The Alkali Metal Is Lithium Patents (Class 429/231.95)
  • Patent number: 9160000
    Abstract: An active material for a battery, which has high thermal stability and low electric potential. According to the invention, an active material for a battery including an M element in Group III, a Ti element, an O element, and an S element and having an M2Ti2O5S2 crystalline phase is provided to solve the problem.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: October 13, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takeshi Tojigamori, Hideki Oki
  • Patent number: 9153836
    Abstract: A battery capable of improving battery characteristics is provided. The battery includes a cathode, an anode and an electrolytic solution, and a separator arranged between the cathode and the anode is impregnated with the electrolytic solution. The solvent of the electrolytic solution includes a sulfone compound having a sulfonyl fluoride type structure in which a sulfonyl group and a fluorine group are bonded together, and at least one kind selected from the group consisting of a chain carbonate which includes a halogen and a cyclic carbonate which includes a halogen.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: October 6, 2015
    Assignee: SONY CORPORATION
    Inventors: Masayuki Ihara, Hiroyuki Yamaguchi, Tadahiko Kubota
  • Patent number: 9139429
    Abstract: In one aspect of the invention, methods of synthesizing iron phosphate precursors and lithium iron phosphate active material usable for a lithium secondary battery include the steps of first forming fine particle iron phosphate precursors hydrated and anhydrous, then forming electrode active material lithium iron phosphate with said iron phosphate precursors. The unique methods are generally efficient and cost effective, as well as stable and scalable for a high performance electrode active material with high capacity, good discharge profile, high electronic conductivity, as well as long cycle life.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: September 22, 2015
    Inventor: Guiqing Huang
  • Patent number: 9142837
    Abstract: A separator-type lithium ion secondary battery having large capacity and charge-discharge performance not destroying the separator, even with an active material layer having concavo-convex structure of high aspect ratio. The battery comprises a first electrode comprising a first current collector, and a first active material layer formed by plural convex first active material parts provided on the first current collector, a second electrode comprising a second current collector, and a second active material layer formed by plural convex second active material parts provided on the second current collector, and a separator provided between the first electrode and the second electrode, wherein the first electrode and the second electrode are integrated so that the convex first active material part is faced between the adjacent convex second active material parts, and the convex first active material part does not enter between the convex second active material parts.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: September 22, 2015
    Assignee: SCREEN Holdings Co., Ltd.
    Inventor: Masakazu Sanada
  • Patent number: 9129756
    Abstract: A lithium-ion capacitor includes a cathode, an anode, and a porous separator positioned between the cathode and the anode. The cathode is formed using activated carbon, and the anode is formed from a composite material that includes lithium titanium oxide and a carbon material such as hard carbon or graphite.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: September 8, 2015
    Assignee: Corning Incorporated
    Inventors: Kishor Purushottam Gadkaree, Xiaorong Liu
  • Patent number: 9123953
    Abstract: A method for modifying a positive electrode material for a lithium-ion battery. The method includes: a) stirring a liquid polyacrylonitrile (LPAN) solution at the temperature of between 80 and 300° C. for between 8 and 72 h to yield a cyclized LPAN solution; b) adding positive electrode material for a lithium-ion battery, in a powder form, to the cyclized LPAN solution, and evenly mixing a resulting mixture; c) grinding the mixture, and drying the mixture at room temperature; and d) calcining the mixture at the temperature of between 500 and 1800° C. for between 6 and 24 h in the presence of an inert gas to form a graphene-like structure by the cyclized LPAN. The graphene-like structure is evenly distributed in the positive electrode material of the lithium-ion battery to yield a graphene-like structure modified positive electrode material of the lithium-ion battery.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: September 1, 2015
    Assignee: Shen Zhen University
    Inventors: Jianhong Liu, Dayong Gui, Qianling Zhang, Chuanxin He, Caizhen Zhu
  • Patent number: 9123976
    Abstract: A catalyst including active particles that have a core including a first metal oxide, and a shell including an alloy of a second metal with a reduction product of the first metal oxide; a method of preparing the catalyst; a fuel cell including the catalyst; an electrode for lithium air battery that includes the active particles; and a lithium air battery including the electrode.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: September 1, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seon-ah Jin, Chan-ho Pak, Kang-hee Lee, Kyung-jung Kwon
  • Patent number: 9112238
