The Alkali Metal Is Lithium Patents (Class 429/322)
  • Publication number: 20130323604
    Abstract: A garnet-type solid electrolyte contains a crystal having (110) face, (1-10) face, (112) face, (1-12) face, and (11-2) face, the garnet-type solid electrolyte being Li7La3Zr2O12. A battery includes a solid electrolyte interposed between a positive and a negative electrode, the solid electrolyte being the garnet-type solid electrolyte. A method of producing a garnet-type solid electrolyte represented by a composition formula Li7La3Zr2O12 and has (110) face, (1-10) face, (112) face, (1-12) face, and (11-2) face as a crystal face, including a step of preparing a lithium-containing compound, a lanthanum-containing compound, and a zirconium-containing compound; a step of mixing these compounds such that a molar ratio among the elements satisfies Li:La:Zr=a:b:c (where a is from 120 to 160, b is from 1 to 5, and c is from 1 to 5); and a step of heating the mixture between 400 and 1,200° C.
    Type: Application
    Filed: February 23, 2012
    Publication date: December 5, 2013
    Applicants: SHINSHU UNIVERSITY, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Katsuya Teshima, Masato Hozumi
  • Patent number: 8597828
    Abstract: The invention relates to a lithium battery including a cell comprising: a positive electrode, a negative electrode, and an electrolyte consisting of an aqueous solution of a lithium salt, characterized in that the electrolyte has a pH of at least 14, the positive electrode has a lithium intercalation potential greater than 3.4 V, and the negative electrode has a lithium intercalation potential less than 2.2 V.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: December 3, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Sébastien Martinet, Hélène Lignier
  • Publication number: 20130316250
    Abstract: The present invention relates to novel compositions, electrodes, electrochemical storage devices (batteries) and ionic conduction devices that use cubic ionic conductor (“CUBICON”) compounds, preferably nitridophosphate compounds. The cubic ionic conductor compound have a framework formula [MT3X10]n- (1) and a general formula AxMT3X10 (2), where M is a cation in octahedral coordination, T is a cation in tetrahedral coordination, X is an anion, and the framework has a net negative charge of ?n, where a variable number of potentially mobile additional chemical species, A, can fit into the open space within this framework with a net charge of +n.
    Type: Application
    Filed: April 30, 2013
    Publication date: November 28, 2013
    Applicant: Brookhaven Science Associates, LLC
    Inventor: Brookhaven Science Associates, LLC
  • Publication number: 20130316251
    Abstract: An electrochemically active material is disclosed in which the particles of electrochemically active material have a zeta potential of less than 25 mV in absolute value (?25 mV to 0 mV; 0 mV to 25 mV) as measured in the medium (water and/or organic solvent) in which the particles are dispersed.
    Type: Application
    Filed: May 24, 2013
    Publication date: November 28, 2013
    Applicant: Bathium Canada Inc.
    Inventors: Patrick LEBLANC, Frederic COTTON, Alain VALLEE, Edison MEN
  • Patent number: 8592090
    Abstract: An organic electrolyte battery (10) including positive electrode material (2) and negative electrode material (4) and, interposed therebetween, organic electrolyte (6), wherein positive electrode active material particles (8) as a constituent of the positive electrode have surfaces at least partially coated with attachment (12) with electronic conductance and ionic conductance not easily oxidized even when supplied with oxygen from the positive electrode active material. The above attachment (12) is composed of microparticles of inorganic solid electrolyte with ionic conductance (14) and microparticles of conductive material with electronic conductance (16).
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: November 26, 2013
    Assignee: Central Research Institute of Electric Power Industry
    Inventors: Hajime Miyashiro, Yo Kobayashi, Shiro Seki, Toru Iwahori
  • Publication number: 20130309561
    Abstract: A rechargeable lithium cell comprising: (a) an anode; (b) a cathode comprising a hybrid cathode active material composed of a graphene material and a phthalocyanine compound, wherein the graphene material is in an amount of from 0.1% to 99% by weight based on the total weight of the graphene material and the phthalocyanine compound combined; and (c) a porous separator disposed between the anode and the cathode and electrolyte in ionic contact with the anode and the cathode. This secondary cell exhibits a long cycle life and the best cathode specific capacity and best cell-level specific energy of all rechargeable lithium-ion cells ever reported.
