in at least part of a surface of the core section and being a low-crystalline or a noncrystalline. The core section includes Si and O as constituent elements, and an atom ratio x (O/Si) of O with respect to Si satisfies O?x<0.5. The covering section includes Si and O as constituent elements, and an atom ratio y (O/Si) of O with respect to Si satisfies 0.5?y?1.8. The covering section has voids, and a carbon-containing material is provided in at least part of the voids.
    Type: Application
    Filed: December 5, 2012
    Publication date: November 27, 2014
    Inventors: Takakazu Hirose, Kenichi Kawase, Norihiro Shimoi, Shinji Tanaka
  • Patent number: 8895187
    Abstract: Provided is a non-aqueous electrolyte-based, high-power lithium secondary battery having a long service life and superior safety at both room temperature and high temperature, even after repeated high-current charging and discharging. The battery comprises a cathode active material composed of a mixture of lithium/manganese spinel oxide and lithium/nickel/cobalt/manganese composite oxide wherein the cathode active material exhibits the life characteristics that the capacity at 300 cycles is more than 70% relative to the initial capacity, in the provision of satisfying the condition (i) regarding the particle size and the condition (ii) regarding the mixing ratio.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: November 25, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Ji Heon Ryu, Min Su Kim, Jung Eun Hyun, Jaepil Lee, Eun Ju Lee, Youngjoon Shin
  • Patent number: 8895186
    Abstract: It is an objective of the present invention to provide a lithium-ion rechargeable battery anode which can control the volume change of a primary particle of a negative-electrode active material other than a carbon-based material and that can prevent cracks due to stress caused by the volume change from occurring and extending. There is provided an anode for a lithium-ion rechargeable battery including a primary particle of a negative-electrode active material, a conductive material, and a binder, the negative-electrode active material including at least one of silicon and tin, and at least one element selected from elements that do not chemically react with lithium, in which holes are present both in an inner core region in the central region of the primary particle of the negative-electrode active material and in a periphery region that covers the inner core region.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: November 25, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Nakabayashi, Shin Takahashi, Motoki Ohta, Yoshihito Yoshizawa
  • Patent number: 8895467
    Abstract: An Ag/MnyOx/C catalyst is disclosed, wherein MnyOx is one of Mn3O4 and MnO, or the mixture of Mn3O4 and MnO, or the mixture of Mn3O4 and MnO2 with the mass content of MnO2 in the mixture of Mn3O4 and MnO2 being 0.01-99.9%. The catalyst is obtained by pyrolyzing AgMnO4 at a high temperature. The preparation method comprises two steps: (1) preparing AgMnO4 crystal as the precursor; (2) preparing the Ag/MnyOx/C catalyst. The catalyst has advantages such as high oxygen reduction reaction (ORR) catalytic activity in an alkaline environment, good stability, abundant availability and low cost of raw materials, safety, non-toxicity and pollution-free, environmental friendliness, and adaptive capacity for massive production. The catalyst can be used as oxygen reduction catalyst in metal air fuel cell, alkali anion exchange membrane fuel cell and other alkaline environments.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: November 25, 2014
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Gongquan Sun, Qiwen Tang, Luhua Jiang, Suli Wang
  • Patent number: 8895191
    Abstract: According to one embodiment, a nonaqueous electrolyte battery is provided. A positive electrode contains a lithium-nickel-cobalt-manganese complex oxide represented by the formula Li1+aNi1?b?cCobMncO2. A negative electrode contains at least one selected from a lithium titanate having a spinel structure and a monoclinic ?-type titanium complex oxide. The negative electrode further contains at least one selected from an oxide which has a spinel structure and represented by the formula AFe2O4 and an oxide which has a spinel structure and represented by the formula ACo2O4. A ratio of the total mass of AFe2O4 and ACo2O4 to the total mass of the negative electrode active material is in a range from 1% by mass to 5% by mass.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: November 25, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Keigo Hoshina, Hiroki Inagaki, Norio Takami
  • Publication number: 20140342194
    Abstract: A rechargeable battery that features two or more levels of internal resistance according to various temperature ranges is disclosed.
