And Acyclic Carbonate Or Acyclic Carboxylic Acid Ester Solvent Patents (Class 429/332)
  • Publication number: 20150140395
    Abstract: An electrolyte for a rechargeable lithium battery includes a lithium salt, a non-aqueous organic solvent, and an additive, where the additive includes a compound represented by Chemical Formula 1. A rechargeable lithium battery including the electrolyte includes a positive electrode including a positive active material, a negative electrode including a negative active material, and the electrolyte.
    Type: Application
    Filed: November 7, 2014
    Publication date: May 21, 2015
    Inventors: Duck-Hyun Kim, Moon-Sung Kim, E-Rang Cho, Jeong-Hye Lee
  • Publication number: 20150140444
    Abstract: A lithium ion battery that has a 5 V stabilized manganese cathode and a nonaqueous electrolyte comprising a phosphate additive is described. The lithium ion battery operates with a high voltage cathode (i.e. up to about 5 V) and has improved cycling performance at high temperature.
    Type: Application
    Filed: March 8, 2013
    Publication date: May 21, 2015
    Inventors: Charles J. Dubois, Viacheslav A. Petrov
  • Publication number: 20150140446
    Abstract: This invention relates to electrolytic solutions and secondary batteries containing same. The electrolytic solutions contain lithium bis (fluorosulfonyl) imide and asymmetric borates, asymmetric phosphates and mixtures thereof.
    Type: Application
    Filed: October 21, 2014
    Publication date: May 21, 2015
    Applicant: BASF Corporation
    Inventor: Wentao Li
  • Patent number: 9029021
    Abstract: A method of charging and discharging a battery that includes an anode. The anode includes silicon and is capable of inserting and extracting lithium. At the time of charge, the potential of the anode vs. lithium metal as a reference potential is 0.04 V or more. At the time of discharge, the potential of the anode vs. lithium metal as a reference potential is 1.4 V or less.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: May 12, 2015
    Assignee: Sony Corporation
    Inventor: Tadahiko Kubota
  • Publication number: 20150125759
    Abstract: An energy storage device comprising: (A) an anode comprising graphite; and (B) an electrolyte composition comprising: (i) at least one carbonate solvent; (ii) an additive selected from CsPF6, RbPF6, Sr(PF6)2, Ba(PF6)2, or a mixture thereof; and (iii) a lithium salt.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Wu Xu, Hongfa Xiang, Jiguang Zhang, Ruiguo Cao
  • Publication number: 20150118575
    Abstract: A rechargeable lithium battery including a negative electrode including a negative active material, a positive electrode, and an electrolyte solution including an additive, wherein the negative active material includes a Si-based material included in an amount of about 1 to about 70 wt % based on the total amount of the negative electrode, and the additive includes fluoroethylene carbonate and a compound represented by Chemical Formula 1. In the above Chemical Formula 1, R1 to R3 are each independently a substituted or unsubstituted C2 to C5 alkylene group.