    Type: Application
    Filed: May 17, 2012
    Publication date: November 21, 2013
    Inventors: Guorong Chen, Yanbo Wang, Aruna Zhamu, Bor Z. Jang
  • Patent number: 8574772
    Abstract: The main object of the present invention is to provide a solid electrolyte with intergranular resistance decreased. The present invention solves the above-mentioned problem by providing a solid electrolyte comprising a garnet-type compound with Li ion conductivity as the main component, characterized in that a phosphate group-containing Li ion conductor is provided between particles of the above-mentioned garnet-type compound, and the phosphate group-containing Li ion conductor has a smaller particle diameter than a particle diameter of the above-mentioned garnet-type compound and makes face contact with the above-mentioned garnet-type compound.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: November 5, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Suyama, Koji Kawamoto
  • Publication number: 20130288134
    Abstract: An object of the present invention is to provide a sulfide solid electrolyte glass with high Li ion conductivity. The present invention achieves the above-mentioned object by providing a sulfide solid electrolyte glass comprising Li4P2S6, characterized by having a glass transition point.
    Type: Application
    Filed: August 5, 2010
    Publication date: October 31, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigenori Hama, Takamasa Ohtomo, Yuki Kato, Koji Kawamoto
  • Patent number: 8568931
    Abstract: To provide a non-aqueous electrolyte solution for secondary batteries, by which a secondary battery having both high conductivity and stability free from thermal runaway may be obtained. A non-aqueous electrolyte solution for secondary batteries, which comprises a lithium salt (a1) represented by R1—CHF—SO2—N(Li)—SO2—CHF—R2 wherein in the formula (a1), each of R1 and R2 which are independent of each other, is a fluorinated C1-5 alkyl group which may contain an ethereal oxygen atom, or a fluorine atom, an inorganic lithium salt (a2), and a solvent, wherein the proportion of the lithium salt (a1) based on the total amount i.e. 100 mol % of the lithium salt (a1) and the inorganic lithium salt (a2) is from 5.0 to 20.0 mol %.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: October 29, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Masao Iwaya, Ryuji Seki, Shouji Furuta
  • Publication number: 20130280581
    Abstract: The present invention relates to vacuum-deposited solid state electrolyte layers with high ionic conductivity in electrochemical devices, and methods and tools for fabricating said electrolyte layers. An electrochemical device may comprise solid state electrolytes with incorporated thin layers and/or particles of transition metal oxides, silicon, silicon oxide, or other suitable materials that will induce an increase in ionic conductivity of the electrolyte stack (for example, materials with which lithium is able to intercalate), or mixtures thereof. An improvement in ionic conductivity of the solid state electrolyte is expected which is proportional to the number of incorporated layers or a function of the distribution uniformity and density of the particles within the electrolyte. Embodiments of the present invention are applicable to solid state electrolytes in a broad range of electrochemical devices including thin film batteries, electrochromic devices and ultracapacitors.
    Type: Application
    Filed: April 18, 2013
    Publication date: October 24, 2013
    Inventors: Lizhong SUN, Chong JIANG, Byung-Sung Leo KWAK
  • Publication number: 20130273438
    Abstract: A positive-electrode body 1 is prepared that includes a positive-electrode active-material layer 12 including a powder-molded body, and a positive-electrode-side solid-electrolyte layer (PSE layer) 13 that is amorphous and formed on the positive-electrode active-material layer 12 by a vapor-phase process. A negative-electrode body 2 is prepared that includes a negative-electrode active-material layer 22 including a powder-molded body, and a negative-electrode-side solid-electrolyte layer (NSE layer) 23 that is amorphous and formed on the negative-electrode active-material layer 22 by a vapor-phase process. The positive-electrode body 1 and the negative-electrode body 2 are bonded together by subjecting the electrode bodies 1 and 2 being arranged such that the solid-electrolyte layers 13 and 23 of the electrode bodies 1 and 2 are in contact with each other, to a heat treatment under application of a pressure to crystallize the PSE layer 13 and the NSE layer 23.
