Plural Organic Solvents (i.e., Solvent Mixture) Patents (Class 429/326)
  • Patent number: 11063296
    Abstract: The present invention relates to a non-aqueous electrolyte solution additive, and a non-aqueous electrolyte solution for a lithium secondary battery and a lithium secondary battery which comprise the same, wherein, specifically, since the non-aqueous electrolyte solution, which comprises a compound capable of maintaining a passive effect by increasing an effect of forming a solid electrolyte interface (SEI) on surfaces of a positive electrode and a negative electrode, is provided, high-temperature storage characteristics and life characteristics of the lithium secondary battery may be improved.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: July 13, 2021
    Inventors: Young Min Lim, Chul Haeng Lee, Kyung Mi Lee
  • Patent number: 11056728
    Abstract: An electrochemical cell management system comprising an electrochemical cell and at least one controller configured to control the cell such that, for at least a portion of a charge cycle, the cell is charged at a charging rate or current that is lower than a discharging rate or current of at least a portion of a previous discharge cycle. An electrochemical cell management method. An electrochemical cell management system comprising an electrochemical cell and at least one controller configured to induce a discharge of the cell before and/or after a charging step of the cell. An electrochemical cell management method. A electrochemical cell management system comprising an electrochemical cell and at least one controller configured to: monitor at least one characteristic of the cell and, based on the at least one characteristic of the cell, induce a discharge and/or control a charging rate or current of the cell.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: July 6, 2021
    Assignee: Sion Power Corporation
    Inventors: Yuriy V. Mikhaylik, Glenn Alan Hamblin, Chariclea Scordilis-Kelley
  • Patent number: 11050089
    Abstract: To provide a non-aqueous electrolyte solution capable of improving cycle characteristics of a secondary battery, and a non-aqueous electrolyte secondary battery using the non-aqueous electrolyte solution. A non-aqueous electrolyte solution according to an embodiment of the present technology includes an electrolyte salt and a non-aqueous solvent. The electrolyte salt contains an imide salt as a main electrolyte salt and at least one lithium oxalate borate selected from the group consisting of lithium bis(oxalate) borate (LiBOB), lithium fluoro(oxalate) borate (LiFOB), and lithium difluoro(oxalate) borate (LiDFOB). The non-aqueous solvent contains at least one halogenated carbonic acid ester selected from the group consisting of a halogenated chain carbonic acid ester and a halogenated cyclic carbonic acid ester.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: June 29, 2021
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Masatomo Tanaka, Yasuhiro Nakamura, Akira Ichihashi
  • Patent number: 11050284
    Abstract: An improved electrolyte including a fire-retardant additive suitable for application in wide temperature cell and/or battery operation with safer cell design, a battery including the electrolyte and a separator optionally containing a fire-retardant additive, improved electrical and thermal conductive electrodes are disclosed. The presence of the fire-retardant additive reduces flammability of the electrolyte and improved the overall safety of the battery.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: June 29, 2021
    Assignee: EAGLEPICHER TECHNOLOGIES, LLC
    Inventors: Ramanathan Thillaiyan, Wujun Fu, Mario Destephen, Gregory Lee Miller, Eivind Listerud, Eric Lloyd Quee
  • Patent number: 11043699
    Abstract: The present disclosure provides a nonaqueous electrolyte solution that is used in a nonaqueous electrolyte secondary battery. The nonaqueous electrolyte solution contains a fluorinated solvent, a predetermined additive A and a predetermined additive B. A ratio (CA/CB) of concentration CA (mol/L) of the additive A and concentration CB (mol/L) of the additive B lies in a range of 1 to 30.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: June 22, 2021
    Assignees: Toyota Jidosha Kabushiki Kaisha, Daikin Industries, Ltd.
    Inventors: Toshiyuki Kawai, Hiroto Asano, Shigeaki Yamazaki, Shinichi Kinoshita
  • Patent number: 11038164
    Abstract: A method of producing a pre-sulfurized active cathode layer for a rechargeable alkali metal-sulfur cell; the method comprising: (a) preparing an integral layer of mesoporous structure of a carbon, graphite, metal, or conductive polymer having a specific surface area greater than 100 m2/g; (b) preparing an electrolyte comprising a solvent and a sulfur source; (c) preparing an anode; and (d) bringing the integral layer and the anode in ionic contact with the electrolyte and imposing an electric current between the anode and the integral layer (serving as a cathode) to electrochemically deposit nanoscaled sulfur particles or coating on the graphene surfaces. The sulfur particles or coating have a thickness or diameter smaller than 20 nm (preferably <10 nm, more preferably <5 nm or even <3 nm) and occupy a weight fraction of at least 70% (preferably >90% or even >95%).