    Abstract: An anode capable of preventing expansion of an anode active material layer and a battery using it are provided. The anode includes an anode current collector, and an anode active material layer containing silicon (Si) as an element, wherein the anode active material layer therein contains at least one selected from the group consisting of a fluoride of an alkali metal and a fluoride of an alkali earth metal.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: August 18, 2015
    Assignee: SONY CORPORATION
    Inventors: Takakazu Hirose, Kenichi Kawase, Isamu Konishiike, Masayuki Iwama
  • Patent number: 9112229
    Abstract: A cathode active material comprising a composition represented by the following general formula (1): LiaM1xM2yM3zPmSinO4??(1) wherein M1 is at least one kind of element selected from the group of Mn, Fe, Co and Ni; M2 is any one kind of element selected from the group of Ti, V and Nb; M3 is at least one kind of element selected from the group of Zr, Sn, Y and Al; “a” satisfies 0<a?1; “x” satisfies 0<x?2; “y” satisfies 0<y<1; “z” satisfies 0?z<1; “m” satisfies 0?m<1; and “n” satisfies 0<n?1.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: August 18, 2015
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Koji Ohira, Motoaki Nishijima
  • Patent number: 9112223
    Abstract: A secondary battery includes a cathode, an anode containing an anode active material, and an electrolytic solution. The anode active material contains tin, iron, cobalt, carbon, and titanium as an element. In the anode active material, a carbon content is from 9 mass % to 30 mass % both inclusive, a ratio of cobalt to total of iron and cobalt is from 10 mass % to 80 mass % both inclusive, a ratio of the total of iron and cobalt to total of tin, iron, and cobalt is from 11.3 mass % to 26.3 mass % both inclusive, a titanium content is from 0.5 mass % to 8 mass % both inclusive, and half-width of diffraction peak obtained by X-ray diffraction (peak obtained where diffraction angle of 2? is from 34 deg to 37 deg both inclusive) is 1 deg or more.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: August 18, 2015
    Assignee: SONY CORPORATION
    Inventors: Kazuaki Takada, Hiroshi Inoue, Satoshi Mizutani, Kazuhiko Yoshida, Keitaro Matsui, Koichiro Hirata
  • Patent number: 9112224
    Abstract: Provided are an energy storage device including an electrode in which lithium is introduced into a silicon layer and a method for manufacturing the energy storage device. A silicon layer is formed over a current collector, a solution including lithium is applied on the silicon layer, and heat treatment is performed thereon; thus, at least lithium can be introduced into the silicon layer. By using the solution including lithium, even when the silicon layer includes a plurality of silicon microparticles, the solution including lithium can enter a space between the microparticles and lithium can be introduced into the silicon microparticles which are in contact with the solution including lithium. Moreover, even when the silicon layer is a thin silicon film or includes a plurality of whiskers or whisker groups, the solution can be uniformly applied; accordingly, lithium can be included in silicon easily.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: August 18, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 9099694
    Abstract: A method of manufacturing an electrode body having a pair of electrode layers and an electrolyte layer disposed between the pair of electrode layers, by which an electrode body with reduced internal resistance can be manufactured, the method including the steps of: dispersing at least an active material capable of releasing or absorbing and releasing a metal ion, an electrolyte having conductivity for the metal ion, and a binder into a solvent, to prepare an electrode slurry, and applying the electrode slurry onto a base material, thereby forming a sheet-shaped electrode layer containing the binder; and dispersing at least an electrolyte having ion conductivity for the metal ion into a solvent to prepare an electrolyte slurry, and applying the electrolyte slurry onto the electrode layer, thereby forming a sheet-shaped electrolyte layer on the electrode layer.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: August 4, 2015
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi Suyama, Shigenori Hama, Satoshi Wakasugi
  • Patent number: 9083032
    Abstract: A lithium rechargeable battery includes a cathode plate having a cathode current collector layer; and a cathode layer composed of particles of a cathode active material; an anode plate that is spaced apart from the cathode plate and having an anode current collector layer and an anode layer composed a mixed anode active material that is a mixture including particles of a spinel lithium titanium oxide (Li4Ti5O12) and nanotubes of a lithium titanium oxide (LixTiO2, where 0<x<2); and a polymer electrolyte disposed between the cathode plate and the anode plate. The cathode active material may contain only one cathode active material or be a mixed cathode active material composed of a mixture of particles of carbon-coated lithium iron phosphate (LiFePO4) that are nanoparticles of lithium iron phosphate coated with carbon particles and particles of a lithium transition metal oxide.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: July 14, 2015
    Assignee: INTELLECTUAL DISCOVERY CO., LTD.
