The Hetero Ring Is A Cyclic Carbonate Patents (Class 429/330)
  • Patent number: 8288040
    Abstract: A battery that includes a cathode, anode and an electrolytic solution containing an organic electrolyte solvent including a compound of the formula: R1—CO—NR2—OR3 wherein R1 is selected from alkanes, alkenes, alkynes, aryls and their substituted derivatives and perfluorinated analogues; R2 is selected from alkanes, alkenes, alkynes, aryls and their substituted derivatives; R3 is selected from alkanes, alkenes, alkynes, aryls and their substituted derivatives wherein the electrolyte is stable at voltages of greater than 4.0 volts.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: October 16, 2012
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation, Synthonix Corporation
    Inventors: John Muldoon, Gary Allred, Scott Ankeney, Masaki Matsui, Anthony Dotse, Tsuyoshi Sugimoto
  • Patent number: 8277972
    Abstract: A non-aqueous electrolyte solution for a lithium secondary battery includes a lithium salt and a carbonate organic solvent. The non-aqueous electrolyte solution further includes a fluoro group-containing sulphonate compound expressed by Chemical Formula 1. When the non-aqueous electrolyte solution is employed for a lithium secondary battery, low-temperature discharging characteristics and life cycle characteristics are greatly improved. Also, even though a battery is stored at a high temperature in a fully-charged state or a charging/discharging process is under progress, the decomposition reaction of a carbonate-based organic solvent is restrained, thereby solving the swelling problem and improving high-temperature life cycle characteristics.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: October 2, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Jong-Ho Jeon, Jeong-Ju Cho, Ho-Chun Lee
  • Patent number: 8268486
    Abstract: A positive electrode includes a current collector and a positive electrode active material layer. The positive electrode active material layer includes a positive electrode active material including a core including a compound LiaCO1-bMbO2 and a surface-treatment layer. In the core compound, 0.95?a?1.1, 0.002?b?0.02, and M is one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, In, Tl, Si, Ge, Sn, P, As, Sb, Bi, S, Se, Te, Po. The surface-treatment layer includes a compound including element of P, and one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, In, Tl, Si, Ge, Sn, As, Sb, Bi, S, Se, Te, Po.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: September 18, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Duck-Chul Hwang, Yong-Chul Park, Jeom-Soo Kim, Jae-Yul Ryu, Jong-Hwa Lee, Euy-Young Jung, So-Hyun Hur
  • Patent number: 8263267
    Abstract: A rechargeable battery and associated methods, the rechargeable battery including an anode, a cathode, wherein the cathode includes a ternary cathode-active material, a separator interposed between the cathode and the anode, an electrolyte, and a housing enclosing the electrolyte, the anode, and the cathode, wherein the electrolyte includes a lithium salt, a non-aqueous organic solvent, about 0.5 weight % to about 5 weight % of succinonitrile, and at least one of about 1 weight % to about 10 weight % of halogenated ethylene carbonate and about 1 weight % to about 5 weight % of vinyl ethylene carbonate.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: September 11, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Jinhee Kim
  • Patent number: 8263268
    Abstract: The present invention includes (1) an ester compound having a specific structure, (2) a nonaqueous electrolytic solution for lithium secondary battery comprising an electrolyte dissolved in a nonaqueous solvent and containing an ester compound having a specific structure in an amount of from 0.01 to 10% by weight of the nonaqueous electrolytic solution, which is excellent in initial battery capacity and cycle property, and (3) a lithium secondary battery comprising a positive electrode, a negative electrode and a nonaqueous electrolytic solution of an electrolyte salt dissolved in a nonaqueous solvent, wherein the nonaqueous electrolytic solution contains an ester compound having a specific structure in an amount of from 0.01 to 10% by weight of the nonaqueous electrolytic solution.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: September 11, 2012
    Assignee: UBE Industries, Ltd.
    Inventors: Koji Abe, Chisen Hashimoto
  • Publication number: 20120225346
    Abstract: According to one embodiment, a nonaqueous electrolyte battery is provided. The battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The positive electrode includes lithium iron phosphate having an olivine structure as positive electrode active material. The negative electrode includes lithium titanate having a spinel structure and a monoclinic ?-type titanium complex oxide as a negative electrode active material.
