The Alkali Metal Is Lithium Patents (Class 429/322)
  • Patent number: 7998622
    Abstract: An all solid type lithium ion secondary battery which has high heat resistance and can be used over a broad temperature range, has a high battery capacity and an excellent charging-discharging characteristic, and can be used stably for a long period of time includes an inorganic substance including a lithium ion conductive crystalline and is substantially free of an organic substance and an electrolytic solution. The inorganic substance comprising a lithium ion conductive crystalline preferably is lithium ion conductive glass-ceramics.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: August 16, 2011
    Assignee: Kabushiki Kaisha Ohara
    Inventor: Yasushi Inda
  • Publication number: 20110177397
    Abstract: An all solid state battery having high output performance and a manufacturing method thereof are provided. The all solid state battery of the present invention comprises a negative electrode layer, a positive electrode layer, and a solid electrolyte layer having a lithium ion conductivity. At least one layer of the solid electrolyte, the positive electrode layer, and the negative electrode layer includes a lithium ion conductive crystal and AxByOz (A is one or more selected from the group consisting of Al, Ti, Li, Ge, and Si. B is one or more selected from the group consisting of P, N, and C, wherein 1?X?4, 1?Y?5, and 1?Z?7). The solid electrolyte material to which a preferable sintering additive is added in a predetermined ratio is densified by firing at relatively low temperature in the manufacturing process. The ion conductivity thereof is also high.
    Type: Application
    Filed: January 19, 2011
    Publication date: July 21, 2011
    Applicant: OHARA INC.
    Inventor: Kazuhito Ogasa
  • Patent number: 7981550
    Abstract: A primary cell having an anode comprising lithium and a cathode comprising iron disulfide (FeS2) and carbon particles. The cell can be in the configuration of a coin cell or the anode and cathode can be spirally wound with separator therebetween and inserted into the cell casing with electrolyte then added. The electrolyte comprises a lithium salt dissolved in a nonaqueous solvent mixture which may include an organic cyclic carbonate such as ethylene carbonate and propylene carbon. The cell after assembly is subjected to a two step preconditioning (predischarge) protocol involving at least two distinct discharge steps having at lease one cycle of pulsed current drain in each step and at least one rest period (step rest) between said two steps, wherein said step rest period is carried out for a period of time at above ambient temperature. The preconditioning improves cell performance.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: July 19, 2011
    Assignee: The Gillette Company
    Inventors: Nikolai N. Issaev, Michael Pozin
  • Publication number: 20110171537
    Abstract: The present invention provides a process for producing a lithium sulfide-carbon composite, the process comprising placing a mixture of lithium sulfide and a carbon material having a specific surface area of 60 m2/g or more in an electrically-conductive mold in a non-oxidizing atmosphere, and applying a pulsed direct current to the mold while pressurizing the mixture in a non-oxidizing atmosphere, thereby subjecting the lithium sulfide and the carbon material to heating reaction; and a lithium sulfide-carbon composite obtained by this process, the composite having a carbon content of 15 to 70 weight %, and a tap density of 0.4 g/cm3 or more when the carbon content is 30 weight % or more, or a tap density of 0.5 g/cm3 or more when the carbon content is less than 30 weight %.
    Type: Application
    Filed: August 24, 2009
    Publication date: July 14, 2011
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE TECHNOLOGY
    Inventors: Tomonari Takeuchi, Hikari Sakaebe, Tetsuo Sakai, Kuniaki Tatsumi, Hiroshi Senoh, Hiroyuki Kageyama, Mitsuharu Tabuchi
  • Publication number: 20110165471
    Abstract: Provided is an anode for use in electrochemical cells, wherein the anode active layer has a first layer comprising lithium metal and a multi-layer structure comprising single ion conducting layers and polymer layers in contact with the first layer comprising lithium metal or in contact with an intermediate protective layer, such as a temporary protective metal layer, on the surface of the lithium-containing first layer. Another aspect of the invention provides an anode active layer formed by the in-situ deposition of lithium vapor and a reactive gas. The anodes of the current invention are particularly useful in electrochemical cells comprising sulfur-containing cathode active materials, such as elemental sulfur.