    Type: Application
    Filed: December 28, 2011
    Publication date: October 17, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kentaro Yoshida, Kazuhiro Goto, Ryoko Kanda, Tomoharu Takeyama
  • Publication number: 20130273407
    Abstract: A non-aqueous electrochemical cell is disclosed having a heat-resistant coating on at least one of a negative electrode, a positive electrode, and a separator, if provided. The heat-resistant coating may consume heat in the cell to stabilize the cell, act as an electrical insulator to prevent the cell from short circuiting, and increase the mechanical strength and compression resistance of the coated component. In certain embodiments, the heat-resistant coating serves as a solid state electrolyte to produce a solid state electrochemical cell.
    Type: Application
    Filed: May 17, 2013
    Publication date: October 17, 2013
    Inventors: Kostyantyn KYLYVNYK, Naoki OTA, Hiroyuki YUMOTO
  • Publication number: 20130273437
    Abstract: Provided is an all solid state battery which has the same level of discharge capacity as in the case of using an electrolyte solution, and is able to improve the cycle stability. An all solid state battery includes a solid electrolyte layer, as well as a positive electrode layer and a negative electrode layer provided in positions opposed to each other with the solid electrolyte layer interposed therebetween. At least one of the positive electrode layer and the negative electrode layer is bonded to the solid electrolyte layer by firing. The negative electrode layer contains an electrode active material composed of a metal oxide containing no lithium, and a solid electrolyte containing no titanium.
    Type: Application
    Filed: December 13, 2012
    Publication date: October 17, 2013
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Makoto Yoshioka, Masutaka Ouchi, Takeshi Hayashi, Kunio Nishida
  • Patent number: 8557412
    Abstract: It is a major object of the invention to provide a method for processing a battery member, by which a cathode active material and a sulfide solid electrolyte material can be efficiently separated from each other and the cathode active material and Li contained in the sulfide solid electrolyte material can be efficiently recovered.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: October 15, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasushi Tsuchida, Yukinari Kotani, Yukiyoshi Ueno, Shigenori Hama, Hirofumi Nakamoto, Hiroshi Nagase, Masato Kamiya
  • Patent number: 8551661
    Abstract: The present invention relates to non-aqueous electrolytes having stabilization additives and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, a first additive that is a substituted or unsubstituted organoamine, substituted or unsubstituted alkane, substituted or unsubstituted alkene, or substituted or unsubstituted aryl compound, and/or a second additive that is a metal (chelato)borate. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes, the new electrolytes provide batteries with improved calendar and cycle life.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: October 8, 2013
    Assignee: Uchicago Argonne, LLC
    Inventors: Khalil Amine, Jaekook Kim, Donald R. Vissers
  • Patent number: 8546021
    Abstract: A non-aqueous electrolyte solution for a lithium secondary battery includes a lithium salt and an organic solvent and further includes a solvent having a fluoro group and a specific siloxane compound. A lithium secondary battery having the above non-aqueous electrolyte solution exhibits greatly improved capacity recovery characteristics after high temperature storage and also reduces side effects such as swelling.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: October 1, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Soo-Jin Kim, Jeong-Ju Cho, Su-Jin Yoon, Mi-Young Son, Jong-Ho Jeon
  • Patent number: 8546022
    Abstract: The invention relates to a bilayer polymer electrolyte for a lithium battery. The electrolyte comprises the layers N and P, each composed of a solid solution of an Li salt in a polymer material, the Li salt being the same in both layers, the polymer material content being at least 60% by weight, and the lithium salt content being from 5 to 25% by weight. The polymer material of the layer P contains a solvating polymer and a nonsolvating polymer, the weight ratio of the two polymers being such that the solvating polymer forms a continuous network. The polymer material of the layer N is composed of a solvating polymer and optionally a nonsolvating polymer, the weight ratio of the two polymers being such that the solvating polymer forms a continuous network, and the nonsolvating polymer does not form a continuous network.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: October 1, 2013
    Assignee: Batscap
    Inventor: Marc Deschamps
  • Publication number: 20130244099
    Abstract: A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.