    Type: Application
    Filed: September 16, 2011
    Publication date: September 6, 2012
    Inventors: Keigo Hoshina, Hiroki Inagaki, Norio Takami
  • Patent number: 8257871
    Abstract: An electrolyte for a lithium secondary battery, and a lithium secondary battery including the same are provided. The electrolyte includes: a cyclic ester; an organic solvent including a nitrile-containing solvent represented by Formula 1 at a content ranging from 1 to 5% by volume; and a lithium salt, R—C?N??(1) wherein R is selected from the group consisting of a C1 to C10 aliphatic hydrocarbon, a C1 to C10 halogenated aliphatic hydrocarbon, a C6 to C10 aromatic hydrocarbon, and a C6 to C10 halogenated aromatic hydrocarbon. The electrolyte can improve swelling characteristics and discharge capacity characteristics at a low temperature, and realize equal or better performance in characteristics such as capacity, life span and the like, as compared to a conventional carbonate-containing electrolyte.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: September 4, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Na-Rae Park, Jin-Bum Kim, Jin-Sung Kim, Yong-Shik Kim
  • Patent number: 8252467
    Abstract: A non-aqueous electrolyte secondary cell is provided having enhanced safety against overcharge and reduced self-discharge. The non-aqueous electrolyte secondary cell includes: a positive electrode having a positive electrode active material; a negative electrode having a negative electrode active material; and a non-aqueous electrolyte containing a non-aqueous solvent and electrolytic salt. The non-aqueous solvent contains 20 to 80 volume % tertiary carboxylic acid ester represented by formula 1 at 25° C. and 1 atm. The non-aqueous electrolyte contains an alkylbenzene compound and/or a halogenated benzene compound. where R1 to R4 each denote a straight-chained or branched alkyl group having 4 or less carbon atoms and may be the same or different.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: August 28, 2012
    Assignee: SANYO Electric Co., Ltd.
    Inventor: Kentaro Takahashi
  • Patent number: 8252468
    Abstract: A non-aqueous electrolyte secondary cell is provided having enhanced safety against overcharge and reduced self-discharge. The non-aqueous electrolyte secondary cell includes: a positive electrode having a positive electrode active material; a negative electrode having a negative electrode active material; and a non-aqueous electrolyte containing a non-aqueous solvent and electrolytic salt. The non-aqueous solvent contains 20 to 80 volume % tertiary carboxylic acid ester represented by Formula 2 at 25° C. and 1 atm. The non-aqueous electrolyte contains a halogenated benzene compound. where R1 to R4 each denote a straight-chained or branched alkyl group having 4 or less carbon atoms and may be the same or different.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: August 28, 2012
    Assignee: SANYO Electric Co., Ltd.
    Inventor: Kentaro Takahashi
  • Patent number: 8252462
    Abstract: A non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and an insulating layer formed on a surface of the positive electrode. The positive electrode includes a lithium nickel composite oxide having a layer structure, and the lithium nickel composite oxide is represented by the general formula: LixNiyM1-yO2 where M is at least one selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Co, Cu, Zn, Al, Cr, Pb, Sb, and B, 0<x?1.2, and 0.5<y?1.0. The non-aqueous electrolyte includes a solute and a non-aqueous solvent dissolving the solute, and the non-aqueous solvent contains 40% by weight or more of a cyclic carbonic acid ester. The insulating layer includes an insulating polymeric material.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: August 28, 2012
    Assignee: Panasonic Corporation
    Inventors: Naoyuki Wada, Yoshiyuki Ozaki, Shinji Kasamatsu, Yukihiro Okada
  • Patent number: 8247117
    Abstract: The present invention relates to ionic liquids having low melting points, low viscosities and high electrical conductivities; and more specifically, to ionic liquids including at least one organic onium ion and at least one anion represented by the formula: [Z—BF3]?, wherein Z is an alkyl group, an alkenyl group, or a fluoroalkenyl group. The ionic liquids according to the invention are capable of easily dissolving electrolytes such as lithium salts, and are also nonflammable and have low viscosities; therefore, the ionic liquids are suitable for use as electrolyte solvents for lithium batteries such as lithium secondary batteries, electric double-layer capacitors, and the like. The ionic liquids according to the invention are suitable for use in electrochemical devices such as lithium secondary batteries, fuel cells, solar batteries, electrical double-layer capacitors and the like; as solvents for chemical reactions; and as lubricants.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: August 21, 2012
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Hajime Matsumoto, Zhi-Bin Zhou
  • Patent number: 8247118
    Abstract: A nonaqueous solvent for an electrical storage device according to the present invention includes fluorine-containing cyclic saturated hydrocarbon having a structure represented by the following general formula (1) in which one or two substituents R are introduced into a cyclohexane ring; a compound having a relative dielectric constant of 25 or higher; and a chain carbonate (in general formula (1), R is represented by CnX2n+1 where n is an integer of 1 or greater, at least one of (2n+1) pieces of X's is F, and the other X's are H).