    Type: Application
    Filed: July 25, 2008
    Publication date: July 7, 2011
    Applicant: Sion Power Corporation
    Inventors: Terje A. Skotheim, Christopher J. Sheehan, Yuriy V. Mikhaylik, John D. Affinito
  • Patent number: 7968235
    Abstract: The present invention relates to non-aqueous electrolytes having stabilization additives and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, a first additive that is a substituted or unsubstituted organoamine, substituted or unsubstituted alkane, substituted or unsubstituted alkene, or substituted or unsubstituted aryl compound, and/or a second additive that is a metal(chelato)borate. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes, the new electrolytes provide batteries with improved calendar and cycle life.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: June 28, 2011
    Assignee: UChicago Argonne LLC
    Inventors: Khalil Amine, Jaekook Kim, Donald R. Vissers
  • Publication number: 20110151335
    Abstract: A lithium-sulfur cell comprising an anode structure, a cathode structure and an electrolyte section abutting to the cathode structure. The cathode structure comprises a continuous layer of nanotubes or nanowires and sulfur particles. The sulfur particles are attached to the nanotubes or nanowires. The continuous layer of nanotubes or nanowires abuts to at least a part of the electrolyte section. The invention further relates to a corresponding method for manufacturing the inventive cell.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 23, 2011
    Inventors: Gaetan Deromelaere, Richard Aumayer, Ulrich Eisele, Bernd Schumann, Martin Holger Koenigsmann
  • Publication number: 20110147207
    Abstract: The invention relates to a cathodic sputtering target composition comprising at least a solid lithium-based electrolyte and an inorganic carbon free polymer, and to a method for the manufacturing of cathodic solid sputtering targets using such a composition. The invention also relates to solid sputtering targets obtained by such a method and to their use for the preparation of solid thin films by a sputtering physical vapour deposition process, in particular for the preparation of solid electrolyte thin films inside thin film batteries.
    Type: Application
    Filed: June 17, 2009
    Publication date: June 23, 2011
    Inventors: Alain Levasseur, Brigitte Pecquenard
  • Publication number: 20110143213
    Abstract: There are provided an electric power generating element which has excellent cycle characteristics and which can be produced in satisfactory yield, and a nonaqueous electrolyte battery including the electric power generating element. In an electric power generating element including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer arranged between these electrode layers, the solid electrolyte layer containing Li, P, S, and O, the O content of the solid electrolyte layer is set so as to be reduced stepwise or continuously from the positive electrode layer side to the negative electrode layer side. When the electric power generating elements each having the structure are produced, most of them provide stable cycle characteristics, i.e.
    Type: Application
    Filed: March 30, 2010
    Publication date: June 16, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Nobuhiro Ota, Takashi Uemura
  • Publication number: 20110136017
    Abstract: A novel anode for a lithium battery cell is provided. The anode contains silicon nanoparticles embedded in a solid polymer electrolyte. The electrolyte can also act as a binder for the silicon nanoparticles. A plurality of voids is dispersed throughout the solid polymer electrolyte. The anode may also contain electronically conductive carbon particles. Upon charging of the cell, the silicon nanoparticles expand as take up lithium ions. The solid polymer electrolyte can deform reversibly in response to the expansion of the nanoparticles and transfer the volume expansion to the voids.
    Type: Application
    Filed: July 31, 2009
    Publication date: June 9, 2011
    Applicant: SEEO, INC
    Inventors: Mohit Singh, William Hudson
  • Publication number: 20110117440
    Abstract: A solid electrolyte comprising: LiBH4; and an alkali metal compound represented by the following formula (1): MX??(1) (in the formula (1), M represents an alkali metal atom, and X represents one selected from the group consisting of halogen atoms, NR2 groups (each R represents a hydrogen atom or an alkyl group) and N2R groups (R represents a hydrogen atom or an alkyl group)).
    Type: Application
    Filed: May 12, 2009
    Publication date: May 19, 2011
    Applicant: TOHOKU UNIVERSITY
    Inventors: Hideki Maekawa, Hitoshi Takamura, Shinichi Orimo, Motoaki Matsuo, Yuko Nakamori, Mariko Ando, Yasuto Noda, Taiki Karahashi
  • Publication number: 20110117417
    Abstract: Exemplary flexible thin film solid state lithium ion batteries (10) and methods for making the same are disclosed. An exemplary flexible solid state thin film electrochemical device (10) may include a flexible substrate (12), first (14) and second electrodes (18), and an electrolyte (16) disposed between the first (14) and second electrodes (18). The electrolyte (16) is disposed on the flexible substrate (12). The first electrode (14) is disposed on the electrolyte (16), and the second electrode (18) having been buried between the electrolyte (16) and the substrate (12).
