Alkalated Cobalt (co) Chalcogenide Patents (Class 429/231.3)
  • Patent number: 8241789
    Abstract: An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: August 14, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, William Douglas Moorehead
  • Patent number: 8236449
    Abstract: A lithium ion secondary battery is provided including a positive electrode, a negative electrode, and a non-aqueous electrolyte. The positive electrode includes active material particles. The active material particles include secondary particles of a lithium composite oxide, and some of the secondary particles have a crack. At least a surface layer portion of the active material particles includes element Me of at least one selected from the group consisting of Mn, Al, Mg, Ca, Zr, B, W, Nb, Ta, In, Mo, and Sn. Element Me is distributed more in the surface layer portion compared with an inner portion of the active material particles.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: August 7, 2012
    Assignee: Panasonic Corporation
    Inventor: Kensuke Nakura
  • Publication number: 20120183858
    Abstract: A lithium cobalt oxide powder for use as an active positive electrode material in lithium-ion batteries, the lithium cobalt oxide powder having a Ti content of between 0.1 and 0.25 mol %, and the lithium cobalt oxide powder having a density PD in g/cm3 dependent on the powder particle size expressed by the D50 value in ?m, wherein PD?3.63+[0.0153*(D50?17)].
    Type: Application
    Filed: November 23, 2011
    Publication date: July 19, 2012
    Inventors: Robert ELLENWOOD, Jens Martin PAULSEN, JaeRyoung LEE
  • Patent number: 8221922
    Abstract: A non-aqueous electrolyte secondary battery including: a positive electrode that contains a transition metal oxide capable of absorbing and desorbing lithium ions; a negative electrode that is capable of absorbing and desorbing lithium ions; a porous film that is interposed between the positive electrode and the negative electrode; and a non-aqueous electrolyte, wherein at least one selected from inorganic oxide and polyamide is contained in the porous film, and 5 to 15 vol % of ethylene carbonate is contained in a non-aqueous solvent that is contained in the non-aqueous electrolyte.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: July 17, 2012
    Assignee: Panasonic Corporation
    Inventors: Masaki Deguchi, Tooru Matsui, Hiroshi Yoshizawa
  • Patent number: 8221917
    Abstract: A positive active material composition for a rechargeable battery, a positive electrode including the same, and a rechargeable battery including the same, the positive active material composition including a positive active material and a surface-modified metal oxide.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: July 17, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Dai-Hoe Lee, Takaya Saito, Hyun-Ki Jung, Min-Hee Kim
  • Publication number: 20120177998
    Abstract: Provided is a nonaqueous electrolyte battery having a high charge-discharge cycle capability in which the battery capacity is less likely to decrease even after repeated charge and discharge. The nonaqueous electrolyte battery includes a positive-electrode layer 1, a negative-electrode layer 2, a solid electrolyte layer 3 interposed between the positive-electrode layer 1 and the negative-electrode layer 2, and a boundary layer 4 between the negative-electrode layer 2 and the solid electrolyte layer 3, the boundary layer 4 maintaining the bond between the negative-electrode layer 2 and the solid electrolyte layer 3. The negative-electrode layer 2 at least contains Li. The boundary layer 4 at least contains a group 14 element in the periodic table. The boundary layer 4 has a thickness of 50 nm or less.
    Type: Application
    Filed: October 1, 2010
    Publication date: July 12, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Mitsuyasu Ogawa, Takashi Uemura, Kentaro Yoshida, Ryoko Kanda
  • Publication number: 20120171570
    Abstract: The present disclosure relates to an electrode composite material. The electrode composite material includes a number of electrode composite material particles. Each of the plurality of electrode composite material particles includes an electrode active material particle and a doped aluminum phosphate layer coated on a surface of the electrode active material particle. A material of the doped aluminum phosphate layer is a semiconducting doped aluminum phosphate.
    Type: Application
    Filed: April 29, 2011
    Publication date: July 5, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: XIAN-KUN HUANG, XIANG-MING HE, CHANG-YIN JIANG, DAN WANG, JIAN GAO, JIAN-JUN LI
  • Publication number: 20120164512
    Abstract: A lithium battery is provided. The lithium battery comprises a first plate, a second plate and a separator. The first plate is composed of a plurality of electrode material layers stacked on one another. At least one of the electrode material layers comprises a thermal activation material. The separator is disposed between the first plate and the second plate.