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: August 21, 2012
    Assignee: Panasonic Corporation
    Inventors: Masaki Hasegawa, Takashi Takeuchi
  • Publication number: 20120202124
    Abstract: Disclosed is a lithium secondary battery. The lithium secondary battery includes a cathode, an anode, a separator and a non-aqueous electrolyte solution. Either the cathode or the anode or both include metal oxide coating layers on electrode active material particles forming the electrode or a metal oxide coating layer on the surface of an electrode layer formed on a current collector. The non-aqueous electrolyte solution contains an ionizable lithium salt, an organic solvent, and a dinitrile compound having a specific structure. In the lithium secondary battery, degradation of the electrode is prevented and side reactions of the electrolyte solution are inhibited. Therefore, the lithium secondary battery exhibits excellent cycle life and output performance characteristics.
    Type: Application
    Filed: April 16, 2012
    Publication date: August 9, 2012
    Inventors: Jong-Ho JEON, Doo-Kyung Yang, Sung-Hoon Yu, Min-Hyung Lee
  • Publication number: 20120196191
    Abstract: Disclosed is a lithium secondary battery. The lithium secondary battery includes a cathode, an anode, a separator and a non-aqueous electrolyte solution. The separator includes a porous substrate, and a coating layer coated on at least one surface of the porous substrate and including a mixture of inorganic particles and a binder polymer. The non-aqueous electrolyte solution contains an ionizable lithium salt, an organic solvent, and a dinitrile compound having a specific structure. The lithium secondary battery is very safe without side reactions of the electrolyte solution. Therefore, the lithium secondary battery exhibits excellent cycle life and output performance characteristics.
    Type: Application
    Filed: April 16, 2012
    Publication date: August 2, 2012
    Inventors: Jong-Ho JEON, Doo-Kyung Yang, Sung-Hoon Yu, Min-Hyung Lee
  • Patent number: 8221915
    Abstract: Disclosed herein are lithium or lithium-ion batteries that employ an aluminum or aluminum alloy current collector protected by conductive coating in combination with electrolyte containing aluminum corrosion inhibitor and a fluorinated lithium imide or methide electrolyte which exhibit surprisingly long cycle life at high temperature.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: July 17, 2012
    Assignee: Leyden Energy, Inc.
    Inventors: Konstantin Tikhonov, Tobias Johnson, Jesse Chau, Ka Ki Yip, Marc Juzkow
  • Patent number: 8221922
    Abstract: A non-aqueous electrolyte secondary battery including: a positive electrode that contains a transition metal oxide capable of absorbing and desorbing lithium ions; a negative electrode that is capable of absorbing and desorbing lithium ions; a porous film that is interposed between the positive electrode and the negative electrode; and a non-aqueous electrolyte, wherein at least one selected from inorganic oxide and polyamide is contained in the porous film, and 5 to 15 vol % of ethylene carbonate is contained in a non-aqueous solvent that is contained in the non-aqueous electrolyte.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: July 17, 2012
    Assignee: Panasonic Corporation
    Inventors: Masaki Deguchi, Tooru Matsui, Hiroshi Yoshizawa
  • Publication number: 20120177999
    Abstract: The present invention provides an electrolyte solvent for batteries, which comprises fluoroethylene carbonate and linear ester solvent. Also, the present invention provides a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte, wherein the electrolyte comprises fluoroethylene carbonate and linear ester solvent. The inventive electrolyte solvent can improve the battery safety without deteriorating the battery performance.
    Type: Application
    Filed: March 20, 2012
    Publication date: July 12, 2012
    Applicant: LG CHEM, LTD.
    Inventors: Keun Yung IM, Ki Young LEE, Joon Sung BAE, Young Taek AN
  • Publication number: 20120171576
    Abstract: A non-aqueous electrolyte including a lithium salt, an organic solvent, and an electrolyte additive is provided. The electrolyte additive is a meta-stable state nitrogen-containing polymer formed by reacting Compound (A) and Compound (B). Compound (A) is a monomer having a reactive terminal functional group. Compound (B) is a heterocyclic amino aromatic derivative as an initiator. A molar ratio of Compound (A) to Compound (B) is from 10:1 to 1:10. A lithium secondary battery containing the non-aqueous electrolyte is further provided. The non-aqueous electrolyte of this disclosure has a higher decomposition voltage than a conventional non-aqueous electrolyte, such that the safety of the battery during overcharge or at high temperature caused by short-circuit current is improved.