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: June 15, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Hui He, Aruna Zhamu, Bor Z. Jang
  • Patent number: 10985411
    Abstract: Disclosed are an apparatus and method for managing a battery. The battery management apparatus includes a thickness calculator configured to calculate a thickness of a battery on the basis of a capacitance of the battery and an information generator configured to generate a battery-state information by subtracting an increase in a thickness of the battery according to temperature of the battery from the calculated thickness.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: April 20, 2021
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong Kee Sohn, Dae Bong Jung
  • Patent number: 10978688
    Abstract: Disclosed is a rechargeable lithium battery including a positive electrode including a positive active material; a negative electrode including a negative active material; an electrolyte solution including a lithium salt and a non-aqueous organic solvent; and a separator between the positive and the negative electrodes, the separator including a porous substrate and a coating layer positioned on at least one side of the porous substrate. The negative active material includes a Si-based material; the non-aqueous organic solvent includes cyclic carbonate including ethylene carbonate, propylene carbonate, or combinations thereof, the cyclic carbonate being included in an amount of about 20 volume % to about 60 volume % based on the total amount of the non-aqueous organic solvent; and the coating layer includes a fluorine-based polymer, an inorganic compound, or combinations thereof. The rechargeable lithium battery has improved cycle-life and high temperature storage characteristics.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: April 13, 2021
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Kwang-Jo Cheong, Yong-Beom Lee, Myung-Ro Lee, Su-Min Lee
  • Patent number: 10930937
    Abstract: Electrolyte solutions for flow batteries and other electrochemical systems can contain an active material that is capable of transferring one or more electrons per molecule during an oxidation-reduction cycle. Doubly bridged aromatic groups or their coordination compounds can be particularly suitable active materials. Flow batteries can include a first half-cell containing a first electrolyte solution, and a second half-cell containing a second electrolyte solution, in which at least one of the first electrolyte solution and the second electrolyte solution contains an active material having at least two aromatic groups doubly bridged by a carbonyl moiety and a bridging moiety containing a bridging atom selected from carbon, nitrogen, oxygen, sulfur, selenium and tellurium. Such bridged compounds can directly function as the active material, or coordination compounds containing the bridged compounds as at least one ligand can serve as the active material.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: February 23, 2021
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Matthew Millard, Zachariah M. Norman
  • Patent number: 10923759
    Abstract: The present invention relates to a ternary liquid electrolyte for a lithium-sulfur battery and a lithium-sulfur battery including the same. The liquid electrolyte for a lithium-sulfur battery according to the present invention exhibits an excellent sulfur utilization rate when used in a lithium-sulfur battery, and exhibits excellent stability. Accordingly, the liquid electrolyte for a lithium-sulfur battery according to the present invention is capable of enhancing a life time property while securing a capacity property of a lithium-sulfur battery.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: February 16, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Intae Park, Sungwon Hong, Charles Kiseok Song, Youhwa Ohk, Doo Kyung Yang, Changhoon Lee
  • Patent number: 10916805
    Abstract: Electrolyte compositions comprising fluorinated acyclic carboxylic acid esters, fluorinated acyclic carbonates, and/or fluorinated acyclic ethers; co-solvents; and certain film-forming chemical compounds are described. The electrolyte compositions are useful in electrochemical cells, such as lithium ion batteries where they provide the improved performance of a combination of high capacity and high cycle life.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: February 9, 2021
    Assignee: Solvay SA
    Inventors: Xudong Chen, Charles J. Dubois, William L. Holstein, Kostantinos Kourtakis, Mark Gerrit Roelofs
  • Patent number: 10916820
    Abstract: The present invention relates to a battery system capable of mitigating the performance deterioration of a secondary battery cell and extending a period of use by additionally injecting a second electrolyte at a point in time when the capacity of the secondary battery cell has decreased, and a method for operating a battery system which can achieve the same.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: February 9, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Dae Soo Kim, Han Young Lee, Dong Kyu Kim, Seok Koo Kim
  • Patent number: 10897060
    Abstract: A secondary battery includes: a cathode; an anode; and an electrolytic solution including a cyano compound, the cyano compound including a compound represented by R1-O—C(?O)—O—R2 (R1, R2, or both include a cyano-group-containing group), a compound represented by R3-C(?O)—O—R4 (R4 includes the cyano-group-containing group), or both.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: January 19, 2021
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Masayuki Ihara, Tadahiko Kubota
  • Patent number: 10873085