    Type: Application
    Filed: February 25, 2008
    Publication date: May 19, 2011
    Applicant: Alliance for Sustainable Energy, LLC
    Inventor: John Roland Pitts
  • Patent number: 7939205
    Abstract: A method and apparatus for making thin-film batteries having composite multi-layered electrolytes with soft electrolyte between hard electrolyte covering the negative and/or positive electrode, and the resulting batteries. In some embodiments, foil-core cathode sheets each having a cathode material (e.g., LiCoO2) covered by a hard electrolyte on both sides, and foil-core anode sheets having an anode material (e.g., lithium metal) covered by a hard electrolyte on both sides, are laminated using a soft (e.g., polymer gel) electrolyte sandwiched between alternating cathode and anode sheets. A hard glass-like electrolyte layer obtains a smooth hard positive-electrode lithium-metal layer upon charging, but when very thin, have randomly spaced pinholes/defects. When the hard layers are formed on both the positive and negative electrodes, one electrode's dendrite-short-causing defects on are not aligned with the other electrode's defects.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: May 10, 2011
    Assignee: Cymbet Corporation
    Inventor: Jody J. Klaassen
  • Publication number: 20110104574
    Abstract: Nonaqueous electrolyte for high energy Li-ion batteries or batteries with lithium metal anode, in which the composition of additives are introduced to increase specific characteristics of lithium batteries including stability of the parameters during cycling and security of the battery operations, when the composition of the additives comprises the compounds from the class of esters, low molecular weight silicon quaternary ammonium salts, and macromolecular polymer organosilicon quaternary ammonium salts.
    Type: Application
    Filed: July 8, 2010
    Publication date: May 5, 2011
    Applicant: Enerize Corporation
    Inventors: Elena M. Shembel, Irina Maksyuta, Volodymyr Redko, Tymofiy V. Pastushkin
  • Patent number: 7935442
    Abstract: Disclosed is an electrochemical device, which comprises: (A) a binder comprising polymer particles obtained from the polymerization of: (a) 20-70 parts by weight of a (meth)acrylic acid ester monomer; (b) 20-60 parts by weight of a vinyl monomer; and (c) 0.01-30 parts by weight of an unsaturated carboxylic acid monomer, based on 100 parts by weight of a binder polymer; and (B) electrochemical cells stacked multiply by using the binder, wherein the binder allows electrode active material particles in an electrode to be fixed and interconnected among themselves and between the electrode active material and a collector, and the electrode and a separator that is in contact with the electrode are bonded to each other by way of hot fusion. The binder is also disclosed. The binder has excellent adhesion and thermal bonding characteristics, and thus is useful for an electrochemical device comprising multiply stacked electrochemical cells, and can improve the overall quality of a battery.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: May 3, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Byoung Yun Kim, Dong Jo Ryu, Ju Hyun Kim, Chang Sun Han, Eun Young Goh, Hyang Mok Lee
  • Patent number: 7931987
    Abstract: A lithium-ion battery includes a positive electrode comprising a current collector and a first active material comprising LiCoO2 and a negative electrode comprising a current collector, a second active material, and a third active material. The second active material comprises a lithium titanate material and the third active material is V2O5. The third active material exhibits charging and discharging capacity below a corrosion potential of the current collector of the negative electrode and above a decomposition potential of the first active material.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: April 26, 2011
    Assignee: Medtronic, Inc.
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Patent number: 7923153
    Abstract: A primary electrochemical cell and electrolyte incorporating a linear asymmetric ether is disclosed. The ether may include EME, used in combination with DIOX and DME, or have the general structural formula R1—O—CH2—CH2—O—R2 or R1—O—CH2—CH(CH3)—O—R2, where a total of at least 7 carbon atoms must be present in the compound, and R1 and R2 consist alkyl, cyclic, aromatic or halogenated groups but cannot be the same group (i.e., R1?R2).
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: April 12, 2011
    Assignee: Eveready Battery Company, Inc.
    Inventor: Weiwei Huang
  • Patent number: 7923580
    Abstract: A polymerizable boric compound for electrochemical devices represented by the formula (1), wherein, B represents a boron atom, Z represents a polymerizable functional group, X represents a divalent C1-12 hydrocarbon group or in the absence of X, Z and B form a direct bond, AO represents a C2-4 oxyalkylene group, m and n are each the number of moles of the oxyalkylene group added and each independently stands for 2 or greater but less than 6, and R1 and R2 each represents a C1-12 hydrocarbon group.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: April 12, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Norio Iwayasu, Shin Nishimura, Takefumi Okumura, Tetsuya Itoh, Takeshi Yabe
  • Publication number: 20110076570
    Abstract: A solid state electrolyte layer includes a sulfide solid state electrolyte material that is manufactured from a raw material composition containing Li2S and P2S5 and is substantially free of bridging sulfur, and a hydrophobic polymer for binding the sulfide solid state electrolyte material.