    Inventors: Young-Gi Lee, Kwang Man Kim, Min Gyu Choi, Kunyoung Kang, Yil Suk Yang, Jongdae Kim
  • Patent number: 9070931
    Abstract: A cathode, a method of forming the cathode and a lithium battery including the cathode. The cathode includes a current collector and a cathode active material layer disposed on the current collector; the cathode active material layer includes a lithium transition metal oxide having a spinel structure, a conductive agent, and a binder; and at least a portion of a surface of the cathode active material layer is fluorinated.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: June 30, 2015
    Assignees: SAMSUNG ELECTRONICS CO., LTD., INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY
    Inventors: Min-sang Song, Han-su Kim, Jae-man Choi, Moon-seok Kwon, Un-gyu Paik, Tae-seup Song
  • Patent number: 9070940
    Abstract: A lithium secondary battery with superior cycle performance is provided. The lithium secondary battery includes a negative electrode including a negative electrode active material layer disposed on a negative electrode current collector and containing negative electrode active material particles, negative electrode conductor particles, and a negative electrode binder; a positive electrode containing a positive electrode active material; and a non-aqueous electrolyte. The concentration of the negative electrode conductor particles in a surface layer of the negative electrode active material layer facing away from the negative electrode current collector is higher than the concentration of the negative electrode conductor particles in a center of the negative electrode active material layer.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: June 30, 2015
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Shouichiro Sawa, Atsushi Fukui, Taizou Sunano
  • Patent number: 9065149
    Abstract: Provided is an anode for use in electrochemical cells, wherein the anode active layer has a first layer comprising lithium metal and a multi-layer structure comprising single ion conducting layers and polymer layers in contact with the first layer comprising lithium metal or in contact with an intermediate protective layer, such as a temporary protective metal layer, on the surface of the lithium-containing first layer. Another aspect of the invention provides an anode active layer formed by the in-situ deposition of lithium vapor and a reactive gas. The anodes of the current invention are particularly useful in electrochemical cells comprising sulfur-containing cathode active materials, such as elemental sulfur.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: June 23, 2015
    Assignee: Sion Power Corporation
    Inventors: Terje A. Skotheim, Christopher J. Sheehan, Yuriy V. Mikhaylik, John D. Affinito
  • Patent number: 9059436
    Abstract: A method for producing a lithium-ion secondary battery comprising positive and negative electrodes and a non-aqueous electrolyte solution is provided. The method comprises (A) with several different negative electrode active materials, determining density Xn (g/cm3) at several different number of taps applied, n, respectively; (B) determining density Y (g/cm3) of a negative electrode active material layer constituted with a mixture comprising each negative electrode active material; (C) based on a regression line, Y=aXn+b, determining the number of taps applied, n?, that gives a?0.5 and a determination coefficient R2?0.99; (D) based on a plot of Y=aXn?+b, determining a passing range of Xn? where negative electrode active material layer density Y is in a prescribed range; (E) selecting a negative electrode active material having Xn?in the passing range, and fabricating a negative electrode with this material.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: June 16, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Koji Takahata, Hideki Sano
  • Patent number: 9059475
    Abstract: A negative electrode of a lithium secondary battery has a negative electrode active material including at least one element of silicon and tin. Capacities of the positive electrode and the negative electrode of the lithium secondary battery are set as follows. In a completely charged state of the lithium secondary battery charged by a predetermined charging method, the positive electrode active material and the negative electrode active material are in a first partially charged state, respectively. In a completely discharged state of the lithium secondary battery discharged by a predetermined discharging method, the negative electrode active material is in a second partially charged state.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: June 16, 2015
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Masaya Ugaji, Kaoru Inoue, Takayuki Shirane
  • Patent number: 9059479
    Abstract: A rechargeable lithium battery includes a positive electrode including a positive active material being capable of intercalating or deintercalating lithium; a negative electrode including a carbon-based negative active material and a water-soluble binder; and a polymer electrolyte including a polymer, a non-aqueous organic solvent and a lithium salt, wherein the polymer comprises a polymerization product of a first monomer represented by Chemical Formula 1 with a second monomer which is one or more of monomers represented by Chemical Formulae 2 to 7: A-U—B??Chemical Formula 1 CH2?CL1-C(?O)—O-M??Chemical Formula 2 CH2?CL1-O-M??Chemical Formula 3 CH2?CL1-O—C(?O)-M??Chemical Formula 4 CH2?CH—CH2—O-M??Chemical Formula 5 CH2?CH—S(?O)2-M??Chemical Formula 6 CH2?CL1-C(?O)—O—CH2CH2—NH—C(?O)—O-M??Chemical Formula 7 wherein, definition of each substituent group is as described in detailed description.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: June 16, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Kwang-Jo Cheong, Yong-Beom Lee, Hee-Sun Yun, Soo-Mi Eo