    Type: Application
    Filed: September 4, 2014
    Publication date: April 30, 2015
    Inventors: Tae-Hyun Bae, Woo-Cheol Shin, Sang-Hyun Eom, Myung-Hoon Kim, Seung-Tae Lee, Ae-Ran Kim, Dong-Myung Choi, Ha-Rim Lee
  • Publication number: 20150104716
    Abstract: An electrolyte for a lithium secondary battery including a lithium salt, a non-aqueous organic solvent, and a pyrrolidine derivative represented by Formula 1, wherein, in Formula 1, X is hydrogen, a formyl group or a salt thereof, a carboxyl group or a salt thereof, a C1-C20 alkyl group, a C1-C20 hydroxyalkyl group, a C1-C20 aminoalkyl group, a C1-C20 thioalkyl group, or a C1-C20 cyanoalkyl group, and R1 to R4 are each independently hydrogen, deuterium, a halogen atom, a hydroxyl group, a thio group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a formyl group or a salt thereof, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid or a salt thereof, a C1-C20 hydroxyalkyl group, a C2-C20 heteroaryl group, or a C6-C20 aryl group.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 16, 2015
    Inventors: Yoonsok Kang, Insun Park, Junyoung Mun, Minsik Park, Jinhwan Park, Byungjin Choi
  • Publication number: 20150099191
    Abstract: A homologous series of cyclic carbonate or propylene carbonate (PC) analogue solvents with increasing length of linear alkyl substitutes were synthesized and used as co-solvents with PC for graphite based lithium ion half cells. A graphite anode reaches a capacity around 310 mAh/g in PC and its analogue co-solvents with 99.95% Coulombic efficiency. Cyclic carbonate co-solvents with longer alkyl chains are able to prevent exfoliation of graphite when used as co-solvents with PC. The cyclic carbonate co-solvents of PC compete for solvation of Li ion with PC solvent, delaying PC co-intercalation. Reduction products of PC on graphite surfaces via single-electron path form a stable Solid Electrolyte Interphase (SEI), which allows the reversible cycling of graphite.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 9, 2015
    Applicant: The Regents of the University of California
    Inventors: Gao Liu, Hui Zhao, Sang-Jae Park
  • Publication number: 20150099192
    Abstract: A non-aqueous liquid electrolyte for a secondary battery, containing, in an aprotic solvent: an electrolyte; a particular nitrile compound; and a flame retardant composed of a particular phosphate compound or a phosphazene compound, in which the nitrile compound is contained in an amount of 0.1 parts by mass to 10 parts by mass with respect to 100 parts by mass of the flame retardant.
    Type: Application
    Filed: December 10, 2014
    Publication date: April 9, 2015
    Applicant: FUJIFILM Corporation
    Inventors: Toshihiko YAWATA, Ikuo KINOSHITA
  • Patent number: 8993177
    Abstract: Desirable electrolyte compositions are described that are suitable for high voltage lithium ion batteries with a rated charge voltage at least about 4.45 volts. The electrolyte compositions can comprise ethylene carbonate and solvent composition selected from the group consisting of dimethyl carbonate, methyl ethyl carbonate, ?-butyrolactone, ?-valerolactone or a combination thereof. The electrolyte can further comprise a stabilization additive. The electrolytes can be effectively used with lithium rich positive electrode active materials.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: March 31, 2015
    Assignee: Envia Systems, Inc.
    Inventors: Shabab Amiruddin, Herman Lopez
  • Publication number: 20150086880
    Abstract: Disclosed is a lithium secondary battery having improved lifespan characteristics. More particularly, a lithium secondary battery comprising a cathode, an anode, a separator interposed between the cathode and anode, and an electrolyte, wherein the anode comprises lithium titanium oxide (LTO) as an anode active material, the electrolyte comprises a lithium salt; a non-aqueous-based solvent; and (a) a phosphate compound which can prevent gas generation during high-temperature storage, (b) a sulfonate compound which can reduce discharge resistance by forming a low-resistance SEI layer, or a mixture of the compound (a) and the compound (b), is disclosed.
    Type: Application
    Filed: December 4, 2014
    Publication date: March 26, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Kyoung Ho Ahn, Chul Haeng Lee, Jung Hoon Lee, Doo Kyung Yang, Young Min Lim
  • Publication number: 20150084604
    Abstract: An improved lithium-sulfur battery containing a surface-functionalized carbonaceous material. The presence of the surface-functionalized carbonaceous material generates weak chemical bonds between the functional groups of the surface-functionalized carbonaceous material and the functional groups of the polysulfides, which prevents the polysulfide migration to the battery anode, thereby providing a battery with relatively high energy density and good partial discharge efficiency.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Applicant: EAGLEPICHER TECHNOLOGIES, LLC
    Inventors: Ramanathan THILLAIYAN, Wujun FU, Mario DESTEPHEN, Greg MILLER, Ernest NDZEBET, Umamaheswari JANAKIRAMAN
  • Publication number: 20150086878
    Abstract: The present invention provides non-aqueous electrolyte solution for a lithium secondary battery, comprising an ester-based compound having a branched-chain alkyl group and an ester-based compound having a straight-chain alkyl group; and a lithium secondary battery using the same.