    Type: Application
    Filed: September 27, 2010
    Publication date: March 31, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigenori HAMA, Koji Kawamoto, Satoshi Wakasugi
  • Patent number: 7914932
    Abstract: An all-solid-state battery having a high output power and a long life, exhibiting high safety, and being produced at a low cost is provided. The all-solid-state battery has a cathode comprising a cathode material, an anode comprising an anode material, and a solid electrolyte layer comprising a solid electrolyte, wherein the cathode material, the anode material, and the solid electrolyte are a compound shown by the following formulas (1), (2), and (3), respectively: MaN1bX1c ??(1) MdN2eX2f ??(2) MgN3hX3i ??(3) wherein M represents H, Li, Na, Mg, Al, K, or Ca and X1, X2, and X3 are polyanions, each of N1 and N2 is at least one atom selected from the group consisting of transition metals, Al, and Cu, and N3 is at least one atom selected from the group consisting of Ti, Ge, Hf, Zr, Al, Cr, Ga, Fe, Sc, and In.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: March 29, 2011
    Assignees: NGK Insulators, Ltd., Kyushu University
    Inventors: Toshihiro Yoshida, Hiroyuki Katsukawa, Shigeto Okada
  • Publication number: 20110070503
    Abstract: The present invention relates to a solid electrolyte enables high ion conductivity, excellent voltage stability, low electric conductivity, homogeneous composition, reduced self-discharge and excellent atmosphere stability, a method of producing the same and a thin film battery comprising the same. The solid electrolyte according to the present invention is represented by the following formula.
    Type: Application
    Filed: August 25, 2008
    Publication date: March 24, 2011
    Applicant: GSNANO TECH CO., LTD.
    Inventors: Sangcheol Nam, Hoyoung Park, Youngchang Lim, Kichang Lee, Geunwan An, Giback Park, Hosung Hwang, Jimin Kim
  • Publication number: 20110065007
    Abstract: An electrode active material layer includes an electrode active material and a sulfide solid state electrolyte material which is fused to a surface of the electrode active material and is substantially free of bridging sulfur.
    Type: Application
    Filed: September 8, 2010
    Publication date: March 17, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masato KAMIYA, Yukiyoshi Ueno, Shigenori Hama, Yasushi Tsuchida
  • Publication number: 20110065006
    Abstract: The all-solid battery has two electrode layers of a positive electrode and a negative electrode interposing a solid electrolyte layer therebetween, in which at least one of the electrode layers is composed of a sintered body of a mixed material including at least one or more types of electrode active material particles comprising electrode active material and solid electrolyte particles comprising solid electrolyte, and a portion of at least 30% by area of a grain boundary surrounding the electrode active material particles has a coating layer with a thickness of 1 to 200 nm.
    Type: Application
    Filed: September 16, 2010
    Publication date: March 17, 2011
    Applicant: OHARA INC.
    Inventor: Kazuhito OGASA
  • Publication number: 20110059369
    Abstract: The invention relates to a lithium lanthanum titanate composite solid electrolyte material containing silicon in which amorphous Si or an amorphous Si compound exist in a grain boundary between crystal grains, and a method of producing the same, and belongs to a field of a lithium ion battery. According to the invention, the amorphous Si or the amorphous Si compound exist in the grain boundary between the crystal grains of the lithium lanthanum titanate. The amorphous Si or the amorphous Si compound are introduced into the grain boundary by employing a wet chemical method. In the wet chemical method, the inexpensive organosilicon compound is used as an additive, and the organosilicon compound is added into the lithium lanthanum titanate solid electrolyte material.