  • Patent number: 9054378
    Abstract: Provided are a cathode material capable of achieving a higher discharge capacity and a higher discharge voltage, and obtaining superior charge-discharge characteristics, and a battery using the cathode material. A separator (15) is disposed between a cathode (12) and an anode (14). The cathode (12) comprises a lithium composite oxide represented by LiaMIbMIIcOd. MI represents at least two kinds selected from the group consisting of Mn, Ni and Co, and MII represents at least one kind selected from the group consisting of Al, Ti, Mg and B. Further, a, b, c and d are within a range satisfying 1.0<a<1.5, 0.9<b+c<1.1, a>b+c, 1.8<d<2.5, respectively. When lithium is excessively included, the charge capacity can be improved, and even after charge, a certain amount of lithium remains in the crystalline structure of the lithium composite oxide, so the stability of the crystalline structure can be improved.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: June 9, 2015
    Assignee: SONY CORPORATION
    Inventor: Guohua Li
  • Patent number: 9054394
    Abstract: Batteries employing an oxygen (air) electrode, particularly those in which the oxygen electrode is combined with an alkali metal or alkaline earth metal negative electrode useful I for bulk energy storage, particularly for electric utility grid storage, as well as for electric vehicle propulsion. Batteries have an electrochemically reversible oxygen positive having a porous mixed metal oxide matrix for receiving and retaining discharge product and a dense (non-porous) separator element which conducts oxygen ions and electrons in contact with a source of oxygen.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: June 9, 2015
    Assignee: DYNANTIS CORPORATION
    Inventor: Anthony F. Sammells
  • Publication number: 20150147658
    Abstract: Providing a silicon-containing material having a novel structure being distinct from the structure of conventional silicon oxide disproportionated to use. A silicon-containing material according to the present invention includes at least the following: a continuous phase including silicon with Si—Si bond, and possessing a bubble-shaped skeleton being continuous three-dimensionally; and a dispersion phase including silicon with Si—O bond, and involved in an area demarcated by said continuous phase to be in a dispersed state.
    Type: Application
    Filed: June 25, 2013
    Publication date: May 28, 2015
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yoshihiro Nakagaki, Nobuhiro Goda, Manabu Miyoshi, Yushi Kondo, Kensuke Yotsumoto
  • Patent number: 9040197
    Abstract: Electrode structures, and more specifically, electrode structures for use in electrochemical cells, are provided. The electrode structures described herein may include one or more protective layers. In one set of embodiments, a protective layer may be formed by exposing a lithium metal surface to a plasma comprising ions of a gas to form a ceramic layer on top of the lithium metal. The ceramic layer may be highly conductive to lithium ions and may protect the underlying lithium metal surface from reaction with components in the electrolyte. In some cases, the ions may be nitrogen ions and a lithium nitride layer may be formed on the lithium metal surface. In other embodiments, the protective layer may be formed by converting lithium to lithium nitride at high pressures. Other methods for forming protective layers are also provided.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: May 26, 2015
    Assignee: Sion Power Corporation
    Inventors: John D. Affinito, Gregory K. Lowe
  • Patent number: 9040192
    Abstract: A lithium rechargeable battery including: a bare cell including an electrode assembly disposed in a pouch, the electrode assembly including two electrodes, a separator, and first and second electrode tabs that extend from the electrodes, through a first side of the bare cell; a protecting circuit board electrically connected to the first and second electrode tabs; a first lead plate connected to the protecting circuit board and the first electrode tab, and a second lead plate connected to the protecting circuit board and the second electrode tab. The protecting circuit board is provided on a second side of the bare cell, which is adjacent to the first side. The first and second lead plates are bent to extend along the first and second sides of the pouch.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: May 26, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seongjoon Lee, Myungjun Lee, Kisung Hong
  • Patent number: 9040203
    Abstract: A lithium battery including: a positive electrode including an overlithiated lithium transition metal oxide having a layered structure; a negative electrode including a silicon-based negative active material; and an electrolyte between the positive electrode and the negative electrode, the electrolyte including an electrolytic solution including a fluorinated ether solvent in an amount of 3 vol % or more based on the total volume of the electrolytic solution.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 26, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Myung-Hoon Kim, Man-Seok Han, Seung-Wan Kim, Jung-Yeon Won, Ha-Na Yoo
  • Publication number: 20150140437
    Abstract: A method for producing a lithium electrode for a lithium-ion battery includes: a) provision of a basic body including an active material having in particular metallic lithium, a lithium alloy, and/or a lithium intercalation material; b) treatment of the basic body with a treatment composition in a wet-chemical process for the formation of a lithium-ion-conducting protective layer, with a reaction of the active material with at least one component of the treatment composition; and c) an optional treatment of the electrode at increased temperature and/or in a vacuum.