    Type: Application
    Filed: December 2, 2014
    Publication date: March 26, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Sung-Hoon YU, Doo-Kyung YANG, Jong-Ho JEON, Min-Jung JOU
  • Publication number: 20150086879
    Abstract: An anode in which an anode active material layer is arranged on an anode current collector. The anode active material layer includes anode active material particles made of an anode active material including at least one of silicon and tin as an element. An oxide-containing film including an oxide of at least one kind selected from the group consisting of silicon, germanium and tin is formed in a region in contact with an electrolytic solution of the surface of each anode active material particle by a liquid-phase method such as a liquid-phase deposition method. The region in contact with the electrolytic solution of the surface of each anode active material particle is covered with the oxide-containing film, to thereby improve the chemical stability of the anode and the charge-discharge efficiency. The thickness of the oxide-containing film is preferably within a range from 0.1 nm to 500 nm both inclusive.
    Type: Application
    Filed: December 2, 2014
    Publication date: March 26, 2015
    Inventors: Hiroyuki Yamaguchi, Hiroshi Horiuchi, Kenichi Kawase, Tadahiko Kubota, Hideki Nakai, Takakazu Hirose
  • Publication number: 20150086877
    Abstract: The present invention aims to provide an electrolyte solution for forming, for example, a secondary battery having excellent oxidation resistance and high-temperature storage characteristics; an electrochemical device such as a lithium-ion secondary battery that contains the electrolyte solution; and a module that contains the electrochemical device. The present invention provides an electrolyte solution containing a solvent and an electrolyte salt, wherein the solvent contains a fluorine-containing compound (A) represented by formula (1) shown below in an amount of 0.01 to 20% by mass, and a fluorine-containing compound (B) represented by formula (2) shown below in an amount of 10 to 80% by mass: Rf1OCOOR??(1) wherein Rf1 is a C1-C4 fluorine-containing alkyl group, and R is a C1-C4 non-fluorinated alkyl group, and Rf2OCOORf3??(2) wherein Rf2 and Rf3 are the same or different, and each is a C1-C4 fluorine-containing alkyl group.
    Type: Application
    Filed: April 12, 2013
    Publication date: March 26, 2015
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Shigeaki Yamazaki, Hideo Sakata, Mayuko Taeda, Meiten Koh, Aoi Nakazono, Michiru Kagawa, Akiyoshi Yamauchi
  • Publication number: 20150086876
    Abstract: The present invention aims to provide an electrolyte solution for forming, for example, a secondary battery having excellent oxidation resistance and high voltage cycle characteristics; an electrochemical device such as a lithium-ion secondary battery that contains the electrolyte solution; and a module that contains the electrochemical device. The present invention provides an electrolyte solution containing a solvent and an electrolyte salt, wherein the solvent contains a fluorine-containing compound (A) represented by formula (1) shown below, and a fluorine-containing compound (B) represented by formula (2) shown below: Rf1OCOOR??(1) wherein Rf1 is a C1-C4 fluorine-containing alkyl group, and R is a C1-C4 non-fluorinated alkyl group, and Rf2OCOORf3??(2) wherein Rf2 and Rf3 are the same or different, and each is a C1-C4 fluorine-containing alkyl group.