    Type: Application
    Filed: August 24, 2011
    Publication date: June 28, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ping-Yao Wu, Wen-Bing Chu, Chang-Rung Yang, Jen-Jeh Lee, Jing-Pin Pan, Jung-Mu Hsu, Shu-Heng Wen, Hung-Chun Wu, Chung-Liang Chang
  • Publication number: 20120164528
    Abstract: A composite anode for lithium secondary battery which has an active anode material layer formed on a conductive substrate and an interfacial film coated on the active anode material layer, wherein the active anode material layer includes carbonaceous materials, other active and inactive materials, and a binder. The anode increases degree of the anode active material utilization and the cycle life and characteristic and capacity of the battery can be improved.
    Type: Application
    Filed: February 1, 2012
    Publication date: June 28, 2012
    Applicant: ELECTROCHEMICAL MATERIALS, LLC
    Inventors: WANLI XU, JOHN C. FLAKE
  • Patent number: 8206852
    Abstract: The present invention relates to a lithium-containing metal composite oxide comprising paramagnetic and diamagnetic metals, which satisfies any one of the following conditions: (a) the ratio of intensity between a main peak of 0±10 ppm (I0ppm) and a main peak of 240±140 ppm (I240ppm), (I0ppm/I240ppm), is less than 0.117·Z wherein z is the ratio of moles of the diamagnetic metal to moles of lithium; (b) the ratio of line width between the main peak of 0±10 ppm (I0ppm) and the main peak of 240±140 ppm (I240ppm), (W240ppm/W0ppm), is less than 21.45; and (c) both the conditions (a) and (b). The peaks of the lithium-containing metal composite oxide are obtained according to the 7Li—NMR measurement conditions and means disclosed herein.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: June 26, 2012
    Assignees: LG Chem, Ltd., Hanwha Chemical Corporation
    Inventors: Sung-Kyun Chang, Eui-Yong Bang, Min-Chul Jang, Sang-Hoon Choy, Ki-Young Lee, Saebomi Park, Wan-Jae Myeong, Kyu-Ho Song, Joo-Hyeong Lee, Young-Sik Hahn, Myung-Ho Cho
  • Publication number: 20120156566
    Abstract: The invention relates to provision of a novel high performance material manufactured from particles of doped lithium cobalt oxide which are usable in the manufacture of cathodes for lithium ion rechargeable (or storage) batteries. The doping agent is selected from the group of lanthanide oxides. Other objects of the invention are a method of improving the stability and the storage capacity of rechargeable lithium ion batteries and a method of manufacturing particles of doped lithium cobalt oxide according to the invention.
    Type: Application
    Filed: July 9, 2009
    Publication date: June 21, 2012
    Applicant: REMINEX SA
    Inventors: Ismail Akalay, Intissar Benzakour, Abderahmane Kaddami, Hakim Faqir, Khalid Ouzaouit
  • Patent number: 8197968
    Abstract: A cathode contains: a lithium cobalt composite oxide expressed by LixCoaM1bM2cO2, where M1 denotes the first element; M2 indicates the second element; x, a, b, and c are set to values within ranges of 0.9?x?1.1, 0.9?a?1, 0.001?b?0.05, and 0.001?c?0.05; and a+b+c=1; a first sub-component element of at least one kind selected from a group containing Ti, Zr, and Hf, and a second sub-component element of at least one kind selected from a group containing Si, Ge, and Sn. 0.01 mol %?(content of the first sub-component element)?10 mol % as a ratio to cobalt in the lithium cobalt composite oxide. 0.01 mol %?(content of the second sub-component element)?10 mol % as a ratio to cobalt in the lithium cobalt composite oxide.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: June 12, 2012
    Assignee: Sony Corporation
    Inventors: Takahisa Ishimatsu, Kei Yonezawa, Takashi Sato, Masumi Terauchi, Yoshikatsu Yamamoto
  • Publication number: 20120141875
    Abstract: Provided is a secondary battery capable of improving charge-discharge characteristics. A positive electrode active material layer of a positive electrode has a positive electrode active material and a positive electrode conductive agent. The positive electrode active material is a high-voltage operating positive electrode material whose operating voltage is equal to or more than 4.5 V on a lithium metal basis. The positive electrode conductive agent contains an amorphous carbon material and a crystalline carbon material, and an interplanar spacing for lattice plane (002), a specific surface area, and a content in the positive electrode active material layer, thereof are so normalized as to be in predetermined ranges, respectively.