    Type: Application
    Filed: April 19, 2013
    Publication date: May 21, 2015
    Inventors: Leonore Glanz, Ulrich Hasenkox
  • Publication number: 20150140434
    Abstract: A negative electrode active material layer composition for a rechargeable lithium battery is disclosed. The negative electrode active material layer composition includes a negative active material including Li-doped SiOx (0<x<2), an aqueous binder, and pure water. In addition, a method of manufacturing the negative electrode active material layer composition, and a negative electrode and a rechargeable lithium battery including the same are also disclosed.
    Type: Application
    Filed: October 23, 2014
    Publication date: May 21, 2015
    Inventor: Sung-Won JUNG
  • Publication number: 20150140425
    Abstract: A cathode material comprising an active material, a carbon material, a binder polymer, a lithium salt, and a solvent. The cathode material has a viscosity in the range from about from about 3.0 to about 30.0 cP such that the cathode material can be applied to a surface using an ink jet print head. An anode base material includes from about 50% to about 85% by weight of metallic lithium particles substantially free from other metals and from about 15% to about 50% by weight of a solvent. The anode base material has a viscosity such that the anode base material can be extruded.
    Type: Application
    Filed: November 13, 2014
    Publication date: May 21, 2015
    Inventors: Theodore F. Cyman, Jr., Kevin J. Hook, Pamela Geddes, Alan R. Murzynowski, James W. Blease, Daniel E. Kanfoush
  • Publication number: 20150140438
    Abstract: In order to prepare a highly conductive and highly dispersible graphene powder and to obtain an electrode for a lithium ion battery with excellent performance utilizing the highly conductive and highly dispersible graphene, a graphene powder and a preparation method thereof is provided. The graphene powder comprises a compound having a catechol group adsorbing on the surface of graphene in a weight ratio of 5-50% relative to the grapheme and the element ratio of oxygen to carbon in the graphene powder measured by X-ray photoelectron spectroscopy is 0.06 or more and 0.20 or less. The method for producing a graphene powder comprise the step of reducing a graphite oxide with a reducing agent having no catechol group in the presence of a compound having a catechol group.
    Type: Application
    Filed: May 23, 2013
    Publication date: May 21, 2015
    Inventors: Peiyu Sun, Gangqiao Liu, Zhenqi Wu, Gang Wu, Eiichiro Tamaki, Yasuo Kubota
  • Publication number: 20150132626
    Abstract: An electrode assembly and a secondary battery using the same are disclosed. The electrode assembly includes a positive electrode, a negative electrode, and a lithium ion conductor layer disposed at least in one of between the positive electrode and the negative electrode, on an outer surface of the positive electrode, and on an outer surface of the negative electrode, to improve thermal safety of the secondary battery.