    Type: Application
    Filed: July 24, 2009
    Publication date: March 10, 2011
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, TSINGHUA UNIVERSITY
    Inventors: Cewen Nan, Ao Mei, Yuchuan Feng, Lin Yuanhua, Yoshitaka Minamida, Shoji Yokoishi
  • Patent number: 7901598
    Abstract: A solid electrolyte and a method of manufacturing the same are provided. The solid electrolyte contains x atomic % of lithium, y atomic % of phosphorus, z atomic % of sulfur, and w atomic % of oxygen, in which the x, the y, the z, and the w satisfy the following expressions (1)-(5): 20?x?45 ??(1) 10?y?20 ??(2) 35?z?60 ??(3) 1?w?10 ??(4) x+y+z+w=100 ??(5), and apexes of X-ray diffraction peaks in an X-ray diffraction pattern obtained by an X-ray diffraction method using a K?-ray of Cu exist at diffraction angles 2? of 16.7°±0.25°, 20.4°±0.25°, 23.8°±0.25°, 25.9°, 0.25°, 29.4°±0.25°, 30.4°±0.25°, 31.7°±0.25°, 33.5°±0.25°, 41.5°±0.25°, 43.7°±0.25°, and 51.2°±0.25°, respectively, in the X-ray diffraction pattern, and a half-width of each of the X-ray diffraction peaks is not larger than 0.5°.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: March 8, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Nobuhiro Ota
  • Patent number: 7901658
    Abstract: The present invention concerns chemically stable solid lithium ion conductors, processes for their production and their use in batteries, accumulators, supercaps and electrochromic devices.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: March 8, 2011
    Inventors: Werner Weppner, Venkataraman Thangadurai
  • Publication number: 20110053001
    Abstract: Amorphous lithium lanthanum zirconium oxide (LLZO) is formed as an ionically-conductive electrolyte medium. The LLZO comprises by percentage of total number of atoms from about 0.1% to about 50% lithium, from about 0.1% to about 25% lanthanum, from about 0.1% to about 25% zirconium, from about 30% to about 70% oxygen and from 0.0% to about 25% carbon. At least one layer of amorphous LLZO may be formed through a sol-gel process wherein quantities of lanthanum methoxyethoxide, lithium butoxide and zirconium butoxide are dissolved in an alcohol-based solvent to form a mixture which is dispensed into a substantially planar configuration, transitioned through a gel phase, dried and cured to a substantially dry phase.
    Type: Application
    Filed: August 2, 2010
    Publication date: March 3, 2011
    Applicant: EXCELLATRON SOLID STATE LLC
    Inventors: Davorin Babic, Stanley Jones
  • Publication number: 20110052998
    Abstract: The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.
    Type: Application
    Filed: September 2, 2010
    Publication date: March 3, 2011
    Applicant: UT-Battelle, LLC
    Inventors: Chengdu Liang, Nancy J. Dudney, Jane Y. Howe
  • Publication number: 20110053002
    Abstract: The present invention provides a ceramic material capable of demonstrating compactness and Li ion conductivity to an extent that enables the use of the ceramic material as a solid-state electrolyte material for a lithium secondary battery, or the like. A ceramic material containing Li, La, Zr, Nb and/or Ta, as well as O and having a garnet-type or garnet-like crystal structure is used.
    Type: Application
    Filed: September 1, 2010
    Publication date: March 3, 2011
    Applicant: NGK Insulators, Ltd.
    Inventors: Yoshihiko Yamamura, Tatsuya Hattori, Toshihiro Yoshida, Akihiko Honda, Yosuke Sato
  • Publication number: 20110039162
    Abstract: An all-solid secondary battery having excellent output characteristics and cycle characteristics, and a positive electrode used therefor includes a positive electrode active material which includes LiMeO2. The Me includes at least one metal element. A variation rate of the lattice constant a and a variation rate of the lattice constant c between LiMeO2 before the deintercalation of Li and Li1-xMeO2 (0<X<0.8) after the deintercalation of Li are 1% or less, respectively.
    Type: Application
    Filed: August 4, 2010
    Publication date: February 17, 2011
    Applicant: Samsung Electronics Co., Ltd.
    Inventor: Hideaki MAEDA
  • Patent number: 7883797
    Abstract: A non-aqueous electrolyte battery that contains a molten salt electrolyte and has the enhanced output performances and cycle performances can be provided. The electrolyte has a molar ratio of lithium salt to molten salt of from 0.3 to 0.5, and the non-aqueous electrolyte battery has a positive electrode having a discharge capacity of 1.05 or more times that of a negative electrode thereof.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: February 8, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Kishi, Takashi Kuboki, Hidesato Saruwatari, Norio Takami
  • Patent number: 7883800
    Abstract: The disclosure herein relates to a lithium ion conducting electrolyte. This electrolytic material has improved ionic conductivity. The material disclosed herein is an amorphous compound of the formula LixSMwOyNz wherein x is between approximately 0.5 and 3, y is between 1 and 6, z is between 0.1 and 1, w is less than 0.3 and M is an element selected from B, Ge, Si, P, As, Cl, Br, I, and combinations thereof. The material can be prepared in the form of a thin film. The electrolyte material can be used in microbatteries and electronic systems.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: February 8, 2011
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Philippe Vinatier, Alain Levasseur, Brigitte Pecquenard, Kyong-Hee Joo
  • Publication number: 20110027661
    Abstract: An electrode element contains a positive electrode active material and a second solid electrolyte. The positive electrode active material has an active material and a first solid electrolyte. Seventy percent or more of a surface of the active material is coated with the first solid electrolyte.