    Abstract: A positive electrode for a lithium ion secondary battery that includes a positive electrode combination material having a positive electrode active material that produces a potential of 4.5 V or higher on the basis of metal lithium; a conduction aid; and a binder. The binder contains an aqueous binder as its main constituent, and the sum SE of the surface area SA of the positive electrode active material in the positive electrode combination material and the surface area SC of the conduction aid therein is 90 to 400 cm2/cm2 per unit coated area of the positive electrode combination material.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: December 22, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Toru Kawai, Masanori Morishita
  • Patent number: 10862167
    Abstract: The present application provides a high-temperature lithium-ion battery electrolyte, including a lithium salt, an organic solvent, and a water removal additive. A structural formula of the water removal additive is shown as a formula (1): where R1 is a —NCH—(CH2)n—CN group, and 0<n?20; R2 is a —R11—CO—NR12R13 group, R11 is a —(CH2)m— group, 0?m<19, each of R12 and R13 is one independently selected from H and —(CH2)x—CH3 groups, 0?x?19-m, and both m and x are integers; and R3 is any one selected from H, F, Cl, and Br. The high-temperature lithium-ion battery electrolyte can effectively eliminate trace water in a battery system, restrain HF generation, protect an electrochemical system in a battery, and significantly improve high-temperature storage performance and high-temperature cycling performance of a lithium-ion battery. The present invention further provides a production method for the electrolyte and a high-temperature lithium-ion battery that includes the electrolyte.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: December 8, 2020
    Assignees: Huawei Technologies Co., Ltd., Dongguan Aisipu Energy Technology Co., Ltd
    Inventors: Guocheng Xu, Fengchao Xie, Rui Xu, Hui Li
  • Patent number: 10862163
    Abstract: Organosilicon electrolytes exhibit several important properties for use in lithium carbon monofluoride batteries, including high conductivity/low viscosity and thermal/electrochemical stability. Conjugation of an anion binding agent to the siloxane backbone of an organosilicon electrolyte creates a bi-functional electrolyte. The bi-functionality of the electrolyte is due to the ability of the conjugated polyethylene oxide moieties of the siloxane backbone to solvate lithium and thus control the ionic conductivity within the electrolyte, and the anion binding agent to bind the fluoride anion and thus facilitate lithium fluoride dissolution and preserve the porous structure of the carbon monofluoride cathode. The ability to control both the electrolyte conductivity and the electrode morphology/properties simultaneously can improve lithium electrolyte operation.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: December 8, 2020
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Kyle R. Fenton, Ganesan Nagasubramanian, Chad Staiger, Harry Pratt, Kevin Leung, Susan Rempe, Mangesh Chaudhari, Travis Mark Anderson
  • Patent number: 10854923
    Abstract: Low flammability and nonflammable localized superconcentrated electrolytes (LSEs) for stable operation of lithium and sodium ion batteries are disclosed. Electrochemical devices including the low flammability and nonflammable LSEs are also disclosed. The low flammability and nonflammable LSEs include an active salt, a solvent comprising a flame retardant compound, wherein the active salt is soluble in the solvent, and a diluent in which the active salt is insoluble or poorly soluble. The LSE may further include a cosolvent, such as a carbonate, a sulfone, a sulfite, a sulfate, a carboxylate, an ether, a nitrogen-containing solvent, or any combination thereof. In certain embodiments, such as when the solvent and diluent are immiscible, the LSE further includes a bridge solvent.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: December 1, 2020
    Assignee: Battelle Memorial Institute
    Inventors: Wu Xu, Shuru Chen, Ji-Guang Zhang, Xia Cao, Haiping Jia, Bin Liu, Xiaodi Ren
  • Patent number: 10833362
    Abstract: A secondary battery is provided. The secondary battery includes a cathode; an anode; and an electrolytic solution, wherein the anode comprises an anode active material layer, wherein the anode active material layer comprises a carbon material, wherein the anode active material layer has a thickness from about 40 micrometers to about 100 micrometers, and wherein the electrolytic solution comprises an unsaturated cyclic ester carbonate represented by Formula (2): where R5 and R6 are selected from the group consisting of a hydrogen group, an alkyl group, an alkyne group, and an aryl group.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: November 10, 2020
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Masayuki Ihara, Tadahiko Kubota
  • Patent number: 10826123
    Abstract: The present invention discloses a lithium-ion battery electrolyte and a lithium-ion battery. The electrolyte comprises an organic non-aqueous solution, a lithium salt, and an additive. The additive comprises: (A) fluoroethylene carbonate; (B) at least one compound from the following: a saturated dinitrile or an unsaturated nitrile as represented by structural formula (1), wherein R1 is an unsaturated hydrocarbon group with 3-6 carbon atoms and R2 is an alkene group with 2-5 carbon atoms; and (C) at least one unsaturated phosphate ester as represented by structural formula (2), wherein R3, R4, and R5 are each a hydrocarbon with 1-4 carbon atoms, and at least one of R3, R4, and R5 contain an unsaturated hydrocarbon with a triple bond.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: November 3, 2020
    Assignee: SHENZHEN CAPCHEM TECHNOLOGY CO., LTD.