    Type: Application
    Filed: April 12, 2013
    Publication date: March 26, 2015
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Mayuko Taeda, Meiten Koh, Aoi Nakazono, Michiru Kagawa, Akiyoshi Yamauchi
  • Patent number: 8986570
    Abstract: The present invention discloses a method for producing a positive electrode active material for a lithium secondary battery constituted by a lithium-nickel-cobalt-manganese complex oxide with a lamellar structure, the method including: (1) a step of preparing a starting source material for producing the complex oxide including a lithium supply source, a nickel supply source, a cobalt supply source, and a manganese supply source; (2) a step of pre-firing the starting source material by heating at a pre-firing temperature that has been set to a temperature lower than 800° C. and higher than a melting temperature of the lithium supply source; and (3) a step of firing the pre-fired material obtained in the pre-firing step by raising a temperature to a temperature range higher than the pre-firing temperature.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: March 24, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroki Nagai, Hidekazu Hiratsuka
  • Publication number: 20150079482
    Abstract: The present invention provides an electrolyte for a Li storage battery comprising a compound that can improve safety of a storage battery without causing the degradation in performances thereof and a Li storage battery comprising the electrolyte. The electrolyte comprises at least 1,1-diphenylethane the Li storage battery comprises the electrolyte. Particularly preferably provided are an electrolyte for a Li storage battery comprising 1,1-diphenylethane, a cyclic carbonate (e.g., ethylene carbonate), a chain carbonate (e.g., dimethyl carbonate, diethyl carbonate, ethyl methyl or ethylmethyl carbonate) and a Li salt and a Li storage battery comprising such an electrolyte.
    Type: Application
    Filed: February 26, 2013
    Publication date: March 19, 2015
    Applicant: JX Nippon Oil & Energy Corporation
    Inventors: Atsuo Omaru, Takeshi Nishizawa
  • Patent number: 8980482
    Abstract: The present invention provides a lithium-ion secondary battery with excellent high-temperature storage characteristics. The lithium-ion secondary battery provided by the present invention has positive and negative electrodes capable of absorbing and desorbing lithium ions, and an electrolyte solution containing a lithium salt as a supporting salt in an organic solvent. The nonaqueous electrolyte contains not only the lithium salt, but also at least one type of dicarboxylic acid as additive A; and at least one type of additive selected from vinylene carbonate, vinylethylene carbonate, ethylene sulfite, and fluoroethylene carbonate as additive B.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: March 17, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Koji Takahata
  • Patent number: 8980481
    Abstract: Disclosed is a non-aqueous electrolyte solution for a lithium secondary battery. The non-aqueous electrolyte solution includes a lithium salt, an organic solvent and additives. The additives include: 1 to 10% by weight of a mixture of a particular halogenated cyclic carbonate and a compound containing a vinylene or vinyl group; and 0.1 to 9% by weight of a nitrile compound having a C2-C12 alkoxyalkyl group. A lithium secondary battery including the non-aqueous electrolyte solution is also disclosed. The lithium secondary battery is protected from catching fire when overcharged and is prevented from swelling during storage at high temperature.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: March 17, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Yeon-Suk Hong, Jae-Seung Oh, Ji-Won Park, Byoung-Bae Lee, Dong-Su Kim, Hyo-Jin Lee
  • Publication number: 20150072247
    Abstract: An electrolyte for a lithium battery, a lithium battery including the electrolyte, and a method of preparing the electrolyte for a lithium battery. The electrolyte for a lithium battery includes a non-aqueous organic solvent; and about 0.1 wt % to about 1 wt % of lithium nitrate (LiNO3) based on a total weight of the non-aqueous organic solvent. By using the electrolyte for a lithium battery, lifespan cycle properties of the lithium battery may be improved.