    Type: Application
    Filed: July 21, 2010
    Publication date: June 7, 2012
    Applicant: SONY CORPORATION
    Inventor: Mikio Watanabe
  • Publication number: 20120135318
    Abstract: Disclosed is a positive active material for a rechargeable lithium battery, which includes an active material capable of reversibly intercalating/deintercalating lithium and lithium polysulfide.
    Type: Application
    Filed: August 25, 2011
    Publication date: May 31, 2012
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Jae-Hyuk KIM, Sung-Hwan Moon, Matulevich Yuri, Myung-Hwan Jeong, Hee-Young Chu, Chang-Ui Jeong, Joo-Han Song, Jong-Seo Choi
  • Patent number: 8187752
    Abstract: Lithium ion secondary batteries are described that have high total energy, energy density and specific discharge capacity upon cycling at room temperature and at a moderate discharge rate. The improved batteries are based on high loading of positive electrode materials with high energy capacity. This capability is accomplished through the development of positive electrode active materials with very high specific energy capacity that can be loaded at high density into electrodes without sacrificing performance. The high loading of the positive electrode materials in the batteries are facilitated through using a polymer binder that has an average molecular weight higher than 800,000 atomic mass unit.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: May 29, 2012
    Assignee: Envia Systems, Inc.
    Inventors: James P. Buckley, Sujeet Kumar
  • Publication number: 20120129051
    Abstract: Disclosed is a positive electrode applied in lithium battery and method for manufacturing the same. First, a lithium alloy oxide layer is formed on a substrate. Subsequently, an additional high density and low energy plasma treatment is processed, such that the lithium alloy oxide layer has a top surface composed of uniform, dense, and inter-necked nano grains, and the in-side/bottom grains of the oxide layer remain unchanged. According to experiments, the positive electrode with such properties has higher capacity and longer cycle lifetime, thereby improving the lithium battery performance.
    Type: Application
    Filed: January 20, 2012
    Publication date: May 24, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Fu-Ming WANG, Chang-Rung YANG, Chen-Chung CHEN, Kuo Feng CHIU
  • Patent number: 8178242
    Abstract: A lithium-ion battery includes a positive electrode having a current collector and a first active material and a negative electrode comprising a current collector, a second active material, and a third active material. The second active material comprises a lithium titanate material and the third active material comprises V6O13. The third active material exhibits charging and discharging capacity below a corrosion potential of the current collector of the negative electrode and above a decomposition potential of the first active material.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: May 15, 2012
    Assignee: Medtronic, Inc.
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Patent number: 8178238
    Abstract: A positive-electrode active material for a lithium-ion secondary battery has an average composition expressed by the following formula (1): LixCo1-y-zMyCezOb-aXa ??(1) wherein M represents at least one element selected from the group consisting of boron B, magnesium Mg, aluminum Al, silicon Si, phosphorous P, sulfur S, titanium Ti, chromium Cr, manganese Mn, iron Fe, cobalt Co, nickel Ni, copper Cu, zinc Zn, gallium Ga, yttrium Y, zirconium Zr, molybdenum Mo, silver Ag, tungsten W, indium In, tin Sn, lead Pb, and antimony Sb, X represents a halogen element, and x, y, z, a, and b satisfy 0.2<x?1.2, 0?y?0.1, 0.5<z?5.0, 1.8?b?2.2, and 0?a?1.0, respectively, and the concentration of cerium Ce is higher in the vicinity of the surface than in the inside.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: May 15, 2012
    Assignee: Sony Corporation
    Inventors: Masanori Soma, Masayuki Ihara, Kenichi Kawase, Atsumichi Kawashima
  • Patent number: 8173301
    Abstract: A positive electrode active material for a non-aqueous electrolyte secondary battery including a lithium-containing transition metal oxide having a closest-packed cubic structure of oxygen, the lithium-containing transition metal oxide having a composition represented by the formula (1): Li[Lip(NixMnyCoz)1-p]O2, where x, y, and z represent element contents of nickel, manganese, and cobalt, respectively, and satisfies 0.2+y?x?0.7, 0.15?y, 0.05?z, x+y+z=1, and 0?p?0.1.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: May 8, 2012
    Assignee: Panasonic Corporation
    Inventors: Hidekazu Hiratsuka, Norihiro Yamamoto, Yutaka Kawatate, Hiroaki Furuta, Kensuke Nakura, Hiroshi Yoshizawa
  • Publication number: 20120107691
    Abstract: A positive active material for a lithium secondary battery comprises a core comprising a compound that can reversibly intercalate and deintercalate lithium; and a compound attached to the surface of the core and represented by Chemical Formula 1: Li1+xM(I)xM(II)2?xSiyP3?yO12, ??[Chemical Formula 1] wherein M(I) and M(II) are selected from the group consisting of Al, Zr, Hf, Ti, Ge, Sn, Cr, Nb, Ga, Fe, Sc, In, Y, La, Lu, and Mg, and 0<x?0.7, 0?y?1.