    Inventors: Qiao Shi, Muchong Lin, Shiguang Hu, Hailing Zhang, Qi Guo
  • Patent number: 10826058
    Abstract: The present invention relates to a positive electrode for a rechargeable lithium battery and a rechargeable lithium battery including the same. The positive electrode includes: a current collector; and a positive electrode active material positioned on at least one surface of the active material layer current collector. The positive electrode active material layer includes a small particle size active material having an average particle diameter D50 of 2 ?m to 4 ?m and a first coating layer positioned at a surface thereof, and a large particle size active material having an average particle diameter D50 of 17 ?m to 21 ?m and a second coating layer positioned at the surface thereof.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: November 3, 2020
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hyun-Joo Je, Jeong-Hoon Kim, Ji-Hyun Kim, Soo-Youn Park, Chang-Wook Kim
  • Patent number: 10790537
    Abstract: A secondary battery and its preparation method, the secondary battery having a negative electrode containing a negative current collector and no negative active material; an electrolyte having an electrolyte salt and an organic solvent; a separator; a positive electrode having a positive active material layer containing a positive active material, wherein the positive active material comprises a material having a layered crystal structure; and a battery case used for packaging. Main active component of the secondary battery is the positive active material having a layered crystal structure, which is environmentally-friendly and low in cost; meanwhile, negative active material is not needed by the second battery system, thereby remarkably reducing the weight and cost of the battery and improving the battery energy density. The reaction mechanism adopted by the secondary battery significantly increases the working voltage of the battery and further improves the energy density of the battery.
    Type: Grant
    Filed: November 12, 2016
    Date of Patent: September 29, 2020
    Assignee: SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY CHINESE ACADEMY OF SCIENCES
    Inventors: Yongbing Tang, Xiaolong Zhang, Fan Zhang
  • Patent number: 10767019
    Abstract: The invention is a resin composition containing following polymer (A) and polymer (B), wherein a content of the polymer (A) is 1 to 80 wt % based on the total weight of the polymer (A) and the polymer (B), polymer (A) is a alicyclic structure-containing hydrogenated polymer having a heat distortion temperature of 170° C. or higher, polymer (B) is a polymer incompatible with the polymer (A) and having a heat distortion temperature of lower than 170° C., a microporous film formed by using the resin composition, a separator including the microporous film, and a secondary battery having the separator. One aspect of the invention provides a resin composition suitably used as a raw material for a separator of a secondary battery excellent in safety, a microporous film obtained by forming the resin composition, a separator including the microporous film, and a secondary battery having the separator.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: September 8, 2020
    Assignee: ZEON CORPORATION
    Inventor: Shinsuke Miyazawa
  • Patent number: 10741886
    Abstract: A method of preparing a lithium-ion cell (10), the method including providing to an electrolyte (22) of the cell, an additive configured to improve formation of a solid electrolyte interface (24) on an anode (12), charging the cell (10) at a first predetermined charge rate (C1) up to a first predetermined voltage (V1), wherein the first predetermined voltage (V1) corresponds to a voltage at which the additive begins formation of the solid electrolyte interface (24), charging the cell (10) at a second predetermined rate (C2) to a second predetermined voltage (V2), wherein the second predetermined voltage (V2) corresponds to a voltage at which the electrolyte (22) begins formation of the solid electrolyte interface (24); and charging the cell (10) to a fully charged capacity at a third predetermined charge rate (C3), the third charge rate (C3) being greater than the second charge rate (C2).