    Type: Application
    Filed: May 3, 2013
    Publication date: September 19, 2013
    Applicant: UT-Battelle, LLC
    Inventors: Chaitanya K. Narula, Claus Daniel
  • Patent number: 8535834
    Abstract: The battery includes an electrolyte activating a positive electrode and a negative electrode. The electrolyte includes a plurality of salts in a solvent, one or more passivation salts in the solvent, and one or more passivation additives in the solvent. At least one of the passivation salts forms a passivation layer on the negative electrode during discharge of the battery and includes both lithium and boron. At least one of the salts is an inorganic lithium salt that excludes boron. The solvent includes one or more organic solvents. At least one of the passivation additives forms a passivation layer on the negative electrode during discharge of the battery and is not a salt. The positive electrode has one or more positive active materials that each include a lithium transition-metal oxide and the negative electrodes includes a negative active material selected from a group consisting of lithium metal and graphite.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: September 17, 2013
    Inventor: Sang Young Yoon
  • Patent number: 8524401
    Abstract: An electrolyte for a lithium battery and a lithium battery including the electrolyte.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: September 3, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Yong-Beom Lee, Sun-Young Kim, Bo-Ra Lee, Sin-Young Park
  • Publication number: 20130224603
    Abstract: A lithium-ion cell comprising: (A) a cathode comprising graphene as the cathode active material having a surface area to capture and store lithium thereon and wherein said graphene cathode is meso-porous having a specific surface area greater than 100 m2/g; (B) an anode comprising an anode active material for inserting and extracting lithium, wherein the anode active material is mixed with a conductive additive and/or a resin binder to form a porous electrode structure, or coated onto a current collector in a coating or thin film form; (C) a porous separator disposed between the anode and the cathode; (D) a lithium-containing electrolyte in physical contact with the two electrodes; and (E) a lithium source disposed in at least one of the two electrodes when the cell is made. This new Li-ion cell exhibits an unprecedentedly high energy density.
    Type: Application
    Filed: February 27, 2012
    Publication date: August 29, 2013
    Inventors: Guorong Chen, Aruna Zhamu, Xiging Wang, Bor Z. Jang, Yanbo Wang, Qing Fang
  • Publication number: 20130216917
    Abstract: The invention relates to a lithium vanadium oxide which corresponds to the formula Li1+?V3O8 (0.1???0.25). It is composed of agglomerates of small needles having a length l from 400 to 1000 nm, a width w such that 10<l/w<100 and a thickness t such that 10<l/t<100. It is obtained by a process consisting in preparing a precursor gel by bringing ?-V2O5 and a Li precursor into contact in amounts such that the ratio of the concentrations [V2O5]/[Li] is between 1.15 and 1.5 and in subjecting the gel to a heat treatment comprising a first stage at 80° C.-150° C. for 3 h to 15 days and a second stage between 250° C. and 350° C. for 4 min to 1 hour, under a nitrogen or argon atmosphere. It is useful as an active material of a positive electrode.
    Type: Application
    Filed: April 5, 2013
    Publication date: August 22, 2013
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, BATSCAP
    Inventors: Dominique GUYOMARD, Joel GAUBICHER, Marc DESCHAMPS, Matthieu DUBARRY, Benoit MOREL
  • Publication number: 20130196234
    Abstract: An electrolyte composition and catalyst ink, a solid electrolyte membrane formed by printing the electrolyte composition and catalyst ink, and a secondary battery including the solid electrolyte membrane. An electrolyte composition includes a solvent; a lithium salt dissolved in the solvent; and a cycloolefin-based monomer dissolved or dispersed in the solvent and a catalyst ink includes a catalyst that promotes the ring-opening and polymerization reactions of the cycloolefin monomers of the electrolyte composition.
    Type: Application
    Filed: March 14, 2013
    Publication date: August 1, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Publication number: 20130189588
    Abstract: An object of the present invention is to provide a solid electrolyte membrane which comprises Li3xLa2/3-xTiO3 (0.05?x?0.17) and has excellent ion conductivity. Disclosed is a method for producing a solid electrolyte membrane which comprises a solid electrolyte described by the composition formula Li3xLa2/3-xTiO3 (0.05?x?0.17), the method comprising the steps of: producing a gas phase material comprising lithium, lanthanum and titanium by converting into a gas phase at least one selected from the group consisting of a lithium metal, a lanthanum metal, a titanium metal, a lithium-lanthanum alloy, a lithium-titanium alloy, a lanthanum-titanium alloy and a lithium-lanthanum-titanium alloy, and depositing an Li3xLa2/3-xTiO3 (0.05?x?0.17) thin film on a substrate by a gas phase method for reacting the gas phase material with oxygen in a single element state.