    Type: Application
    Filed: November 16, 2011
    Publication date: May 3, 2012
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Joon-Hyung Lee, Andriy Kvasha, Oleg Levin
  • Publication number: 20120100430
    Abstract: Disclosed are a cathode active material and a secondary battery including the same, wherein the cathode active material includes (a) a first lithium-containing metal composite oxide and (b) a second lithium-containing metal composite oxide coated on an entire particle surface of the first lithium-containing metal composite oxide particle, the second lithium-containing metal composite oxide having a higher resistance and a lower potential vs. lithium potential (Li/Li+) than the first lithium-containing metal composite oxide.
    Type: Application
    Filed: November 23, 2011
    Publication date: April 26, 2012
    Applicant: LG CHEM, LTD.
    Inventors: Pil-Kyu Park, Young-Sun Park, Jae-Won Lee
  • Publication number: 20120100440
    Abstract: Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 26, 2012
    Inventors: Chaitanya Kumar Narula, Jagjit Nanda, Brian L. Bischoff, Ramesh R. Bhave
  • Patent number: 8163427
    Abstract: A non-aqueous electrolytic solution is advantageously used in preparation of a lithium secondary battery excellent in cycle characteristics. In the non-aqueous electrolytic solution for a lithium secondary battery, an electrolyte salt is dissolved in a non-aqueous solvent. The non-aqueous electrolytic solution further contains a vinylene carbonate compound in an amount of 0.01 to 10 wt. %, and an alkyne compound in an amount of 0.01 to 10 wt. %.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: April 24, 2012
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Abe, Kazuhiro Miyoshi, Takaaki Kuwata
  • Patent number: 8158283
    Abstract: The present invention provides a positive electrode active material for a non-aqueous electrolyte-based secondary battery, composed of a lithium/nickel composite oxide with high capacity, low cost and excellent heat stability, and a high safety non-aqueous electrolyte-based secondary battery. A positive electrode active material, comprising lithium/nickel composite oxide powders obtained by water washing fired powders having the following composition formula (1), followed by filtering and drying: LiNi1-aMaO2??(1) (wherein, M represents at least one kind of an element selected from transition metal elements other than Ni, group 2 elements, or group 13 elements; and “a” satisfies 0.01?a?0.5), characterized in that specific surface area of the lithium/nickel composite oxide powders after water washing is 0.3 to 2.0 m2/g.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: April 17, 2012
    Assignees: Sumitomo Metal Mining Co., Ltd., Panasonic Corporation
    Inventors: Isao Abe, Satoshi Matsumoto, Shuji Tsutsumi, Takashi Takeuchi
  • Patent number: 8153306
    Abstract: Disclosed are an organic electrolyte for a lithium-ion battery and a lithium-ion battery comprising the same, wherein the electrolyte includes a base electrolyte containing a lithium salt dissolved in an organic solvent, and diphenyloctyl phosphate added thereto in an amount of 0.1 to 20 wt %. As compared to a conventional organic electrolyte using only a carbonate ester-based solvent, such as ethylene carbonate, ethyl methyl carbonate, etc., the lithium-ion battery employing the organic electrolyte can improve thermal stability of an electrolyte solution, high-rate performance, and charge/discharge cyclability of a battery, while maintaining battery performance of the base electrolyte.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: April 10, 2012