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: August 11, 2020
    Assignees: TOYOTA MOTOR EUROPE, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Miura, Stephane Cotte, Kitayoshi Masanori
  • Patent number: 10727535
    Abstract: Electrochemical cells that cycle lithium ions are provided. The electrochemical cells have an electrode that includes a silicon-containing electroactive material that undergoes volumetric expansion and contraction during the cycling of the electrochemical cell; and an electrolyte system that promotes passive formation of a flexible protective layer comprising a lithium fluoride-polymer composite on one or more exposed surface regions of the silicon-containing electroactive material. The electrolyte system includes a lithium salt, at least one cyclic carbonate, and two or more linear carbonates. At least one of the two or more linear carbonate-containing co-solvents is a fluorinated carbonate-containing co-solvent. The electrolyte system accommodates the volumetric expansion and contraction of the silicon-containing electroactive material to promote long term cycling stability.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: July 28, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Li Yang, Mei Cai, Peng Lu, Fang Dai
  • Patent number: 10727472
    Abstract: A cathode in a state prior to a first charging process is provided having an active cathode material and lithium peroxide. A lithium ion battery or an electrochemical cell includes the same cathode. A method is also provided for forming a lithium ion battery, and a lithium ion battery is provided which includes a cathode having an active cathode material, a separator, an anode having an active anode material, and an electrolyte, wherein after a formed cell is fully discharged, the active cathode material holds the same lithium content as before the formation process.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: July 28, 2020
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Thomas Woehrle, Holger Hain, Hideki Ogihara, Thorsten Langer
  • Patent number: 10673024
    Abstract: The present invention relates to a pouch type secondary battery comprising a safety member, such as dodecafluoro-2-methylpentane-3-one, between an external pouch and an internal pouch, wherein the safety member allows the cell temperature to be kept low or enables extinguishing at the time of cell ignition, and has an effect of improving the suppression of moisture permeation.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: June 2, 2020
    Assignee: LG Chem, Ltd.
    Inventor: Ji-Hyun Kim
  • Patent number: 10601026
    Abstract: The present invention relates to a method of manufacturing a negative electrode and a negative electrode manufactured using the method. According to the present invention, negative electrode samples are fabricated to have different electrode densities, and then, in a negative electrode expansion curve of each negative electrode sample according to the 1st charging, when a change in slopes of tangents to the negative electrode expansion curve at an initial state of charge (SOC) of less than 50%, at which the expansion curve increases, satisfies a particular value, a secondary battery manufactured including a negative electrode having the electrode density may exhibit excellent lifespan characteristics and excellent initial efficiency for the corresponding active material.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: March 24, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Jun Hyuk Song, Eun Kyung Kim, Ju Ho Chung
  • Patent number: 10601067
    Abstract: Provided are a negative electrode for a rechargeable lithium battery including a negative active material and a conductive material wherein the negative active material includes graphite and an inorganic particle positioned on the surface of the graphite and having no reactivity with lithium, and the conductive material is included in an amount of greater than or equal to about 0.1 wt % and less than about 2 wt % based on the total amount of the negative active material and the conductive material, and a rechargeable lithium battery including the same.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: March 24, 2020
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jin-Hyon Lee, Sang-In Park, Ji-Woon Lee, Eun-Young Goh, Jong-Ki Lee
  • Patent number: 10587006
    Abstract: A rechargeable lithium ion battery including a negative active material, the negative active material including a carbon-based active material, and an electrolyte solution that includes a S?O-containing compound, the S?O-containing compound having a structure that is selected according to a G band/D band ratio of the carbon-based active material.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: March 10, 2020
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: Hironari Takase, Hokuto Yokotsuji
  • Patent number: 10573921
    Abstract: Disclosed are an electrolyte for lithium secondary batteries including 10 to 50% by weight of a cyclic carbonate compound, and 50 to 90% by weight of a linear ester compound, based on the total weight of a non-aqueous solvent, wherein a content of ethyl propionate of the linear ester compound is 20 to 60% by weight, based on the total weight of the non-aqueous solvent, and a lithium secondary battery including the electrolyte and exhibiting superior low-temperature characteristics.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: February 25, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Eun Hye Kil, Jin Kyu Lee, Ki Tae Kim, Hyung Ku Yun, Hyeaeun Han
  • Patent number: 10566632
    Abstract: This invention relates to the field of energy storage devices, and especially electrochemical energy storage devices including electrolytes comprising an ionic liquid, one or more solvents, and one or more salts of a Group 2 element. Effects on electrochemical performance of the electrolyte of each of the components of the electrolyte were systematically determined. In addition, interactions between the electrolytes and separator films were dissected to optimize electrochemical performance of coin cell batteries.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: February 18, 2020
    Assignee: The Research Foundation for the State University of New York
    Inventors: Kenneth J. Takeuchi, Esther S. Takeuchi, Amy C. Marschilok
  • Patent number: 10530016
    Abstract: An electrolyte for a lithium-ion battery and a lithium-ion battery. The electrolyte for a lithium-ion battery comprises a non-aqueous organic solvent, a lithium salt, and an electrolyte additive. The additive is selected from compounds of formula 1, wherein R1 is selected from unsaturated alkyls having three to six carbon atoms, and R2 is selected from alkylenes having two to five carbon atoms. Because the molecular structure of the additive comprises both unsaturated carbon-carbon bonds and cyanos, polymerization can occur on an electrode surface to form a compound containing multiple cyanos. The compound can be complexed with metal ions on a surface of a cathode material, thereby inhibiting electrolyte decomposition on an electrode surface to improve high-temperature storage and cyclability of a battery.