    Type: Application
    Filed: April 18, 2012
    Publication date: July 25, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Chihiro YADA, Brian Elliott HAYDEN, Duncan Clifford Alan SMITH, Christopher Edward LEE
  • Publication number: 20130189590
    Abstract: A mineral electrolyte membrane wherein: the membrane is a porous membrane made of an electrically insulating metal or metalloid oxide comprising a first main surface (1) and a second main surface (2) separated by a thickness (3); through pores or channels (4) open at their both ends (5,6), having a width of 100 nm or less, oriented in the direction of the thickness (3) of the membrane and all substantially parallel over the entire thickness (3) of the membrane, connect the first main surface (1) and the second main surface (2); and an electrolyte, in particular a polymer electrolyte is confined in the pores (4) of the membrane. An electrochemical device, in particular a lithium-metal or lithium-ion storage battery comprising said membrane.
    Type: Application
    Filed: July 22, 2011
    Publication date: July 25, 2013
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Zanotti Jean-Marc, Lagrene Karine
  • Patent number: 8492035
    Abstract: A polymer composition for a rechargeable lithium battery including a polymer of a first monomer selected from methylmethacrylate (MMA), acrylonitrile (AN), or a combination thereof, and a second monomer of ethylene oxide (EO), as well as a lithium salt.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: July 23, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Tae-Keun Kim, Sae-Weon Roh, Sang-Woog Ryu
  • Patent number: 8492034
    Abstract: A battery using an electrolyte with which favorable ion conductivity is able to be secured at low temperature is provided. A solid electrolyte is provided between a cathode in which a cathode active material layer is formed on a cathode current collector and an anode in which an anode active material layer is formed on an anode current collector. The electrolyte contains carbon cluster such as fullerene and an electrolyte salt such as a lithium salt. Thereby, compared to an electrolyte composed of a polymer compound such as polyethylene oxide and a lithium salt, lowering of ion conductivity is inhibited at low temperature.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: July 23, 2013
    Assignee: Sony Corporation
    Inventors: Kazumasa Takeshi, Hiroyuki Morioka
  • Publication number: 20130183589
    Abstract: A battery sintered body, in which charge-discharge properties are restrained from deteriorating in accordance with sintering, and a producing method thereof. A battery sintered body includes: a phosphate compound of a nasicon type as a solid electrolyte material; and any one of an oxide of a spinel type containing at least one of Ni and Mn, LiCoO2 and a transition metal oxide as an active material, wherein a component except a component of the above-mentioned solid electrolyte material and a component of the above-mentioned active material is not detected on an interface between the above-mentioned solid electrolyte material and the above-mentioned active material in analyzing by an X-ray diffraction method.
    Type: Application
    Filed: September 27, 2011
    Publication date: July 18, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshitaka Minamida, Chihiro Yada, Keiichi Kohama
  • Patent number: 8481205
    Abstract: A nonaqueous electrolyte includes: a nonaqueous solvent; an electrolyte salt; a hydrocarbon compound having a nitrile group; and at least one of a heteropolyacid and a heteropolyacid compound.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: July 9, 2013
    Assignee: Sony Corporation
    Inventors: Ichiro Yamada, Shunsuke Saito, Haruo Watanabe, Tadahiko Kubota
  • Patent number: 8476174
    Abstract: There is provided a lithium ion conductive glass-ceramics which is dense, contains few microvoids causing the decrease in lithium ion conductivity, and achieves good lithium ion conductivity. A glass-ceramics which comprises at least crystallines having an LiTi2P3O12 structure, the crystallines satisfying 1<IA113/IA104?2, wherein IA104 is the peak intensity assigned to the plane index 104 (2?=20 to 21°), and IA113 is the peak intensity assigned to the plane index 113 (2?=24 to 25°) as determined by X-ray diffractometry.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: July 2, 2013
    Assignee: Ohara, Inc.