    Type: Application
    Filed: July 28, 2014
    Publication date: March 12, 2015
    Inventors: In-Haeng Cho, Ha-Rim Lee, Sang-Hoon Kim, Woo-Cheol Shin, Jung-Hyun Nam
  • Patent number: 8968938
    Abstract: Disclosed are a non-aqueous electrolyte comprising a lithium salt and a solvent, the electrolyte containing, based on the weight of the electrolyte, 10-40 wt % of a compound of Formula 1 or its decomposition product, and 1-40 wt % of an aliphatic nitrile compound, as well as an electrochemical device comprising the non-aqueous electrolyte. Also disclosed is an electrochemical device comprising: a cathode having a complex formed between the surface of a cathode active material and an aliphatic nitrile compound; and an anode having formed thereon a coating layer containing a decomposition product of the compound of Formula 1. Moreover, disclosed is an electrochemical device comprising: a cathode having a complex formed between the surface of a cathode active material and an aliphatic nitrile compound; and a non-aqueous electrolyte containing the compound of Formula 1 or its decomposition product.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: March 3, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Young Soo Kim, Soon Ho Ahn, Joon Sung Bae, Cha Hun Ku, Soo Hyun Ha, Duk Hyun Ryu, Sei Lin Yoon
  • Patent number: 8962754
    Abstract: A nonaqueous electrolyte and a lithium ion battery with reduced temporal variations in battery characteristics from initial values are provided. A mixed solution is prepared by dissolving a lithium salt such as LiPF6 in a nonaqueous solvent such as ethylene carbonate. Allylboronate ester and siloxane are mixed with the mixed solution. The content of the allylboronate ester is 1 wt % or less. The content of the siloxane is 2 wt % or less. 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane is used as the allylboronate ester. At least one kind selected from hexamethyldisiloxane and 1,3-divinyltetramethyldisiloxane is used as the siloxane.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: February 24, 2015
    Assignee: Shin-Kobe Electric Machinery Co., Ltd.
    Inventors: Hiroshi Haruna, Shingo Itoh
  • Patent number: 8962192
    Abstract: A nonaqueous electrolytic solution that can provide a battery that is low in gas generation, has a large capacity, and is excellent in storage characteristics and cycle characteristics contains an electrolyte and a nonaqueous solvent dissolving the electrolyte and further contains 0.001 vol % or more and less than 1 vol % of a compound represented by Formula (1) in the nonaqueous solvent. Alternatively, the nonaqueous electrolytic solution contains 0.001 vol % or more and less than 5 vol % of a compound represented by Formula (1) in the nonaqueous solvent and further contains at least one compound selected from the group consisting of cyclic carbonate compounds having carbon-carbon unsaturated bonds, cyclic carbonate compounds having fluorine atoms, monofluorophosphates, and difluorophosphates. In Formula (1), R1 to R3 each independently represent an alkyl group of 1 to 12 carbon atoms, which may be substituted by a halogen atom; and n represents an integer of 0 to 6.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: February 24, 2015
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Minoru Kotato, Shinichi Kinoshita
  • Publication number: 20150050561
    Abstract: A lithium ion cell includes a cathode including a cathode active material having an operating voltage of 4.6 volts or greater; an anode including an anode material and a lithium additive including a lithium metal foil, lithium alloy, or an organolithium material; a separator; and an electrolyte.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 19, 2015
    Applicant: UChicago Argonne, LLC
    Inventors: Zhengcheng Zhang, Libo Hu, Khalil Amine, Christopher S. Johnson
  • Publication number: 20150050562
    Abstract: The present invention is to provide a nonaqueous electrolytic solution prepared by dissolving an electrolyte salt in a nonaqueous solvent and an energy storage device, wherein the nonaqueous electrolytic solution includes LiPF2(—OC(?O)—C(?O)O—)2 and at least one kind of a compound having a carbon-carbon triple bond represented by the following general formula (I): (wherein R1 and R2 each independently represent a hydrogen atom or an alkyl group having from 1 to 6 carbon atoms and optionally substituted with a halogen atom; and R3 represents a methyl group or an ethyl group. X represents a hydrogen atom or —CR1R2—OS(?O)2—R3.
    Type: Application
    Filed: March 22, 2013
    Publication date: February 19, 2015
    Applicant: UBE INDUSTRIES, LTD.
    Inventors: Koji Abe, Masahide Kondo
  • Publication number: 20150044573
    Abstract: The invention relates to lithium 1-trifluoromethoxy-1,2,2,2-tetra-fluoroethanesulphonate, the use of lithium 1-trifluoromethoxy-1,2,2,2-tetra-fluoroethanesulphonate as electrolyte salt in lithium-based energy stores and also ionic liquids comprising 1-trifluoro-methoxy-1,2,2,2-tetrafluoro-ethanesulphonate as anion.