    Type: Grant
    Filed: December 24, 2015
    Date of Patent: January 7, 2020
    Assignee: SHENZHEN CAPCHEM TECHNOLOGY CO., LTD.
    Inventors: Qiao Shi, Qun Chen, Shiguang Hu, Qi Huang, Xue Zhou
  • Patent number: 10472571
    Abstract: Low flammability and nonflammable localized superconcentrated electrolytes (LSEs) for stable operation of electrochemical devices, such as rechargeable batteries, supercapacitors, and sensors, are disclosed. Electrochemical devices, such as rechargeable batteries, supercapacitors, and sensors, including the low flammability and nonflammable LSEs are also disclosed. The low flammability and nonflammable LSEs include an active salt, a solvent comprising a flame retardant compound, wherein the active salt is soluble in the solvent, and a diluent in which the active salt is insoluble or poorly soluble. In certain embodiments, such as when the solvent and diluent are immiscible, the LSE further includes a bridge solvent.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: November 12, 2019
    Assignee: Battelle Memorial Institute
    Inventors: Ji-Guang Zhang, Shuru Chen, Wu Xu
  • Patent number: 10411300
    Abstract: A secondary battery includes a cathode, an anode, and an electrolytic solution. The electrolytic solution contains an electrolytic solution material together with a nonaqueous solvent and an electrolyte salt. The electrolytic solution material includes one or more of first unsaturated compounds and second unsaturated compounds represented, and one or more of phenol-type compounds, phosphorus-containing compounds, and sulfur-containing compounds.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: September 10, 2019
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Masayuki Ihara, Shigeru Fujita
  • Patent number: 10367229
    Abstract: A phosphoranimine compound comprising a cationic portion bonded to a nitrogen atom of the phosphoranimine compound, a phosphorus atom bonded to the nitrogen atom, pendant groups bonded to the phosphorus atom, and a counterion. An electrolyte solution comprising at least one phosphoranimine compound is also disclosed, as is an energy storage device including the electrolyte solution.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: July 30, 2019
    Assignee: Battelle Energy Alliance, LLC
    Inventors: John R Klaehn, Eric J Dufek, Joshua S McNally
  • Patent number: 10290902
    Abstract: An electrolyte for a lithium metal battery, the electrolyte including: a solvated ionic liquid including a glyme solvent and a lithium salt, wherein an amount of the lithium salt is about 3 moles per liter or greater, and wherein a lithium metal battery including the electrolyte has an initial solution resistance of less than about 1 ohm and a bulk resistance of less than about 10 ohms. A lithium metal battery includes: a negative electrode including a lithium metal or a lithium metal alloy; a positive electrode; and the electrolyte. A method of manufacturing the lithium metal battery includes: mixing a glyme solvent and a lithium salt to obtain an electrolyte precursor; disposing the electrolyte precursor into the lithium metal battery; and performing hermetic immersion of the electrolyte precursor in the lithium metal battery to form the electrolyte.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: May 14, 2019
    Assignees: SAMSUNG ELECTRONICS CO., LTD., SAMSUNG SDI CO., LTD.