    Type: Application
    Filed: February 17, 2009
    Publication date: February 3, 2011
    Applicants: Toyota Jidosha Kabushiki Kaisha, National Institute For Material Science
    Inventors: Sanae Okazaki, Yasushi Tsuchida, Phyllis Xu, Kazunori Takada
  • Publication number: 20110014524
    Abstract: Provided is an anode for use in electrochemical cells, wherein the anode active layer has a first layer comprising lithium metal and a multi-layer structure comprising single ion conducting layers and polymer layers in contact with the first layer comprising lithium metal or in contact with an intermediate protective layer, such as a temporary protective metal layer, on the surface of the lithium-containing first layer. Another aspect of the invention provides an anode active layer formed by the in-situ deposition of lithium vapor and a reactive gas. The anodes of the current invention are particularly useful in electrochemical cells comprising sulfur-containing cathode active materials, such as elemental sulfur.
    Type: Application
    Filed: June 17, 2010
    Publication date: January 20, 2011
    Applicant: Sion Power Corporation
    Inventors: Terje A. Skotheim, Christopher J. Sheehan, Yuriy V. Mikhaylik, John D. Affinito
  • Publication number: 20110003212
    Abstract: A multilayer whole solid-type lithium ion rechargeable battery has hitherto been produced by stacking green sheets of a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, which are formed of respective materials different from each other in coefficient of thermal expansion, and firing the layers at a time. This technique poses problems of delamination and nonlamination attributable to a difference in shrinkage. The problems can be solved by forming green sheets with the addition of a sintering aid to each starting material powder for the positive electrode layer, the solid electrolyte layer, and the negative electrode layer and performing control, by setting the additive rate of the sintering aid and the firing temperature, so that the shrinkages of the respective green sheets are substantially equal to each other. Consequently, unfavorable phenomena such as delamination can be prevented.
    Type: Application
    Filed: November 19, 2008
    Publication date: January 6, 2011
    Applicant: NAMICS CORPORATION
    Inventors: Hiroshi Sato, Hiroshi Sasagawa, Sakai Noriyuki, Takayuki Fujita
  • Patent number: 7862933
    Abstract: The present invention provides a lithium secondary battery which has improved safety, mainly coming from use of an electrolyte solution which is not inflammable at room temperature (20° C.), while not deteriorating output characteristics at low temperatures and room temperature or output maintenance characteristics after storage at high temperature (50° C.). The lithium secondary battery of the present invention, encased in a container, is provided with a cathode and an anode, both capable of storing/releasing lithium ions, a separator which separates these electrodes from each other, and an electrolyte solution containing a cyclic carbonate and a linear carbonate as solvents and a compound such as VC at composition ratios of 18.0 to 30.0%, 74.0 to 81.9% and 0.1 to 1.0%, respectively, based on the whole solvents, all percentages by volume.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: January 4, 2011
    Assignee: Hitachi Vehicle Energy, Ltd.
    Inventors: Takefumi Okumura, Takahiro Yamaki, Masanori Yoshikawa, Yoshimi Yanai, Toyotaka Yuasa
  • Publication number: 20100323247
    Abstract: A battery using an electrolyte with which favorable ion conductivity is able to be secured at low temperature is provided. A solid electrolyte is provided between a cathode in which a cathode active material layer is formed on a cathode current collector and an anode in which an anode active material layer is formed on an anode current collector. The electrolyte contains carbon cluster such as fullerene and an electrolyte salt such as a lithium salt. Thereby, compared to an electrolyte composed of a polymer compound such as polyethylene oxide and a lithium salt, lowering of ion conductivity is inhibited at low temperature.