    Assignee: Sungkyunkwan University Foundation for Corporate Collaboration
    Inventors: Jung Gu Kim, Eun Gi Shim, Tae Heum Nam
  • Patent number: 8153302
    Abstract: A method of producing an active material for a lithium secondary battery, by which impurities causing problems in synthesizing an active material for a lithium secondary battery, including a lithium transition metal oxyanion compound are removed efficiently and enhancement of an energy density is realized, is provided. By cleaning the active material for a lithium secondary battery, including a lithium transition metal oxyanion compound, with a pH buffer solution, for example, it is possible to efficiently remove just only impurities such as Li3PO4 or Li2CO3, or a substance, other than LiFePO4, in which the valence of Fe is bivalent such as FeSO4, FeO or Fe3(PO4)2 without dissolving Fe of LiFePO4.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: April 10, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Denis Yau Wai Yu, Kazunori Donoue, Toshikazu Yoshida, Tetsuo Kadohata, Tetsuyuki Murata, Shigeki Matsuta
  • Publication number: 20120082897
    Abstract: The nonaqueous electrolyte secondary battery includes: a positive electrode containing a positive-electrode active material; a negative electrode; and a nonaqueous electrolyte. The positive-electrode active material contains a lithium-containing oxide obtained by ion-exchanging part of sodium in a cobalt-containing oxide containing lithium, sodium, and titanium with lithium.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 5, 2012
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Motoharu Saito, Shinnosuke Ichikawa, Katsunori Yanagida, Masahisa Fujimoto
  • Patent number: 8148015
    Abstract: Described are cathode materials for lithium batteries. Better cathode materials may be produced by mixing at least two compounds and a binder additive. The first compound includes one or more salts of lithium metal phosphorous while the second compound includes one or more lithium transition metal oxides. In other instances, a conductive additive may also be incorporated. The cathode materials so produced exhibit enhanced electrical properties and thermal stability.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: April 3, 2012
    Assignee: BYD Company Limited
    Inventors: Fuzhong Pan, Xi Shen, Caimin Wan, Shengping You
  • Publication number: 20120077064
    Abstract: According to one embodiment, it is provided with a positive electrode active material for a non-aqueous electrolyte secondary battery represented by a general formula Li(LiaMnbNicCodFee)O2-xFx, wherein a, b, c, d, e and x in the general formula are values such that 0<a?0.33, 0<b?0.67, 0?c<1, 0?d<1, 0?e<1 and 0.
    Type: Application
    Filed: September 13, 2011
    Publication date: March 29, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tetsuya SASAKAWA, Hiroki Inagaki, Norio Takami
  • Publication number: 20120070742
    Abstract: The present invention relates to electrodes for a lithium secondary battery with a high energy density and a secondary battery with a high energy density using the same. A negative electrode includes a material which can be alloyed with lithium alloy. A positive electrode is made of a transition metal oxide which can reversibly intercalate or deintercalate lithium. Here, the entire reversible lithium storage capacity of the positive electrode is greater than the capacity of lithium dischargeable from the positive electrode.