    Type: Application
    Filed: May 19, 2011
    Publication date: July 5, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Li-Duan Tsai, Yueh-Wei Lin, Jason Fang, Cheng-Liang Cheng, Jing-Pin Pan, Tsung-Hsiung Wang
  • Publication number: 20120171578
    Abstract: The battery includes an electrolyte activating one or more cathodes and one or more anodes. The electrolyte includes one or more salts in a solvent. The solvent includes one or more organic solvents and one or more silanes and/or one or more siloxanes.
    Type: Application
    Filed: March 22, 2007
    Publication date: July 5, 2012
    Inventors: Zhengcheng Zhang, Phuong-Nghi Karen Lam, Mikito Nagata, Hisashi Tsukamoto
  • Publication number: 20120171579
    Abstract: A non-aqueous electrolyte including a lithium salt, an organic solvent, and an electrolyte additive is provided. The electrolyte additive is a meta-stable state nitrogen-containing polymer formed by reacting Compound (A) and Compound (B). Compound (A) is a monomer having a reactive terminal functional group. Compound (B) is a heterocyclic amino aromatic derivative as an initiator. A molar ratio of Compound (A) to Compound (B) is from 10:1 to 1:10. A lithium secondary battery containing the non-aqueous electrolyte is further provided. The non-aqueous electrolyte of this disclosure has a higher decomposition voltage than a conventional non-aqueous electrolyte, such that the safety of the battery during overcharge or at high temperature caused by short-circuit current is improved.
    Type: Application
    Filed: December 29, 2011
    Publication date: July 5, 2012
    Applicant: Industrial Technology Research Institute
    Inventors: Li-Duan Tsai, Yueh-Wei Lin, Chia-Chen Fang, Cheng-Liang Cheng, Jing-Pin Pan, Tsung-Hsiung Wang
  • Patent number: 8211577
    Abstract: A nonaqueous solvent for an electricity storage device according to the present invention comprises fluorine-containing cyclic saturated hydrocarbon having a structure which is represented by general formula (1) below and in which one or two substituents R are introduced into a cyclohexane ring (in general formula (1), R is represented by CnX2n+1, n is an integer of 1 or greater, at least one of (2n+1) pieces of X's is F, and the other X's are F or H).
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: July 3, 2012
    Assignee: Panasonic Corporation
    Inventors: Masaki Hasegawa, Takashi Takeuchi
  • Patent number: 8206853
    Abstract: The objective of the present invention is to prevent deterioration and expanding of anode active material and to improve charge-discharge cycle characteristics in a non-aqueous electrolyte secondary battery comprising an anode of which current collector has thereon a thin layer of an anode active material containing a metal. To solve this problem, in a non-aqueous electrolyte secondary battery wherein a thin layer of anode active material containing a metal which absorbs and discharges lithium is formed on a current collector and the thin layer of the anode active material is divided into columns by a gap formed along the thickness thereof, a compound represented by the following formula is contained in the non-aqueous electrolyte. A-N?C?O In the above formula, A represents an element or a group other than hydrogen.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: June 26, 2012
    Assignees: SANYO Electric Co., Ltd., Mitsubishi Chemical Corporation
    Inventors: Keiji Saisho, Hidekazu Yamamoto, Masahiro Takehara
  • Patent number: 8197964
    Abstract: A battery capable of improving the cycle characteristics even if the thickness of an anode active material layer is increased is provided. The battery includes a cathode, an anode and an electrolytic solution. The anode has an anode active material layer on an anode current collector, and the anode active material layer contains a carbon material and has a thickness of 30 ?m or more. The electrolytic solution contains a solvent and an electrolyte salt, and the solvent contains at least one of sulfone compounds such as a cyclic disulfonic acid anhydride.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: June 12, 2012
    Assignee: Sony Corporation
    Inventors: Shunsuke Saito, Masayuki Ihara, Atsumichi Kawashima
  • Publication number: 20120141883
    Abstract: The invention discloses various embodiments of electrolytes for use in lithium-ion batteries, the electrolytes having improved safety and the ability to operate with high capacity anodes and high voltage cathodes. In one embodiment there is provided an electrolyte for use in a lithium-ion battery comprising an anode and a high voltage cathode. The electrolyte has a mixture of a cyclic carbonate of ethylene carbonate (EC) or mono-fluoroethylene carbonate (FEC) co-solvent, ethyl methyl carbonate (EMC), a flame retardant additive, a lithium salt, and an electrolyte additive that improves compatibility and performance of the lithium-ion battery with a high voltage cathode. The lithium-ion battery is charged to a voltage in a range of from about 2.0 V (Volts) to about 5.0 V (Volts).