    Inventor: Yasushi Inda
  • Patent number: 8475963
    Abstract: The microbattery is formed by a stack of solid thin layers on a substrate which, starting from the substrate, successively comprises a first electrode, a solid electrolyte and a second electrode/current collector assembly. A first surface and a second surface of the electrolyte are respectively in contact with a main surface of the first electrode and a main surface of the second electrode/current collector assembly. The dimensions of the main surface of the first electrode are smaller than the dimensions of the main surface of said assembly, and the dimensions of the first surface of the solid electrolyte are smaller than the dimensions of the second surface of the solid electrolyte. The solid electrolyte is furthermore not in contact with the substrate.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: July 2, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Sami Oukassi, Raphael Salot, Nicolas Dunoyer, Steve Martin
  • Publication number: 20130164632
    Abstract: An object of the present invention is to provide a sulfide solid electrolyte glass producing a tiny amount of hydrogen sulfide. The present invention attains the above-mentioned object by providing a sulfide solid electrolyte glass including Li3PS4, characterized in that Li4P2S7 is not detected by 31P NMR measurement and the content of Li2S as determined by XPS measurement is 3% by mol or less.
    Type: Application
    Filed: July 22, 2010
    Publication date: June 27, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuki Kato, Koji Kawamoto, Shigenori Hama, Takamasa Otomo
  • Publication number: 20130137010
    Abstract: A method of forming a solid, dense, hermetic lithium-ion electrolyte membrane comprises combing an amorphous, glassy, or low melting temperature solid reactant with a refractory oxide reactant to form a mixture, casting the mixture to form a green body, and sintering the green body to form a solid membrane. The resulting electrolyte membranes can be incorporated into lithium-ion batteries.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 30, 2013
    Inventors: Bruce Gardiner Aitken, Michael Edward Badding, George Halsey Beall, Curtis Robert Fekety, Lanrik Wayne Kester, Robert Michael Morena, Zhen Song
  • Patent number: 8449628
    Abstract: Disclosed are an inexpensive all-solid-state lithium battery and a group of batteries having a small internal resistance. The electrode active material of the battery is formed on the surface of a solid electrolyte (it may be a crystal or a glass material) containing lithium ion such as Li3.4V0.6Si0.4O4 and a Li—Ti—Al—P—O based glass material by exerting ion impact, high voltage application (e.g., about 400 V) and the like on the surface to react it. The resultant battery comprises the solid electrolyte and an electrode active material composed of a decomposition product of the solid electrolyte and provided on at least one side of the solid electrolyte. One obtainable by accumulating a plurality of the batteries serves as a group of batteries.
    Type: Grant
    Filed: November 11, 2005
    Date of Patent: May 28, 2013
    Assignee: Kyoto University
    Inventors: Zempachi Ogumi, Yasutoshi Iriyama, Takeshi Abe, Chihiro Yada
  • Patent number: 8449790
    Abstract: A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: May 28, 2013
    Assignee: UT-Battelle, LLC
    Inventors: Chaitanya K. Narula, Claus Daniel
  • Publication number: 20130130069
    Abstract: A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1×107 Pa and an ionic conductivity of at least 1×10?5 Scm?1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 23, 2013
    Inventors: Scott Mullin, Ashoutosh Panday, Nitash Pervez Balsara, Mohit Singh, Hany Basam Eitouni, Enrique Daniel Gomez
  • Patent number: 8445136
    Abstract: Protected anode architectures for active metal anodes have a polymer adhesive seal that provides an hermetic enclosure for the active metal of the protected anode inside an anode compartment. The compartment is substantially impervious to ambient moisture and battery components such as catholyte (electrolyte about the cathode), and prevents volatile components of the protected anode, such as anolyte (electrolyte about the anode), from escaping. The architecture is formed by joining the protected anode to an anode container. The polymer adhesive seals provide an hermetic seal at the joint between a surface of the protected anode and the container.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: May 21, 2013
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Alexei Petrov
  • Patent number: 8445140