    Type: Application
    Filed: January 28, 2009
    Publication date: December 23, 2010
    Applicant: SONY CORPORATION
    Inventors: Kazumasa Takeshi, Hiroyuki Morioka
  • Patent number: 7851093
    Abstract: A non-aqueous electrolyte for a secondary battery, including a non-aqueous solvent in which a solute is dissolved, a first additive and a second additive, wherein the first additive is a vinyl monomer having an electron donating group, the second additive is a carbonic acid ester having at least one carbon-carbon unsaturated bond, and an e value, which is a polarization factor of the vinyl monomer having an electron donating group, is a negative value.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: December 14, 2010
    Assignee: Panasonic Corporation
    Inventors: Masaki Deguchi, Tooru Matsui, Hiroshi Yoshizawa
  • Patent number: 7846571
    Abstract: A lithium-ion battery cell includes at least two working electrodes, each including an active material, an inert material, an electrolyte and a current collector, a first separator region arranged between the at least two working electrodes to separate the at least two working electrodes so that none of the working electrodes are electronically connected within the cell, an auxiliary electrode including a lithium reservoir, and a second separator region arranged between the auxiliary electrode and the at least two working electrodes to separate the auxiliary electrode from the working electrodes so that none of the working electrodes is electronically connected to the auxiliary electrode within the cell.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: December 7, 2010
    Assignee: Robert Bosch GmbH
    Inventors: John F. Christensen, Jasim Ahmed, Sungbae Park, Aleksandar Kojic
  • Publication number: 20100291444
    Abstract: A method for producing a rechargeable battery in the form of a multi-layer coating in one embodiment includes applying an active cathode material above an electrically conductive and electrochemically compatible substrate to form a cathode; applying a solid-phase ionically-conductive electrolyte material above the cathode as a second coating to form an electrode separation layer; applying an anode material above the electrode separation layer to form an anode; and applying an electrically conductive overcoat material above the anode. A method for producing a multi-layer coated cell in another embodiment includes applying an anode material above a substrate to form an anode; applying a solid-phase electrolyte material above the anode to form an electrode separation layer; applying an active cathode material above the electrode separation layer to form a cathode; and applying an electrically conductive overcoat material above the cathode. Cells are also disclosed.
    Type: Application
    Filed: May 12, 2010
    Publication date: November 18, 2010
    Inventors: Joseph C. Farmer, James Kaschmitter
  • Publication number: 20100285372
    Abstract: A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.
    Type: Application
    Filed: June 11, 2007
    Publication date: November 11, 2010
    Applicant: ALLIANCE FOR SUSTAINABLE ENERGY,LLC
    Inventors: Se-Hee Lee, Edwin C. Tracy, John Roland Pitts, Ping Liu
  • Patent number: 7829225
    Abstract: A new anode configuration (20) is proposed for a lithium microbattery (10). The anode (20) preferably consists of nanotubes or of nanowires (24) such that the empty space (26) left between the different components (24) provides compensation for the inherent swelling upon discharging the microbattery (10). With the absence of stresses on the electrolyte (18), the lifetime of the battery (10) may be increased.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: November 9, 2010
    Assignee: Commissariat a l′Energie Atomique
    Inventors: Raphael Salot, Frederic Gaillard, Emmanuelle Rouviere, Steve Martin
  • Patent number: 7824806
    Abstract: Protected anode architectures have ionically conductive protective membrane architectures that, in conjunction with compliant seal structures and anode backplanes, effectively enclose an active metal anode inside the interior of an anode compartment. This enclosure prevents the active metal from deleterious reaction with the environment external to the anode compartment, which may include aqueous, ambient moisture, and/or other materials corrosive to the active metal. The compliant seal structures are substantially impervious to anolytes, catholyes, dissolved species in electrolytes, and moisture and compliant to changes in anode volume such that physical continuity between the anode protective architecture and backplane are maintained. The protected anode architectures can be used in arrays of protected anode architectures and battery cells of various configurations incorporating the protected anode architectures or arrays.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: November 2, 2010
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Lutgard C. De Jonghe, Bruce D. Katz, Alexei Petrov
  • Publication number: 20100261067
    Abstract: Solid state, thin film, electrochemical devices (10) and methods of making the same are disclosed. An exemplary device 10 includes at least one electrode (14) and an electrolyte (16) deposited on the electrode (14). The electrolyte (16) includes at least two homogenous layers of discrete physical properties. The two homogenous layers comprise a first dense layer (15) and a second porous layer (16).
    Type: Application
    Filed: February 25, 2008
    Publication date: October 14, 2010
    Inventors: J. Roland Pitts, Se-Hee Lee, C. Edwin Tracy, Wenming Li
  • Publication number: 20100255383
    Abstract: A flexible polymer solid electrolyte material useful in battery technology is described. The flexible solid electrolyte comprises a first block that has the ability to solvate alkali metal salts. The flexible solid electrolyte comprises a second block that has the ability to incorporate lithium ions within microphase separated spherical domains, wherein the lithium ions are from a secondary lithium source. The flexible solid electrolyte further comprises a second lithium salt.