    Type: Application
    Filed: February 14, 2012
    Publication date: June 7, 2012
    Applicants: University of Southern California, California Institute of Technology
    Inventors: Marshall C. Smart, Ratnakuma V. Bugga, Surya G. Prakash, Frederick C. Krause
  • Publication number: 20120141884
    Abstract: The present invention provides a lithium-ion secondary battery with excellent high-temperature storage characteristics. The lithium-ion secondary battery provided by the present invention has positive and negative electrodes capable of absorbing and desorbing lithium ions, and an electrolyte solution containing a lithium salt as a supporting salt in an organic solvent. The nonaqueous electrolyte contains not only the lithium salt, but also at least one type of dicarboxylic acid as additive A; and at least one type of additive selected from vinylene carbonate, vinylethylene carbonate, ethylene sulfite, and fluoroethylene carbonate as additive B.
    Type: Application
    Filed: August 24, 2009
    Publication date: June 7, 2012
    Inventor: Koji Takahata
  • Patent number: 8192871
    Abstract: To provide a lithium secondary battery which suppresses a decrease in the charge and discharge efficiency during a battery storage test and which is excellent in maintaining the battery capacity after the storage test.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: June 5, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Hiroshi Haruna, Kazushige Kohno, Eiji Seki, Yoshiaki Kumashiro
  • Publication number: 20120135314
    Abstract: Provided are an electrolyte additive represented by the following formula (1), an electrolyte solution containing the electrolyte additive, and a lithium secondary battery including the electrolyte solution: The electrolyte solution containing the electrolyte additive can enhance the normal-temperature and high-temperature lifetime characteristics of the battery to be equivalent or superior to the characteristics of conventional batteries, and can extend the service life of the battery.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 31, 2012
    Applicant: SOULBRAIN CO., LTD
    Inventors: Eun Gi SHIM, Ji Seong Han, Ji Young Choi, Soo Young Kim, Hyeong Kyu Lim
  • Patent number: 8178246
    Abstract: The present invention provides a nonaqueous electrolytic solution which can give excellent cycle characteristics. The nonaqueous electrolytic solution contains a linear carbonate represented by the formula (1): wherein, in the formula (1), Xa represents each independently hydrogen or any group; Ra represents optionally substituted alkyl; and n represents an integer of zero or more.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: May 15, 2012
    Assignee: Mitsubishi Chemical Corporation
    Inventor: Noriko Shima
  • Publication number: 20120115042
    Abstract: Nonaqueous electrolytes which can produce a battery of high capacity and excellent storability and cycle characteristics are provided, as are batteries produced with the electrolytes. The electrolytes include ones with (i) an aromatic compound having 7-18 carbon atoms in total and a fluorinated cyclic carbonate having two or more fluorine atoms, (ii) diethyl carbonate and a fluorinated cyclic carbonate having two or more fluorine atoms, (iii) at least one of a cyclic sulfonic acid ester compound, disulfonic acid ester compound, nitrile compound, and a compound of formula (1) and a fluorinated cyclic carbonate having two or more fluorine atoms, or (iv) a nonaqueous electrolyte solution for use in a high-voltage battery having a final charge voltage of 4.3 V or higher and having a fluorinated cyclic carbonate with two or more fluorine atoms.
    Type: Application
    Filed: January 19, 2012
    Publication date: May 10, 2012
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Minoru KOTATO, Shinichi Kinoshita
  • Patent number: 8173298
    Abstract: An electrolyte for a lithium battery includes a non-aqueous organic solvent, a lithium salt, and an additive comprising a) a compound represented by the following Formula (1), and b) a compound selected from the group consisting of a sulfone-based compound, a poly(ester)(metha)acrylate, a polymer of poly(ester)(metha)acrylate, and a mixture thereof: wherein R1 is a C1 to C10 alkyl, a C1 to C10 alkoxy, or a C6 to C10 aryl, and preferably a methyl, ethyl, or methoxy, X is a halogen, and m and n are integers ranging from 1 to 5, where m+n is less than or equal to 6.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: May 8, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jun-Ho Kim, Ha-Young Lee, Sang-Hoon Choy, Ho-Sung Kim, Hyeong-Gon Noh
  • Publication number: 20120107697
    Abstract: An electrolyte for a lithium ion battery includes a non-aqueous organic solvent and a lithium salt. The non-aqueous organic solvent includes a flame-retardant solvent and a carbonate-based solvent. The flame-retardant solvent includes an ionic liquid including a fluorinated cation and a phosphorus-based solvent.