    Abstract: Solid polymer electrolyte (SPE) comprising at least one electrolyte salt and at least one linear triblock copolymer A-B-A, in which: the blocks A are polymers that may be prepared from one or more monomers chosen from styrene, o-methylstyrene, p-methylstyrene, m-t-butoxystyrene, 2,4-dimethylstyrene, m-chlorostyrene, p-chlorostyrene, 4-carboxystyrene, vinylanisole, vinylbenzoic acid, vinylaniline, vinylnaphthalene, 9-vinylanthracene, 1 to 10C alkyl methacrylates, 4-chloromethylstyrene, divinylbenzene, trimethylolpropane triacrylate, tetramethylolpropane tetraacrylate, 1 to 10C alkyl acrylates, acrylic acid and methacrylic acid; the block B is a polymer that may be prepared from one or more monomers chosen from ethylene oxide (EO), propylene oxide (PO), poly(ethylene glycol) acrylates (PEGA) and poly(ethylene glycol) methacrylates (PEGMA). Rechargeable battery cell or accumulator comprising an anode and a cathode between which is intercalated the said solid polymer electrolyte.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: May 21, 2013
    Assignee: Arkema France
    Inventors: Denis Bertin, Trang Phan, Renaud Bouchet
  • Publication number: 20130122376
    Abstract: A composition for forming a solid electrolyte layer for use in the formation of a solid electrolyte layer of a lithium ion secondary battery contains first particles made of a lanthanum titanate and second particles made of a lithium titanate. It is preferable that the first particles have an average particle size of 50 nm or more and 300 nm or less. It is preferable that the second particles have an average particle size of 10 nm or more and 50 nm or less.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 16, 2013
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Seiko Epson Corporation
  • Publication number: 20130122398
    Abstract: An electrochemical or electric layer system, having at least two electrode layers and at least one ion-conducting layer disposed between two electrode layers. The ion-conducting layer has at least one ion-conducting solid electrolyte and at least one binder at grain boundaries of the at least one ion-conducting solid electrolyte for improving the ion conductivity over the grain boundaries and the adhesion of the layers.
    Type: Application
    Filed: May 16, 2011
    Publication date: May 16, 2013
    Applicant: CONTINENTAL AUTOMOTIVE GMBH
    Inventors: Peter Birke, Olaf Böse, Michael Keller, Michael Schiemann, Hans-Georg Schweiger
  • Patent number: 8431279
    Abstract: Novel mixed alkali metal borohydrides are disclosed which can be used as hydrogen storage materials.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: April 30, 2013
    Assignee: Isis Innovation Limited
    Inventors: William I. F. David, Marco Sommariva, Peter P. Edwards, Simon R. Johnson, Martin Owen Jones, Elizabeth Anne Nickels
  • Publication number: 20130097854
    Abstract: A method for producing a sulfide solid electrolyte material having a small amount of hydrogen sulfide generation and a high Li ion conductivity. To achieve the above, a method for producing a sulfide solid electrolyte material is provided, including steps of: a providing step for providing a crystallized sulfide solid electrolyte material prepared by using a raw material composition containing Li2S and P2S5; and an amorphizing step for applying amorphization treatment to the crystallized sulfide solid electrolyte material.
    Type: Application
    Filed: June 29, 2010
    Publication date: April 25, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuki Kato, Koji Kawamoto, Shigenori Hama, Takamasa Otomo
  • Publication number: 20130095390
    Abstract: A material C-AxM(XO4)y that is of particles of a compound of the formula AxM(XO4)y, wherein said particles include a carbon deposit deposited by means of pyrolysis on at least a portion of the surface thereof, and where: A is Li alone or partially replaced by at most 10 atomic % of Na or K; M is Fe(II), or Mn(II), or mixtures thereof alone or partially replaced by at most 30 atomic % of one or more metals selected from Mn, Ni and Co and/or at most 5% of Fe(III); XO4 is PO4 alone or partially replaced by at most 10 molar % of at least one group selected from SO4, SiO4 and MoO4; and where said material has a calcium impurity content of lower than about 1000 ppm.
    Type: Application
    Filed: December 4, 2012
    Publication date: April 18, 2013
    Applicant: PHOSTECH LITHIUM INC.
    Inventor: PHOSTECH LITHIUM INC.
  • Publication number: 20130095389
    Abstract: The disclosed embodiments provide a battery cell. The battery cell includes a cathode current collector containing graphene, a cathode active material, an electrolyte, an anode active material, and an anode current collector. The graphene may reduce the manufacturing cost and/or increase the energy density of the battery cell.
    Type: Application
    Filed: October 13, 2011
    Publication date: April 18, 2013
    Applicant: APPLE INC.
    Inventors: Ramesh C. Bhardwaj, Richard M. Mank
  • Publication number: 20130084505
    Abstract: A main object of the present invention is to provide a Li—La—Zr—O-based solid electrolyte material having favorable denseness. The present invention solves the problem by providing a solid electrolyte material including Li, La, Zr, Al, Si and O, having a garnet structure, and being a sintered body.