    Type: Application
    Filed: March 1, 2010
    Publication date: October 7, 2010
    Applicant: University of Maryland, College Park
    Inventors: Peter Kofinas, Ayan Ghosh
  • Publication number: 20100233548
    Abstract: Batteries based on solid-state electrolytes are known in the art. These (planar) energy sources, or solid-state batteries, efficiently convert chemical energy into electrical energy and can be used as the power sources for portable electronics. The invention relates to a method for manufacturing of a solid-state battery in which the pinholes in a solid electrolyte are at least partially filled by the deposition of an electrically insulating layers. The invention also relates to a battery obtained by performing such a method. The invention further relates to an electronic device provided with such a battery.
    Type: Application
    Filed: June 5, 2008
    Publication date: September 16, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Remco Henricus Wilhelmus Pijnenburg, Petrus Henricus Laurentius Notten, Rogier Adrianus Henrica Niessen
  • Patent number: 7794884
    Abstract: An active material for high-voltage negative electrodes (>1V vs. Li) of secondary rechargeable lithium batteries is disclosed. Chemical composition is represented by the general formula Li2+vTi3?WFeXMyM?ZO7??, where M and M? are metal ions having an ionic radius between 0.5 and 0.8 A and forming an octahedral structure with oxygen, like Ti3+, Co2+, Co3+, Ni2+, Ni3+, Cu2+, Mg2+, Al3+, In3+, Sn4+, Sb3+, Sb5+, ? is related to the formal oxidation numbers n and n? of M and M? by the relation 2?=v+4w?3x?ny?n?z and the ranges of values are ?0.5?V?0.5, 0?w?0.2, x>0, y+z>0 and x+y+z?0.7. The structure is related to that of ramsdellite for all the compositions. The negative active material is prepared by ceramics process wherein lithium oxide, titanium oxide, iron oxide, M and/or M? oxide are used as starting material for synthesis. Inorganic or organic solid precursors of the oxides can also be used instead. After reactant dispersion the mixture is fired.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: September 14, 2010
    Assignees: Umicore, Universite Montpellier II
    Inventors: Jean-Claude Jumas, Josette Olivier-Fourcade, Pierre-Emmanuel Lippens, Laurent Aldon, Aurélie Picard, Pierre Kubiak
  • Publication number: 20100227224
    Abstract: A sulfur-based cathode for use in an electrochemical cell is disclosed. An exemplary sulfur-based cathode is coupled with a solid polymer electrolyte instead of a conventional liquid electrolyte. The dry, solid polymer electrolyte acts as a diffusion barrier for the sulfur, thus preventing the sulfur capacity fade that occurs in conventional liquid electrolyte based cell systems. The solid polymer electrolyte further binds the sulfur-containing active particles, preventing sulfur agglomerates from forming, while still allowing lithium ions to be transported between the anode and cathode.
    Type: Application
    Filed: March 5, 2010
    Publication date: September 9, 2010
    Applicant: SEEO, INC
    Inventors: Hany Basam Eitouni, Mohit Singh
  • Publication number: 20100216032
    Abstract: Conventional ion rechargeable batteries having an electrode layer on an electrolyte layer suffer from an impurity layer formed at the interface, degrading performance. Conventional batteries with no such impurity layer have a problem of weak interface bonding. In the present invention, in a baking process step after an electrode layer is laminated on an electrolyte layer, materials for an electrode layer and an electrolyte layer are selected such that an intermediate layer formed of a reaction product contributing to charging and discharging reactions is formed at the interface of the electrode layer and the electrolyte layer. In addition, a paste that an active material is mixed with a conductive material at a predetermined mixing ratio is used to form a positive electrode layer and a negative electrode layer. Reductions in electrode resistance and interface resistance and improvement of charging and discharging cycle characteristics are made possible.
    Type: Application
    Filed: May 9, 2008
    Publication date: August 26, 2010
    Applicant: NAMICS CORPORATION
    Inventors: Mamoru Baba, Shoichi Iwaya, Hitoshi Masumura, Noriyuki Sakai, Takayuki Fujita, Hiroshi Sasagawa, Hiroshi Sato
  • Publication number: 20100216030
    Abstract: A positive electrode for an all-solid secondary battery having excellent rate capabilities and cycle performance and an all-solid secondary battery employing the same. The positive electrode includes a positive electrode active material surface-treated such that at least a part of the surface of the positive electrode active material that is capable of occluding and releasing lithium (Li) is coated with an oxide including at least one of the Group 13 elements.
    Type: Application
    Filed: February 19, 2010
    Publication date: August 26, 2010
    Applicant: Samsung Electronics Co., Ltd.
    Inventor: Hideaki MAEDA