    Type: Application
    Filed: November 28, 2011
    Publication date: March 22, 2012
    Inventors: Geun-Chang CHUNG, Dong Seok Shin, Sun Kyu Kim
  • Patent number: 8137838
    Abstract: A battery electrode paste composition containing modified maleimide(s) is provided, which has an electrode active material, a conductive additive, a binder and modified maleimide(s) as dispersant. The modified maleimide as the dispersant in the battery electrode paste composition has dendrimer-like hyperbranched structures, which can form a stable complex with the electrode active material. Therefore, owing to the excellent compatibility of the modified maleimide with the solvent in the electrode paste, the storage stability of the paste is increased. Furthermore, through formation of stable bonding between the modified maleimide and the current-collecting metal substrate, the adhesive force between the electrode film and the current-collecting metal substrate is enhanced and the cycling life of the battery product is extended.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: March 20, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Chang-Rung Yang, Jing-Pin Pan, Chien-An Chen, Jung-Mu Hsu
  • Publication number: 20120064409
    Abstract: A nano graphene-enhanced particulate for use as a lithium-ion battery anode active material, wherein the particulate is formed of a single sheet of graphene or a plurality of graphene sheets and a plurality of fine anode active material particles with a size smaller than 10 ?m. The graphene sheets and the particles are mutually bonded or agglomerated into the particulate with at least a graphene sheet embracing the anode active material particles. The amount of graphene is at least 0.01% by weight and the amount of the anode active material is at least 0.1% by weight, all based on the total weight of the particulate. A lithium-ion battery having an anode containing these graphene-enhanced particulates exhibits a stable charge and discharge cycling response, a high specific capacity per unit mass, a high first-cycle efficiency, a high capacity per electrode volume, and a long cycle life.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 15, 2012
    Inventors: Aruna Zhamu, Jinjun Shi, Guorong Chen, Qing Fang, Bor Z. Jang
  • Patent number: 8133462
    Abstract: The present invention relates to a method of chemically modifying a lithium-based oxide comprising at least one transition metal, which comprises, in succession: a step of bringing said oxide into contact with an aqueous solution comprising phosphate ions; a step of separating said oxide from the aqueous solution; and a step of drying said oxide. Use of the modified lithium transition metal oxide as active positive electrode material for a lithium secondary battery.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: March 13, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Séverine Jouanneau, Frédéric Le Cras, Carole Bourbon
  • Publication number: 20120052391
    Abstract: The electrode for the nonaqueous electrolyte secondary battery includes a current collector and an active material layer formed on the current collector and containing an active material. The active material contains first and second particulate lithium-containing transition metal oxides of different voidages.
    Type: Application
    Filed: July 18, 2011
    Publication date: March 1, 2012
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Akihiro Suzuki, Fumiharu Niina, Toshikazu Yoshida, Yoshinori Kida, Shin Fujitani
  • Publication number: 20120052389
    Abstract: An electrode of a lithium ion battery includes a current collector, an electrode material layer disposed on a top surface of the current collector, and a protective film located on a top surface of the electrode material layer. A composition of the protective film is at least one of AlxMyPO4 and AlxMy(PO3)3, M represents at least one chemical element selected from the group consisting of Cr, Zn, Mg, Zr, Mo, V, Nb, and Ta, and a valence of M is represented by k, wherein 0<x<1, 0<y<1, and 3x+ky=3.
    Type: Application
    Filed: February 25, 2011
    Publication date: March 1, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: XIANG-MING HE, JIAN-JUN LI, LI-CHUN ZHANG, WEI-HUA PU, JIAN GAO
  • Publication number: 20120052392
    Abstract: An active material for a non-aqueous electrolyte secondary battery capable of increasing an action potential after the operation of a charge/discharge cycle in a non-aqueous electrolyte secondary battery. The active material for a non-aqueous electrolyte secondary battery includes lithium transition metal composite oxide particles to the surfaces of which boride particles are sintered.
    Type: Application
    Filed: August 24, 2011
    Publication date: March 1, 2012
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Masanobu Takeuchi, Manabu Takijiri, Yoshinori Kida
  • Patent number: 8123820
    Abstract: A process of manufacturing a positive active material for a lithium secondary battery includes adding a metal source to a doping element-containing coating liquid to surface-treat the metal source, wherein the metal source is selected from the group consisting of cobalt, manganese, nickel, and combination thereof; drying the surface-treated metal source material to prepare a positive active material precursor; mixing the positive active material precursor with a lithium source; and subjecting the mixture to heat-treatment. Alternatively, the above drying step during preparation of the positive active material precursor is substituted by preheat-treatment or drying followed by preheat-treatment.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: February 28, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jun-Won Suh, Ho-Jin Kweon
  • Publication number: 20120045693
    Abstract: A negative active material for a rechargeable lithium battery, a method of manufacturing the same, and a rechargeable lithium battery including the same. The negative active material includes secondary particles including assembled primary particles of a compound represented by the following Chemical Formula 1, and has a specific surface area at 2 m2/g or 5 m2/g or between 2 m2/g and 5 m2/g. Li4?x-yMyTi5+x-zM?zO12 ??[Chemical Formula 1] wherein, x is at 0 or 1 or between 0 and 1, y is at 0 or 1 or between 0 and 1, z is at 0 or 1 or between 0 and 1, M is La, Tb, Gd, Ce, Pr, Nd, Sm, Ba, Sr, Ca, Mg, or a combination thereof, and M? is V, Cr, Nb, Fe, Ni, Co, Mn, W, Al, Ga, Cu, Mo, P, or a combination thereof.