    Type: Application
    Filed: July 6, 2011
    Publication date: April 4, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasutoshi Iriyama, Shota Kumazaki, Murugan Ramaswamy, Yutaka Hirose
  • Patent number: 8404388
    Abstract: Protected anode architectures have ionically conductive protective membrane architectures that, in conjunction with compliant seal structures and anode backplanes, effectively enclose an active metal anode inside the interior of an anode compartment. This enclosure prevents the active metal from deleterious reaction with the environment external to the anode compartment, which may include aqueous, ambient moisture, and/or other materials corrosive to the active metal. The compliant seal structures are substantially impervious to anolytes, catholyes, dissolved species in electrolytes, and moisture and compliant to changes in anode volume such that physical continuity between the anode protective architecture and backplane are maintained. The protected anode architectures can be used in arrays of protected anode architectures and battery cells of various configurations incorporating the protected anode architectures or arrays.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: March 26, 2013
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard De Jonghe, Bruce D. Katz, Alexei Petrov
  • Patent number: 8404386
    Abstract: The invention provides a method of readily manufacturing a lithium secondary battery including a solid electrolyte layer having space for accommodating deposited lithium. A lithium secondary battery includes a positive electrode element, a negative electrode element and a solid electrolyte layer placed between them. A method of manufacturing the battery includes a first step of stacking at least a first group of particles and a second group of particles to form the solid electrolyte layer, the second group of particles having an average particle diameter larger than that of the first group of particles, and a second step of stacking the positive and negative electrode elements on the solid electrolyte layer such that the negative electrode element is in contact with a surface of the second group of particles in the solid electrolyte layer.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: March 26, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kenji Kimura
  • Publication number: 20130071757
    Abstract: A main object of the present invention is to provide a solid electrolyte material having excellent Li ion conductivity. To attain the object, the present invention provides a solid electrolyte material represented by a general formula: Lix(La1-aM1a)y(Ti1-bM2b)zO?, characterized in that “x”, “y”, and “z” satisfy relations of x+y+z=1, 0.652?x/(x+y+z)?0.753, and 0.167?y/(y+z)?0.232; “a” is 0?a?1; “b” is 0?b?1; “?” is 0.8???1.2; “M1” is at least one selected from the group consisting of Sr, Na, Nd, Pr, Sm, Gd, Dy, Y, Eu, Tb, and Ba; and “M2” is at least one selected from the group consisting of Mg, W, Mn, Al, Ge, Ru, Nb, Ta, Co, Zr, Hf, Fe, Cr, and Ga.
    Type: Application
    Filed: April 13, 2010
    Publication date: March 21, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Chihiro Yada, Hiroshi Suyama, Shoji Yokoishi, Brian Elliott Hayden, Thierry Le Gall, Duncan Clifford Alan Smith, Christopher Edward Lee
  • Publication number: 20130071756
    Abstract: A main object of the present invention is to provide a solid electrolyte material having excellent Li ion conductivity. To attain the object, the present invention provides a solid electrolyte material represented by a general formula: Lix(La2-aM1a)(Ti3-bM2b)O9+?, characterized in that “x” is 0<x?1; “a” is 0?a?2; “b” is 0?b?3; “?” is ?2???2; “M1” is at least one selected from the group consisting of Sr, Na, Nd, Pr, Sm, Gd, Dy, Y, Eu, Tb, and Ba; and “M2” is at least one selected from the group consisting of Mg, W, Mn, Al, Ge, Ru, Nb, Ta, Co, Zr, Hf, Fe, Cr, and Ga.
    Type: Application
    Filed: April 13, 2010
    Publication date: March 21, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Chihiro Yada, Hiroshi Suyama, Shoji Yokoishi, Brian Elliott Hayden, Thierry Le Gall, Duncan Clifford Alan Smith, Christopher Edward Lee
  • Patent number: 8399138
    Abstract: One embodiment includes a method for recharging a lithium ion battery, including providing a lithium ion battery comprising used liquid electrode material; removing said used liquid electrode material from said lithium ion battery; and, introducing a relatively unused liquid electrode material into the lithium ion battery to replace the used liquid electrode material.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: March 19, 2013
    Assignee: GM Global Technology Operations LLC
    Inventor: Adam T Timmons