    Inventors: Wonseok Chang, Toshinori Sugimoto, Yonggun Lee, Hongsoo Choi, Hyorang Kang
  • Patent number: 10276891
    Abstract: The present disclosure concerns an electrolyte suitable for calcium-based secondary cells, comprising calcium ions and an electrolyte medium, wherein the electrolyte is not solid at standard conditions and wherein the electrolyte medium includes at least two distinct non-aqueous solvents.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: April 30, 2019
    Assignees: TOYOTA MOTOR EUROPE, CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
    Inventors: Fanny Barde, Rosa Palacin, Alexandre Ponrouch
  • Patent number: 10270098
    Abstract: The present invention relates to a positive electrode active material for a lithium ion battery and, more specifically, to a positive electrode active material for a lithium ion battery, having improved initial capacitance and charging and discharging efficiency due to increased electrical conductivity or ion conductivity. The positive electrode active material for a lithium ion battery of the present invention contains lithium vanadium phosphate (Li3V2(PO4)3) and lithium zirconium phosphate (Li3Zr2(PO4)3) formed on an external surface of the lithium vanadium phosphate. The positive electrode active material for a lithium ion battery comprising lithium vanadium zirconium phosphate (Li3V2-xZrx(PO4)3) particles, which is prepared by a preparation method of the present invention, has excellent structural stability and ion conductivity as well as high capacitance.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: April 23, 2019
    Inventors: Yong-mook Kang, Seung-ho Kang, Dong-wook Han
  • Patent number: 10270097
    Abstract: An object is to reduce variation in shape of crystals that are to be formed. Solutions containing respective raw materials are made in an environment where an oxygen concentration is lower than that in air, the solutions containing the respective raw materials are mixed in an environment where an oxygen concentration is lower than that in air to form a mixture solution, and with use of the mixture solution, a composite oxide is formed by a hydrothermal method.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: April 23, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takuya Miwa, Kuniharu Nomoto, Junpei Momo
  • Patent number: 10263293
    Abstract: Provided is a method of preparing a lithium secondary battery which may simultaneously improve output characteristics and lifetime characteristics of the lithium secondary battery by preparing an electrode on which an SEI film is formed through a pretreatment process, putting an electrode assembly including the electrode in a battery case, and injecting an electrolyte thereinto.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: April 16, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Sung Hoon Yu, Yoo Sun Kang, Kyung Mi Lee
  • Patent number: 10230131
    Abstract: The present invention relates in a first aspect to a method for producing in the interior of a production equipment a dehydrated liquid mixture for use as a solvent for a conducting salt (e.g. LiPF6) wherein after cleaning the equipment with isopropyl alcohol and providing or preparing a liquid starting mixture in said interior of the production equipment both the isopropyl alcohol content in the mixture and the water content in the mixture is reduced by interaction with a zeolite molecular sieve.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: March 12, 2019
    Assignee: Gotion Inc.
    Inventors: Agnes Voitl, Itamar Michael Malkowsky, Axel Kirste
  • Patent number: 10224567
    Abstract: The battery includes an electrolyte activating a positive electrode and a negative electrode. The electrolyte includes a plurality of salts in a solvent, one or more passivation salts in the solvent, and one or more passivation additives in the solvent. At least one of the passivation salts forms a passivation layer on the negative electrode during discharge of the battery and includes both lithium and boron. At least one of the salts is an inorganic lithium salt that excludes boron. The solvent includes one or more organic solvents. At least one of the passivation additives forms a passivation layer on the negative electrode during discharge of the battery and is not a salt. The positive electrode has one or more positive active materials that each include a lithium transition-metal oxide and the negative electrodes includes a negative active material selected from a group consisting of lithium metal and graphite.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: March 5, 2019
    Assignee: Quallion LLC
    Inventor: Sang Young Yoon
  • Patent number: 10205163
    Abstract: A battery including an anode with an anode active material layer that includes anode active material particles made of an anode active material including at least one of silicon and tin as an element. An oxide-containing film including an oxide of at least one kind selected from the group consisting of silicon, germanium and tin is formed in a region of the surface of each anode active material particle in contact with an electrolytic solution by a liquid-phase method such as a liquid-phase deposition method. The region in contact with the electrolytic solution of the surface of each anode active material particle is covered with the oxide-containing film. The thickness of the oxide-containing film is preferably within a range from 0.1 nm to 500 nm both inclusive.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: February 12, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Hiroyuki Yamaguchi, Hiroshi Horiuchi, Kenichi Kawase, Tadahiko Kubota, Hideki Nakai, Takakazu Hirose
  • Patent number: 10199677
    Abstract: Electrolytes, lithium ion cells and corresponding methods are provided, for extending the cycle life of fast charging lithium ion batteries. The electrolytes are based on fluoroethylene carbonate (FEC) and/or vinylene carbonate (VC) as the cyclic carbonate component, and possibly on ethyl acetate (EA) and/or ethyl methyl carbonate (EMC) as the linear component. Proposed electrolytes extend the cycle life by factors of two or more, as indicated by several complementary measurements.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: February 5, 2019
    Assignee: StoreDot Ltd.