    Type: Application
    Filed: February 25, 2014
    Publication date: November 20, 2014
    Applicant: EC Power, LLC
    Inventors: Chao-Yang WANG, Wei ZHAO
  • Publication number: 20140342229
    Abstract: Disclosed are a cathode active material for a lithium secondary battery, and a lithium secondary battery including the same. The disclosed cathode active material includes a core including a compound represented by Formula 1; and a shell including a compound represented by Formula 2, in which the core and the shell have different material compositions.
    Type: Application
    Filed: December 12, 2012
    Publication date: November 20, 2014
    Inventors: Byung-Sung Leo Kwak, Joseph G. Gordon, II, Omkaram Nalamasu, Yangkook Sun, Wongi Kim, Seugmin Oh
  • Publication number: 20140342231
    Abstract: Provided is positive electrode material for a highly safe lithium-ion secondary battery that can charge and discharge a large current while having long service life. Disclosed are composite particles comprising: particles of lithium-containing phosphate; and carbon coating comprising at least one carbon material selected from the group consisting of (i) fibrous carbon material, (ii) chain-like carbon material, and (iii) carbon material produced by linking together fibrous carbon material and chain-like carbon material, wherein each particle is coated with the carbon coating. The fibrous carbon material is preferably a carbon nanotube with an average fiber size of 5 to 200 nm. The chain-like carbon material is preferably carbon black produced by linking, like a chain, primary particles with an average particle size of 10 to 100 nm. The lithium-containing phosphate is preferably LiFePO4, LiMnPO4, LiMnXFe(1-X)PO4, LiCoPO4, or Li3V2(PO4)3.
    Type: Application
    Filed: November 14, 2012
    Publication date: November 20, 2014
    Inventors: Takashi Kawasaki, Nobuyuki Yoshino, Hiroshi Murata, Takehiko Sawai, Shinji Saito, Kazunori Urao
  • Publication number: 20140342228
    Abstract: The present invention is to provide a lithium titanate (LTO) material for a lithium ion battery. The LTO material has hierarchical micro/nano architecture, and comprises a plurality of micron-sized secondary LTO spheres, and a plurality of pores incorporated with metal formed by a metal dopant. Each of the micron-sized secondary LTO spheres comprises a plurality of nano-sized primary LTO particles. A plurality of the nano-sized primary LTO particles is encapsulated by a non-metal layer formed by a non-metal dopant. The LTO material of the present invention has high electrical conductivity for increasing the capacity at high charging/discharging rates, and energy storage capacity.
    Type: Application
    Filed: April 10, 2014
    Publication date: November 20, 2014
    Applicant: Nano and Advanced Materials Institute Limited
    Inventors: Chenmin LIU, Lifeng CAI, Shing Yan CHOI
  • Patent number: 8889297
    Abstract: The present disclosure relates to a nanocomposite cathode active material for a lithium secondary battery, a method for preparing same, and a lithium secondary battery including same. More particularly, the present disclosure relates to a nanocomposite cathode active material for a lithium secondary battery including: a core including LiMn2O4; and LiMn(PO3)3 distributed on the surface of the core. In accordance with the present disclosure, the time and cost for manufacturing a lithium secondary battery can be reduced and the manufactured lithium secondary battery has superior electrochemical properties.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: November 18, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Kyung Yoon Chung, Dieky Susanto, Won Young Chang, Byung Won Cho
  • Publication number: 20140335407
    Abstract: A method for configuring a non-lithium-intercalation electrode includes intercalating an insertion species between multiple layers of a stacked or layered electrode material. The method forms an electrode architecture with increased interlayer spacing for non-lithium metal ion migration. A laminate electrode material is constructed such that pillaring agents are intercalated between multiple layers of the stacked electrode material and installed in a battery.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 13, 2014
    Inventors: Yan YAO, Yanliang LIANG