    Type: Application
    Filed: February 27, 2013
    Publication date: February 12, 2015
    Inventors: Gerd-Volker Röschenthaler, Martin Winter, Stefano Passerini, Katja Vlasov, Nataliya Kalinovich, Christian Schreiner Schreiner, Raphael Wilhelm Schmitz, Ansgar Romek Müller, Rene Schmitz, Tanja Schedlbauer, Alexandra Lex-Balducci, Miriam Kunze
  • Patent number: 8945774
    Abstract: The present invention claims the addition of vinylene carbonate (VC) and optionally also fluoroethylene carbonate to the electrolyte of lithium ion cells having a structural silicon composite anode, i.e. an anode containing fibers or particles of silicon. The additive significantly improves the cycling performance of the cells. A VC content in the range 3.5-8 wt % based on the weight of the electrolyte has been found to be optimum.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: February 3, 2015
    Assignee: Nexeon Ltd.
    Inventors: Fazlil Coowar, Mamdouh Elsayed Abdelsalam, Michael Jonathan Lain
  • Patent number: 8945776
    Abstract: An electrolyte for a rechargeable lithium battery and a rechargeable lithium battery including the same, the electrolyte including a lithium salt, a silylborate-based compound, an anhydride component, and a non-aqueous organic solvent.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: February 3, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Tae-Ahn Kim, Mi-Hyeun Oh, Na-Rae Won, Sung-Hoon Kim
  • Patent number: 8945769
    Abstract: An electricity storage device including a positive electrode 31, a negative electrode 32, and an electrolytic solution 29 located between the positive electrode and the negative electrode. At least one of the positive electrode 31 and the negative electrode 32 contains an electricity storage material containing a polymerization product having a tetrachalcogenofulvalene structure in a repeat unit of a main chain.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: February 3, 2015
    Assignee: Panasonic Corporation
    Inventors: Nobuhiko Hojo, Yu Ohtsuka, Takakazu Yamamoto, Takahisa Shimizu, Takayuki Sasaki, Tomoaki Yanagida
  • Patent number: 8940443
    Abstract: An electrolyte comprising an organic solvent, a lithium salt, and a polymer additive comprised of repeating vinyl units joined to one or more heterocyclic amine moieties is described. The heterocyclic amine contains five to ten ring atoms, inclusive. An electrochemical cell is also disclosed. The preferred cell comprises a negative electrode which intercalates with lithium, a positive electrode comprising an electrode active material which intercalates with lithium, and the electrolyte of the present invention activating the negative and the positive electrodes.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: January 27, 2015
    Assignee: Greatbatch Ltd.
    Inventor: Chi-Kyun Park
  • Publication number: 20150024283
    Abstract: Provided is a non-aqueous electrolyte for secondary batteries which is capable of maintaining excellent discharge characteristics even at low temperatures. The non-aqueous electrolyte for secondary batteries includes a non-aqueous solvent, and a lithium salt dissolved in the non-aqueous solvent. The non-aqueous solvent includes a cyclic carbonate, a chain carbonate, a fluoroarene, and a carboxylic acid ester. The cyclic carbonate includes ethylene carbonate. The non-aqueous solvent has a cyclic carbonate content MCI of 4.7 to 90 mass %, an ethylene carbonate content MEC of 4.7 to 37 mass %, a chain carbonate content MCH of 8 to 80 mass %, a fluoroarene content MFA of 1 to 25 mass %, and a carboxylic acid ester content MCAE of 1 to 80 mass %.
    Type: Application
    Filed: April 11, 2013
    Publication date: January 22, 2015
    Inventor: Masaki Deguchi
  • Publication number: 20150024282
    Abstract: In an aspect, a lithium secondary battery including a compound as disclosed and described herein; and an electrolyte for a lithium secondary battery including a non-aqueous organic solvent and a lithium salt is provided.