    Inventors: Zohar Drach, Olga Guchok, Leonid Krasovitsky, Ekaterina Gotlib Vainshtein, Liron Amir
  • Patent number: 10177413
    Abstract: The present invention is a lithium ion secondary battery comprising a positive electrode and a non-aqueous electrolyte solution comprising a non-aqueous electrolyte solvent, wherein the positive electrode comprises a positive electrode active material having an operating potential at 4.5 V or higher versus lithium metal, the non-aqueous electrolyte solvent comprises a fluorinated phosphate ester represented by a predetermined formula and at least one selected from the group consisting of sulfone compounds represented by predetermined formulae, and the sulfone compound is included in an amount of 5 volume % or more in the non-aqueous electrolyte solvent.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: January 8, 2019
    Assignee: NEC Corporation
    Inventors: Hideaki Sasaki, Takehiro Noguchi, Yuukou Katou, Makiko Takahashi
  • Patent number: 10170793
    Abstract: A secondary battery includes: a cathode; an anode; and an electrolytic solution including a cyano compound, the cyano compound including a compound represented by R1-O—C(?O)—O—R2 (R1, R2, or both include a cyano-group-containing group), a compound represented by R3-C(?O)—O—R4 (R4 includes the cyano-group-containing group), or both.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: January 1, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Masayuki Ihara, Tadahiko Kubota
  • Patent number: 10164231
    Abstract: This invention, in some variations, provides a separator for a lithium-sulfur battery, comprising a porous substrate that is permeable to lithium ions; and a lithium-ion-conducting metal oxide layer on the substrate, wherein the metal oxide layer includes deposits of sulfur that are intentionally introduced prior to battery operation. The deposits of sulfur may be derived from treatment of the metal oxide layer with one or more sulfur-containing precursors (e.g., lithium polysulfides) prior to operation of the lithium-sulfur battery. Other variations provide a method of charging a lithium-sulfur battery that includes the disclosed separator, the charging being accomplished by continuously applying a substantially constant voltage to the lithium-sulfur battery until the battery charging current is at or below a selected current.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: December 25, 2018
    Assignee: HRL Laboratories, LLC
    Inventors: Wen Li, Ping Liu, Jocelyn Hicks-Garner
  • Patent number: 10164291
    Abstract: An electrolyte for an electrochemical storage device is disclosed. In one embodiment, the electrolyte includes a lithium salt from about 3% to about 20% by weight, a primary solvent from about 15% to about 25% by weight, wide-temperature co-solvents from about 14% to about 55% by weight, interface forming compounds from about 0.5% to about 2.0% by weight, and a flame retardant compound from about 6% to about 60% by weight. The electrolyte interacts with the positive and negative electrodes of the electrochemical storage device to provide both high performance and improved safety such that the electrolyte offers adequate ionic conductivity over the desired operating temperature range, a wide electrochemical stability window, high capacities for both the cathode and anode, low electrode-electrolyte interfacial resistance, and reduced flammability.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: December 25, 2018
    Assignee: Lynntech, Inc.
    Inventors: Christopher P. Rhodes, Matthew E. Mullings
  • Patent number: 10141567
    Abstract: There are provided a cathode active material for a lithium secondary battery, a method of preparing the same, and a lithium secondary battery containing the same. The cathode active material for a lithium secondary battery includes: a core made of a compound reversibly intercalating and deintercalating lithium; and a coating layer positioned on at least a portion of a surface of the compound, wherein the coating layer is a composite coating layer containing Li3PO4 and LiF, and further containing a lithium metal compound, a metal oxide, a metal fluoride compound, and/or a combination thereof, and the core is doped with fluorine.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: November 27, 2018
    Assignee: L&F CO., LTD.
    Inventors: Su An Choi, Ho Jun Jeong, Sang Hoon Jeon, Ji Woon Yang, Jun Ho Shin, Ji Sun An, Bong Jun Jeong
  • Patent number: 10115999
    Abstract: An all-solid-state lithium-ion secondary battery includes a cathode active material, an anode active material, a solid electrolyte between the cathode and anode active materials, and an intermediate layer between the solid electrolyte and the cathode active material. The cathode and anode active materials are able to store and release a lithium ion. The solid electrolyte has lithium ion conductivity. The intermediate layer is constituted of elements including all elements constituting the cathode active material. A lithium ion in the intermediate layer is less ionic than that in the cathode active material.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: October 30, 2018
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Satoru Ohuchi, Yuta Sugimoto, Toshiro Kume, Tomoyasu Yokoyama