    Type: Application
    Filed: September 6, 2011
    Publication date: May 3, 2012
    Inventors: Sae-Weon Roh, Man-Seok Han, Sung-Soo Kim
  • Patent number: 8163426
    Abstract: An additive for an electrolyte of a lithium secondary battery, the additive including a polysiloxane-based compound represented by Formula 1 below: In formula 1 R1, R2, R3, A1, A2, l, m, n, o and p are as described in the detailed description of the present invention.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: April 24, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seung-sik Hwang, Young-gyoon Ryu, Seok-soo Lee, Dong-joon Lee
  • Patent number: 8163427
    Abstract: A non-aqueous electrolytic solution is advantageously used in preparation of a lithium secondary battery excellent in cycle characteristics. In the non-aqueous electrolytic solution for a lithium secondary battery, an electrolyte salt is dissolved in a non-aqueous solvent. The non-aqueous electrolytic solution further contains a vinylene carbonate compound in an amount of 0.01 to 10 wt. %, and an alkyne compound in an amount of 0.01 to 10 wt. %.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: April 24, 2012
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Abe, Kazuhiro Miyoshi, Takaaki Kuwata
  • Publication number: 20120088160
    Abstract: The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Inventors: Lu Zhang, Zhengcheng Zhang, Khalil Amine
  • Patent number: 8153307
    Abstract: A battery is disclosed. The battery includes an electrolyte activating one or more anodes and one or more cathodes. The electrolyte includes one or more salts dissolved in a solvent. The solvent includes one or more first siloxanes and/or one or more first silanes. Each of the first siloxanes and/or first silanes have one or more first substituents that each include a poly(alkylene oxide) moiety. The solvent also includes one or more second siloxanes and/or one or more second silanes. Each of the second siloxanes and/or second silanes have one or more second substituents that each include a carbonate moiety.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: April 10, 2012
    Assignee: Quallion LLC
    Inventors: Manabu Tanaka, Sang Young Yoon, Hiroshi Nakahara
  • Patent number: 8153306
    Abstract: Disclosed are an organic electrolyte for a lithium-ion battery and a lithium-ion battery comprising the same, wherein the electrolyte includes a base electrolyte containing a lithium salt dissolved in an organic solvent, and diphenyloctyl phosphate added thereto in an amount of 0.1 to 20 wt %. As compared to a conventional organic electrolyte using only a carbonate ester-based solvent, such as ethylene carbonate, ethyl methyl carbonate, etc., the lithium-ion battery employing the organic electrolyte can improve thermal stability of an electrolyte solution, high-rate performance, and charge/discharge cyclability of a battery, while maintaining battery performance of the base electrolyte.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: April 10, 2012
    Assignee: Sungkyunkwan University Foundation for Corporate Collaboration
    Inventors: Jung Gu Kim, Eun Gi Shim, Tae Heum Nam
  • Patent number: 8148007
    Abstract: An organic electrolyte solution includes a lithium salt; an organic solvent including a high permittivity solvent and a low boiling solvent; and a vinyl-based compound represented by Formula 1 below, wherein m and n are each independently integers of 1 to 10; X1, X2, and X3 each independently represent O, S, or NR9; and R1, R2, R3, R4, R5, R6, R7, R8, and R9 are represented in the detailed description. The organic electrolyte solution of the present invention and a lithium battery using the same suppress degradation of an electrolyte, providing improved cycle properties and life span thereof.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: April 3, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seok-soo Lee, Young-gyonn Ryu, Seung-sik Hwang, Dong-joon Lee, Boris A. Trofimov
  • Patent number: 8148006
    Abstract: A battery capable of improving cycle characteristics is provided. A separator arranged between a cathode and an anode is impregnated with an electrolytic solution. The electrolytic solution includes: a solvent; and an electrolytic salt, in which the solvent includes a compound having a difluoroalkene structure. The content of the compound having a difluoroalkene structure in the solvent is within a range from 1 wt % to 5 wt % both inclusive.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: April 3, 2012
    Assignee: Sony Corporation
    Inventors: Masayuki Ihara, Takashi Murakami, Tadahiko Kubota
  • Patent number: 8148017
    Abstract: An electrochemical energy storage device includes a negative electrode which contains a carbon material and has a negative electrode potential of 1.4 V or less relative to a lithium reference when being charged, and a non-aqueous electrolyte solution prepared by dissolving a lithium salt, an ammonium salt, and at least one kind of fluorinated benzene selected among hexafluorobenzene, pentafluorobenzene, 1,2,3,4-tetrafluorobenzene, 1,2,3,5-tetrafluorobenzene, 1,2,4,5-tetrafluorobenzene and 1,2,3-trifluorobenzene, in a non-aqueous solvent.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: April 3, 2012