    Type: Application
    Filed: November 3, 2014
    Publication date: May 14, 2015
    Inventors: Young-Jin Park, Do-Hyung Park, Ki-Hyun Kim, Min-Han Kim, Sang-Hoon Kim, Yu-Mi Song, Sun-Ho Kang, Kwang-Hwan Cho
  • Patent number: 9029014
    Abstract: An anode includes an anode active material including a lithium titanium oxide, a binder, and 0 to about 2 parts by weight of a carbon-based conductive agent based on 100 parts by weight of the lithium titanium oxide.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: May 12, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Min-sang Song, Kyu-sung Park, Gue-sung Kim, Soo-an Song, Jae-hyung Kim, Ji-yong Eom, Seung-goo Baek
  • Patent number: 9029008
    Abstract: The present invention provides a nonaqueous electrolyte secondary battery, comprising an electrode group including a positive electrode, a negative electrode including a material for absorbing-desorbing lithium ions, and a separator arranged between the positive electrode and the negative electrode, a nonaqueous electrolyte impregnated in the electrode group and including a nonaqueous solvent and a lithium salt dissolved in the nonaqueous solvent, and a jacket for housing the electrode group and having a thickness of 0.3 mm or less, wherein the nonaqueous solvent ?-butyrolactone in an amount larger than 50% by volume and not larger than 95% by volume based on the total amount of the nonaqueous solvent.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: May 12, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Norio Takami, Hiroyuki Hasebe, Takahisa Ohsaki, Motoya Kanda
  • Patent number: 9029018
    Abstract: A method for making a lithium battery cathode material is disclosed. A mixed solution including a solvent, an iron salt material, a vanadium source material and a phosphate material is provided. An alkaline solution is added in the mixed solution to make the mixed solution have a pH value ranging from about 1.5 to 5. The iron salt, the vanadium source material and the phosphate material react with each other to form a plurality particles of iron phosphate precursor doped with vanadium which are added in a mixture of a lithium source solution and a reducing agent to form a slurry of lithium iron phosphate precursor doped with vanadium. The slurry of lithium iron phosphate precursor doped with vanadium is heat-treated.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: May 12, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Gai Yang, Chang-Yin Jiang, Jian Gao, Jie-Rong Ying, Jian-Jun Li, Xiang-Ming He
  • Patent number: 9029021
    Abstract: A method of charging and discharging a battery that includes an anode. The anode includes silicon and is capable of inserting and extracting lithium. At the time of charge, the potential of the anode vs. lithium metal as a reference potential is 0.04 V or more. At the time of discharge, the potential of the anode vs. lithium metal as a reference potential is 1.4 V or less.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: May 12, 2015
    Assignee: Sony Corporation
    Inventor: Tadahiko Kubota
  • Publication number: 20150125751
    Abstract: To simply manufacture a lithium-containing oxide at lower manufacturing cost. A method for manufacturing a lithium-containing composite oxide expressed by a general formula LiMPO4 (M is one or more of Fe (II), Mn (II), Co (II), and Ni (II)). A solution containing Li and P is formed and then is dripped in a solution containing M (M is one or more of Fe (II), Mn (II), Co (II), and Ni (II)) to form a mixed solution. By a hydrothermal method using the mixed solution, a single crystal particle of a lithium-containing composite oxide expressed by the general formula LiMPO4 (M is one or more of Fe (II), Mn (II), Co (II), and Ni (II)) is manufactured.
    Type: Application
    Filed: January 13, 2015
    Publication date: May 7, 2015
    Inventor: Tomoya FUTAMURA
  • Patent number: 9023524
    Abstract: Disclosed is a lithium mixed metal oxide which is useful for a positive electrode active material that is capable of providing a nonaqueous electrolyte secondary battery having more excellent cycle characteristics, in particular, more excellent cycle characteristics during high-temperature operation at 60 DEG C. or the like. Specifically disclosed is a lithium mixed metal oxide represented by the following formula (A). Lix(Mn1-y-zNiyFez)O2 (A) (In the formula, x is not less than 0.9 and not more than 1.3; y is 0.46 or more and less than 0.5; and z is 0 or more and less than 0.1.) Also disclosed are: a positive electrode active material which comprises the lithium mixed metal oxide; a positive electrode which comprises the positive electrode active material; and a nonaqueous electrolyte secondary battery which comprises the positive electrode.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: May 5, 2015
    Assignee: Sumitomo Chemical Company, Limted
    Inventors: Yuichiro Imanari, Cedric Pitteloud
  • Patent number: 9023532
    Abstract: A positive active material composition for a rechargeable lithium battery that includes a positive active composite material including a compound being reversibly capable of intercalating and deintercalating lithium, WO3, and a binder; and an aqueous binder, a positive electrode for a rechargeable lithium battery including the positive active material composition, and a rechargeable lithium battery comprising the positive electrode including the positive active material composition.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: May 5, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Chae-Woong Cho, Myung-Duk Lim, Seung-Hun Han