    Type: Application
    Filed: December 14, 2010
    Publication date: February 23, 2012
    Inventor: Ji-Yong Eom
  • Publication number: 20120045694
    Abstract: A cathode, a method of preparing the same, and a lithium battery including the cathode. The cathode includes: a current collector; a first cathode active material layer disposed on the current collector; and a second cathode active material layer disposed on the first cathode active material layer, wherein the first cathode active material layer comprises a lithium transition metal oxide having a layered structure, and the second cathode active material layer comprises a lithium transition metal oxide having a spinel structure and an average working potential of 4.5 V or more.
    Type: Application
    Filed: March 17, 2011
    Publication date: February 23, 2012
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Kyu-sung PARK, Seung-sik Hwang
  • Publication number: 20120034534
    Abstract: A lithium ion battery is provided which contains a cathode, an anode, an electrolyte and a separator, wherein the anode employs polythiocyanogen as an active material.
    Type: Application
    Filed: July 22, 2011
    Publication date: February 9, 2012
    Applicant: University of Delaware
    Inventors: Krishnan Palanichamy, Suresh G. Advani, Ajay K. Prasad
  • Publication number: 20120034516
    Abstract: Disclosed herein is a cathode active material including a lithium transition metal oxide based on at least one transition metal selected from a group consisting of Ni, Mn and Co. The lithium transition metal oxide contains fluorine, and most of the fluorine is present on a surface of the lithium transition metal oxide, and at least one metal selected from a group consisting of Mg, Ti, Zr, Al and Fe as well as sulfur (S) are further contained in the lithium transition metal oxide.
    Type: Application
    Filed: November 10, 2009
    Publication date: February 9, 2012
    Applicant: LG CHEM, LTD.
    Inventors: Chang-Wan Koo, Joon Sung Bae, Eun-Young Goh
  • Publication number: 20120028118
    Abstract: A cathode composite material includes a cathode active material particle having a surface and a continuous aluminum phosphate layer. The continuous aluminum phosphate layer is coated on the surface of the cathode active material particle. The present disclosure also relates to a lithium ion battery including the cathode composite material.
    Type: Application
    Filed: May 13, 2011
    Publication date: February 2, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: XIAN-KUN HUANG, XIANG-MING HE, CHANG-YIN JIANG, DAN WANG, JIAN GAO, JIAN-JUN LI
  • Patent number: 8101143
    Abstract: A process for producing a lithium-containing composite oxide for a positive electrode active material for use in a lithium secondary battery, the oxide having the formula LipNxMmOzFa (wherein N is at least one element selected from the group consisting of Co, Mn and Ni, M is at least one element selected from the group consisting of Al, alkaline earth metal elements and transition metal elements other than N, 0.9?p?1.2, 0.9?x<1.00, 0<m?0.03, 1.9?z?2.2, x+m=1 and 0?a?0.02), which comprises using as an M element source a solution comprising a complex containing the M element dissolved in an organic solvent.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: January 24, 2012
    Assignee: Seimi Chemical Co., Ltd.
    Inventors: Takeshi Kawasato, Megumi Uchida, Toshiaki Abe, Naoshi Saito, Manabu Suhara
  • Publication number: 20120015251
    Abstract: The main object of the present invention is to provide a method for producing a cathode active material layer, which allows a high-purity lithium complex oxide by restraining impurities from being produced, allows a flat film, and allows orientation control. The present invention solves the above-mentioned problems by providing a method for producing a cathode active material layer, in which a cathode active material layer is formed on a substrate and contains LiXaOb (X is a transition metal element of at least one kind selected from the group consisting of Co, Ni and Mn, a=0.7-1.3, and b=1.5-2.5), characterized in that the method comprises the steps of: forming a cathode active material precursor-film on the above-mentioned substrate by a physical vapor deposition method while setting a temperature of the substrate at 300° C.