    Assignee: Panasonic Corporation
    Inventors: Tooru Matsui, Masaki Deguchi, Hiroshi Yoshizawa
  • Patent number: 8137849
    Abstract: The present invention relates to a phosphate-based acrylate crosslinking agent for polymer electrolyte and a polymer electrolyte composition comprising the phosphate-based acrylate crosslinking agent, and in particular to a phosphate-based acrylate crosslinking agent where a phosphate-based compound is introduced with a polyalkylene oxide group and an acrylate group and a polymer electrolyte composition comprising the phosphate-based acrylate crosslinking agent. The polymer electrolyte composition can be applied to electrolyte thin film and polymer electrolyte of small and large capacity lithium-polymer secondary battery due to its superior ionic conductivity and electrochemical and thermal stability, where the physical properties of electrolyte composition may be controlled by means of the length of polyalkylene oxide of the crosslinking agent.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: March 20, 2012
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Yongku Kang, Changjin Lee, Jun Kyoung Lee, Joung In Lee
  • Publication number: 20120064414
    Abstract: A process for producing a solvent mixture comprising (A) at least one compound of formula (I) (B) at least one compound of formula (II a) or (II b) (C) optionally at least one additive selected from aromatic compounds, sultones and exo-methylene ethylene carbonates, melamine, urea, organic phosphates and halogenated organic carbonates, (D) optionally at least one lithium salt, and from 3 to 30 weight ppm of water, which process comprises (a) components (A), (B) and, if used, (C) being mixed with one another, (b) dried over at least one ion exchanger or molecular sieve, (c) separated from ion exchanger or, respectively, molecular sieve, and (d) at least one lithium salt, if used, being added, where the variables are defined as follows: R1, R2 are each the same or different and selected from C1-C4-alkyl, R3 is selected from hydrogen and C1-C4-alkyl.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 15, 2012
    Applicant: BASF SE
    Inventors: Klaus Leitner, Itamar Michael Malkowsky, Florian Stecker, Wunibald Kippenberger, Markus Hummelsberger, Christian Seitz, Mariella Schütz, Carsten Süling
  • Publication number: 20120058379
    Abstract: According to one embodiment, a nonaqueous electrolyte secondary battery includes a nonaqueous electrolytic solution, a positive electrode and a negative electrode is provided. The nonaqueous electrolytic solution comprises a nonaqueous solvent. The nonaqueous solvent comprises from 50 to 95% by volume of a sulfone-based compound represented by the following formula 1: wherein R1 and R2 are each an alkyl group having 1 to 6 carbon atoms and satisfy R1?R2. The positive electrode comprises a composite oxide represented by Li1-xMn1.5-yNi0.5-zMy+zO4. The negative electrode comprises a negative electrode active material being capable of absorbing and releasing lithium at 1 V or more based on a metallic lithium potential.
    Type: Application
    Filed: August 12, 2011
    Publication date: March 8, 2012
    Inventors: Takashi KISHI, Norio TAKAMI, Takuya IWASAKI, Hiroki INAGAKI
  • Patent number: 8124282
    Abstract: A nonaqueous electrolyte having maleimide additives and rechargeable cells employing the same are provided. The nonaqueous electrolyte having maleimide additives comprises an alkali metal electrolyte, a nonaqueous solvent, and maleimide additives. Specifically, the maleimide additives comprise maleimide monomer, bismaleimide monomer, bismaleimide oligomer, or mixtures thereof. The maleimide additives comprise functional groups, such as a maleimide double bond, phenyl group carboxyl, or imide, enhancing the charge-discharge efficiency, safety, thermal stability, chemical stability, flame-resistance, and lifespan of the secondary cells of the invention.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: February 28, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Jing-Pin Pan, Chang-Rung Yang, Tsung-Hsiung Wang, Yueh-Wei Lin, Pin-Chi Chiang, Jung-Mu Hsu
  • Publication number: 20120045697
    Abstract: Disclosed are an electrolyte for a rechargeable lithium battery that includes a lithium salt, a non-aqueous organic solvent, and an additive including a triazine-based compound represented by the following Chemical Formula 1 and fluoroethyl carbonate, and a rechargeable lithium battery including the electrolyte. where R1, R2, and R3 are the same as described in the detailed description.
    Type: Application
    Filed: August 15, 2011
    Publication date: February 23, 2012
    Applicants: TECHNO SEMICHEM CO., LTD., SAMSUNG SDI CO., LTD.