  • Patent number: 9023528
    Abstract: The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: May 5, 2015
    Assignee: UT-Battelle, LLC
    Inventors: Chengdu Liang, Nancy J. Dudney, Jane Y. Howe
  • Patent number: 9023523
    Abstract: The present invention relates to a process for the preparation of compounds of general formula (I) Lia-bMb1Fe1-cMc2Pd-eMe3Ox, wherein Fe has the oxidation state +2 and M1, M2, M3, a, b, c, d, e and x are: M1: Na, K, Rb and/or Cs, M2: Mn, Mg, Al, Ca, Ti, Co, Ni, Cr, V, M3: Si, S, F a: 0.8-1.9, b: 0-0.3, c: 0-0.9, d: 0.8-1.9, e: 0-0.5, x: 1.0-8, depending on the amount and oxidation state of Li, M1, M2, P, M3, wherein compounds of general formula (I) are neutrally charged, comprising the following steps (A) providing a mixture comprising at least one lithium-comprising compound, at least one iron-comprising compound, in which iron has the oxidation state 0, and at least one M1-comprising compound, if present, and/or at least one M2-comprising compound, if present, and/or least one M3-comprising compound, if present, and at least one compound comprising at least one phosphorous atom in oxidation state +5, and (B) heating the mixture obtained in step (A) at a temperature of 100 to 500° C.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: May 5, 2015
    Assignee: BASF SE
    Inventors: Kirill Bramnik, Hartmut Hibst, Jordan Keith Lampert
  • Patent number: 9023530
    Abstract: To improve high temperature storage characteristic of a non-aqueous electrolyte secondary battery suitable for high input/output application, the structure of a positive electrode active material is optimized. The non-aqueous electrolyte secondary battery includes a positive electrode; a negative electrode; a separator interposed between the positive and negative electrodes; and a non-aqueous electrolyte. The positive electrode active material includes secondary particles, each formed of an aggregate of primary particles. A value (VPr) defined by the formula: VPr=(1?C/D)/(A2×B3) is not less than 0.0005 and not greater than 0.04, where an average particle size of the primary particles is A ?m, an average particle size of the positive electrode active material is B ?m, a tap density of the positive electrode active material is C g/ml, and a true specific gravity of the positive electrode active material is D g/ml.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: May 5, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takaya Saito, Yasutaka Kogetsu, Takashi Takeuchi, Hidekazu Hiratsuka
  • Patent number: 9023531
    Abstract: Disclosed is a nonaqueous secondary battery (100) comprising a positive electrode (155) having a positive current collector (151) made of a metal, and a positive electrode active material (153) composed of a lithium-metal complex oxide. The surface of the positive electrode active material (153) is coated with a lithium salt (158) having an average thickness of 20-50 nm.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: May 5, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, Sumitomo Metal Mining Co., Ltd.
    Inventors: Tomoyoshi Ueki, Yutaka Oyama, Takuichi Arai, Kazuhiro Ohkawa, Koichi Yokoyama, Ryuichi Kuzuo, Katsuya Kase, Syuhei Oda
  • Publication number: 20150118572
    Abstract: The present disclosure generally provides for a solid-state battery, and methods of fabricating embodiments of the solid-state battery. Embodiments of the present disclosure may include an electrode for a solid-state battery, the electrode including: a current collector region including a conductive, lithium electroactive material; and a plurality of nanowires contacting the current collector region.
    Type: Application
    Filed: October 29, 2013
    Publication date: April 30, 2015
    Applicant: BATTERY ENERGY STORAGE SYSTEMS-TECHNOLOGIES
    Inventors: Isaac Lund, Fernando Gomez-Baquero, Bruce Toyama
  • Patent number: 9017883
    Abstract: The present invention discloses a rechargeable lithium battery including a positive electrode, a negative electrode including lithium titanate represented by Chemical Formula 1, and an electrolyte impregnating the positive and negative electrodes and including a sultone-based compound and maleic anhydride, wherein the sultone-based compound and the maleic anhydride are respectively included in an amount of about 0.5 wt % to about 5 wt % based on the total weight of the electrolyte. Chemical Formula 1: Li4?xTi5+x?yMyO12. In Chemical Formula 1, M is an element selected from Mg, V, Cr, Nb, Fe, Ni, Co, Mn, W, Al, Ga, Cu, Mo, P, or a combination thereof, 0?x?1, 0?y?1.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 28, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Su-Hee Han
  • Patent number: 9017876
    Abstract: A method of producing a positive electrode active material, comprising the steps of: preparing a solution by dissolving, in a solvent, respective predetermined amounts of a lithium source, a M source, a phosphorus source and a X source necessary for forming a positive electrode active material represented by the following general formula (1) having an olivine structure; gelating the obtained solution by addition of a cyclic ether; and calcinating the generated gel to obtain a carbon-coated lithium-containing composite oxide, wherein the positive electrode active material is represented by the general formula (1): LixMyP1-zXzO4??(1) wherein M is at least one element selected from the group consisting of Fe, Ni, Mn, Zr, Sn, Al and Y, X is at least one selected from the group consisting of Si and Al, and 0<x?2, 0.8?y?1.2, 0?z?1.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: April 28, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Toshitsugu Sueki, Motoaki Nishijima, Koji Ohira, Shogo Esaki, Isao Tanaka, Yukinori Koyama, Katsuhisa Tanaka, Koji Fujita, Shunsuke Murai