    Type: Application
    Filed: July 13, 2009
    Publication date: January 19, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hideki Oki
  • Publication number: 20120015250
    Abstract: Provided are a positive electrode material for lithium ion batteries and a process for preparing the same. The positive electrode material for lithium ion batteries comprises a composite positive electrode material consists of LiCoO2 and an auxiliary positive electrode material, the general formula of the auxiliary positive electrode material is LiCo1?x?yNixMnyO2, wherein 0<x<0.9, 0<y<0.9, 0<x+y<0.9, and the LiCoO2 is a modified LiCoO2 coated with an Al2O3 film. The overcharge performance of the batteries can be significantly increased and the use amount of the overcharge additive can be reduced by using the positive electrode material so as to its improve the cycle performance of the batteries and improve the anti-overcharge safety in the special applications and the charging conditions.
    Type: Application
    Filed: December 22, 2009
    Publication date: January 19, 2012
    Applicant: SHENZHEN BAK BATTERY CO., LTD.
    Inventors: Xin Teng, Wei He, Ming He, Ruyu Rao, Bin Xiao, Qiming Pan
  • Publication number: 20120015230
    Abstract: Disclosed is a mixed metal oxide comprising Na, M1, and M2, where M1 represents at least one element selected from the group consisting of Mg, Ca, Sr, and Ba; and M2 represents at least one element selected from the group consisting of Mn, Fe, Co, and Ni, wherein the molar ratio of Na:M1:M2 is a:b:1, where a is a value within the range of not less than 0.5 and less than 1; b is a value within the range of more than 0 and not more than 0.5; and “a+b” is a value within the range of more than 0.5 and not more than 1. An electrode having an active material containing the mixed metal oxide is also disclosed. Further disclosed is an electrode containing the electrode active material as well as a sodium secondary battery comprising the electrode as a positive electrode.
    Type: Application
    Filed: March 10, 2010
    Publication date: January 19, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Satoru Kuze, Masami Makidera, Taketsugu Yamamoto
  • Patent number: 8097363
    Abstract: The object of the invention is to provide positive electrode material in which a discharge rate characteristic and battery capacity are hardly deteriorated in the environment of low temperature of ?30° C., its manufacturing method and a lithium secondary battery using the positive electrode material. The invention is characterized by the positive electrode material in which plural primary particles are flocculated and a secondary particle is formed, and the touch length of the primary particles is equivalent to 10 to 70% of the length of the whole periphery on the section of the touched primary particles.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: January 17, 2012
    Assignees: Hitachi, Ltd., Hitachi Metals, Ltd., Shin-Kobe Electric Machinery Co., Ltd.
    Inventors: Toyotaka Yuasa, Masahiro Kasai, Genei Nakajima
  • Publication number: 20120003529
    Abstract: An object is to provide an electrode material with high electrical conductivity and a power storage device using the electrode material. An object is to provide an electrode material with high capacity and a power storage device using the electrode material. Provided is a particulate electrode material including a core containing a compound represented by a general formula Li2MSiO4 (in the formula, M represents at least one kind of an element selected from Fe, Co, Mn, and Ni) as a main component, and a covering layer containing a compound represented by a general formula LiMPO4 as a main component and covering the core. Further, a solid solution material is provided between the core and the covering layer. With such a structure, an electrode material with high electrical conductivity can be obtained. Further, with such an electrode material, a power storage device with high discharge capacity can be obtained.
    Type: Application
    Filed: June 17, 2011
    Publication date: January 5, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Masaki YAMAKAJI
  • Publication number: 20120003538
    Abstract: As a positive electrode active material, a material which is represented by the general formula Li(2-x)M1yM2zSiO4 and satisfies the conditions (I) to (IV) is used: (I) x is a value which changes due to insertion and extraction of a lithium ion during charging and discharging, and satisfies 0?x<2; (II) M1 is one or more transition metal atoms selected from iron (Fe), nickel (Ni), manganese (Mn), and cobalt (Co); (III) M2 is a metal atom that is titanium (Ti), scandium (Sc), or magnesium (Mg); and (IV) The formulae y+z=1, 0<y<1, and 0<z<1 are satisfied. The value of z/(y+z) is greater than or equal to 0.01 and less than or equal to 0.2.
    Type: Application
    Filed: June 15, 2011
    Publication date: January 5, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Masaki YAMAKAJI
  • Publication number: 20110311882
    Abstract: Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.
    Type: Application
    Filed: June 16, 2011
    Publication date: December 22, 2011
    Applicant: Alliance for Sustainable Energy, LLC
    Inventors: Gi-Heon Kim, Yoon Seok Jung