    Inventors: Na-Rae PARK, Jin-Hyunk LIM, Su-Hee HAN, Mi-Hyeun OH, Eun-Gi SHIM
  • Publication number: 20120034533
    Abstract: Disclosed is a non-aqueous electrolyte solution for a lithium secondary battery. The non-aqueous electrolyte solution includes a lithium salt, an organic solvent and additives. The additives include: 1 to 10% by weight of a mixture of a particular halogenated cyclic carbonate and a compound containing a vinylene or vinyl group; and 0.1 to 9% by weight of a nitrile compound having a C2-C12 alkoxyalkyl group. A lithium secondary battery including the non-aqueous electrolyte solution is also disclosed. The lithium secondary battery is protected from catching fire when overcharged and is prevented from swelling during storage at high temperature.
    Type: Application
    Filed: July 9, 2010
    Publication date: February 9, 2012
    Applicant: LG CHEM, LTD.
    Inventors: Yeon-Suk Hong, Jae-Seung Oh, Ji-Won Park, Byoung-Bae Lee, Dong-Su Kim, Hyo-Jin Lee
  • Publication number: 20120021300
    Abstract: A nonaqueous electrolytic solution of an electrolyte salt dissolved in a nonaqueous solvent, containing a hydantoin compound represented by the following general formula (I) in an amount of from 0.01 to 5% by mass of the nonaqueous electrolytic solution, and excellent in battery characteristics such as high-temperature storage property and cycle property. (In the formula, R1 and R2 each represent a methyl group or an ethyl group; R3 and R4 each represent a hydrogen atom, a methyl group or an ethyl group.
    Type: Application
    Filed: August 4, 2009
    Publication date: January 26, 2012
    Applicant: UBE INDUSTRIES, LTD.
    Inventors: Koji Abe, Masahide Kondo
  • Patent number: 8101303
    Abstract: A rechargeable lithium battery includes a positive electrode including a positive active material being capable of intercalating and deintercalating lithium ions; a negative electrode including a negative active material being capable of intercalating and deintercalating lithium ions; and an electrolyte including a non-aqueous organic solvent and a lithium salt. The positive electrode has a positive active mass density of 3.65 g/cc or more, and the lithium salt includes lithium hexafluorophosphate (LiPF6), lithium tetrafluoroborate (LiBF4), and a lithium imide-based compound. The rechargeable lithium battery has high capacity, excellent cycle-life, and reliability at a high temperature.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: January 24, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jeom-Soo Kim, Jin-Bum Kim, Yong-Chul Park, Duck-Chul Hwang, Jong-Hwa Lee
  • Patent number: 8101297
    Abstract: An organic electrolytic solution including a lithium salt; an organic solvent including a high dielectric solvent and a low boiling point solvent; and an additive compound containing an electron withdrawing group and hydrocarbon-based substituents. A lithium battery using the organic electrolytic solution can have improved cycle characteristics and cycle life through preventing decomposition of the electrolyte.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: January 24, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seok-soo Lee, Dong-joon Lee, Young-gyoon Ryu
  • Publication number: 20120009460
    Abstract: A negative electrode active material includes lithium-titanium composite oxide porous particles having an average pore size of 50 to 500 ?.
    Type: Application
    Filed: September 16, 2011
    Publication date: January 12, 2012
    Inventors: Hiroki INAGAKI, Norio Takami
  • Publication number: 20110300453
    Abstract: A non-aqueous electrolyte solution is provided that realizes a large capacity, exhibits high storage characteristics and cycle characteristics, and is capable of inhibiting gas generation. The non-aqueous electrolyte solution comprises a lithium salt and a non-aqueous solvent, and further comprises: a cyclic carbonate compound having an unsaturated bond in a concentration of 0.01 weight % or higher and 8 weight % or lower; and a compound expressed by general formula (Ia) in a concentration of 0.01 weight % or higher and 5 weight % or lower. (in the formula (Ia), R11 and R12 represent, independently of each other, an organic group that is composed of one or more carbon atoms and hydrogen atoms and may optionally contain one or more oxygen atoms but excludes unsaturated bonds, provided that at least either R11 or R12 has an ether linkage. The total number of carbon atoms of R11 and R12 is between 3 and 18, and the total number of oxygen atoms contained in R11 and R12 is between 1 and 6.
    Type: Application
    Filed: August 12, 2011
    Publication date: December 8, 2011
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Minoru KOTATO, Kunihisa Shima, Shinichi Kinoshita, Asao Kominato, Takashi Fujii, Teppei Yamada