  • Patent number: 9017841
    Abstract: Disclosed is a method for preparing an electrochemical device, comprising the steps of: charging an electrochemical device using an electrode active material having a gas generation plateau potential in a charging period to an extent exceeding the plateau potential; and degassing the electrochemical device. An electrochemical device, which comprises an electrode active material having a gas generation plateau potential in a charging period, and is charged to an extent exceeding the plateau potential and then degassed, is also disclosed.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: April 28, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Sung Kyun Chang, Eui Yong Bang, Min Chul Jang, Sang Hoon Choy, Ki Young Lee
  • Patent number: 9017875
    Abstract: The present application provides a nonaqueous electrolyte secondary battery which includes a cathode having a cathode active material layer, an anode, and a nonaqueous electrolyte, wherein the cathode active material layer includes secondary particles of a lithium phosphate compound having olivine structure, an average particle diameter A of primary particles constituting the secondary particles is 50 nm or more and 500 nm or less, and a ratio B/A of a pore diameter B of the secondary particles to the average particle diameter A of the primary particles is 0.10 or more and 0.90 or less.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: April 28, 2015
    Assignee: Sony Corporation
    Inventor: Takehiko Ishii
  • Publication number: 20150111104
    Abstract: A method is described for manufacturing a lithium-sulfur cell or lithium-sulfur battery, in particular a solid-state lithium-sulfur cell or lithium-sulfur battery. A nanowire network is provided in a method step a) composed of an electron- and lithium ion-conducting ceramic mixed conductor or a mixed conductor precursor for forming an electron- and lithium ion-conducting ceramic mixed conductor. The nanowire network is coated with a lithium ion-conducting solid-state electrolyte layer in a method step b). The nanowire network is optionally infiltrated with sulfur in a method step c). A cathode current arrester is applied to the uncoated side of the nanowire network in a method step d). Moreover, a lithium-sulfur cell, a lithium-sulfur battery, and a mobile or stationary system are described as well.
    Type: Application
    Filed: March 5, 2013
    Publication date: April 23, 2015
    Applicant: Robert Bosch GmbH
    Inventors: Christine Engel, Ulrich Eisele, Andre Moc
  • Publication number: 20150111105
    Abstract: To provide an active material with high capacity, high initial charge-discharge efficiency, and high average discharge voltage. An active material according to the present invention includes a first active material and a second active material, wherein the ratio (?) of the second active material (B) to the total amount by mole of the first active material (A) and the second active material (B) satisfies 0.4 mol %???18 mol % [where ?=(B/(A+B))×100].
    Type: Application
    Filed: March 27, 2013
    Publication date: April 23, 2015
    Applicant: TDK CORPORATION
    Inventors: Tomohiko Kato, Atsushi Sano, Masaki Sobu, Akinobu Nojima
  • Patent number: 9012088
    Abstract: An anode composition for a lithium secondary battery is provided. The anode composition comprises an anode active material, a conductive material, and an acrylonitrile-acrylic acid copolymer with a high molecular weight as a binder. The acrylonitrile-acrylic acid copolymer has a molar ratio of acrylonitrile to acrylic acid of 1:0.01-2. Further provided are a method for preparing the anode composition and a lithium secondary battery using the anode composition. The binder has improved resistance to an electrolyte solution due to its enhanced adhesive strength. In addition, the use of the anode composition prevents the active material layer from being peeled off or separated from a current collector during charge and discharge to achieve improved capacity and cycle life characteristics of the battery.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: April 21, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Eun Suok Oh, Young Min Kim, Ok Sun Kim, Min Ah Kang
  • Patent number: 9012089
    Abstract: A positive electrode system of an electric storage device includes first and second positive electrodes. The first and second positive electrodes include current collectors, and first and second positive-electrode mixture layers, respectively. The negative electrode system of the electric storage device has a negative electrode including a current collector and a negative-electrode mixture layer. The first positive electrode and the second positive electrode are arranged across the negative electrode. The first positive-electrode mixture layer and the second positive-electrode mixture layer are connected to each other, and of different types. Through-holes are formed in the current collector of the negative electrode arranged between the first positive-electrode mixture layer and the second positive-electrode mixture layer.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: April 21, 2015
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Nobuo Ando, Kenji Kojima