    Type: Application
    Filed: June 24, 2014
    Publication date: January 22, 2015
    Inventors: Ha-Rim Lee, Sang-Hoon Kim, In-Haeng Cho
  • Patent number: 8936880
    Abstract: A cylindrical lithium secondary battery includes an anode and a cathode, capable of occluding or emitting lithium ions; a non-aqueous electrolyte; and a CID (Current Interrupt Device) for intercepting electric current and lowering inner pressure when the inner pressure of the secondary battery is increased. The cylindrical lithium secondary battery may ensure the safety of the battery with respect to overcharging and also at the same time prevent the problem wherein the CID is activated too early, such that the battery stops its operation when the battery is used in a high-temperature environment.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: January 20, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Mi-Young Son, Jeong-Ju Cho, Ho-Chun Lee, Jong-Ho Jeon
  • Patent number: 8936882
    Abstract: The present invention provides an electrolyte composition for a lithium or lithium-ion battery comprising a lithium salt in a liquid carrier comprising (a) a linear alkyl carbonate solvent, a cyclic alkyl carbonate solvent, or a combination thereof, and (b) a glycerol carbonate derivative compound of Formula (I): wherein X is selected from O, O(CO)O, S, N, P, P(?O), B, and Si; n is 1 when X is O, O(CO)O, or S; n is 2 when x is N, P, P(?O), or B; n is 3 when X is Si; and each R independently is selected from alkyl, alkenyl, alkynyl, aryl, acyl, heteroaryl, a 5-member ring heterocyclic group, a 5-member ring heterocycle-substituted methyl group, trialkylsilyl, and any of the foregoing substituted with one or more fluoro substituents, provided that R is acyl only when X is O, S, or N, and R is not alkyl when X is O(CO)O.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: January 20, 2015
    Assignee: UChicago Argonne, LLC
    Inventors: Daniel P. Abraham, Gang Cheng
  • Publication number: 20150017515
    Abstract: Disclosed are an electrolyte for a lithium secondary battery which includes a non-aqueous solvent and a lithium salt and a lithium secondary battery including the same. The electrolyte includes 1 to 60 wt % of a cyclic carbonate and 40 to 99 wt % of a linear solvent based on a total weight of the non-aqueous solvent.
    Type: Application
    Filed: September 30, 2014
    Publication date: January 15, 2015
    Applicant: LG Chem, Ltd.
    Inventors: Jong Ho Jeon, Yoo Seok Kim, Doo Kyung Yang, Shulkee Kim
  • Publication number: 20150017552
    Abstract: An electrolyte comprising an organic solvent, a lithium salt, and a polymer additive comprised of repeating vinyl units joined to one or more heterocyclic amine moieties is described. The heterocyclic amine contains five to ten ring atoms, inclusive. An electrochemical cell is also disclosed. The preferred cell comprises a negative electrode which intercalates with lithium, a positive electrode comprising an electrode active material which intercalates with lithium, and the electrolyte of the present invention activating the negative and the positive electrodes.
    Type: Application
    Filed: September 29, 2014
    Publication date: January 15, 2015
    Inventor: Chi-Kyun Park
  • Patent number: 8927158
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode having a positive-electrode active material, a negative electrode having a negative-electrode active material, and a nonaqueous electrolytic solution having a nonaqueous solvent dissolving a solute. The negative-electrode active material includes powdered silicon and/or a silicon alloy, the nonaqueous electrolytic solution includes additives composed of at least one fluorinated lithium phosphate selected from the group consisting of lithium monofluorophosphate, lithium difluorophosphate, and lithium trifluorophosphate and a diisocyanate compound, and the nonaqueous solvent includes a chain carbonate compound.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: January 6, 2015
    Assignees: SANYO Electric Co., Ltd., Mitsubishi Chemical Corporation
    Inventors: Hidekazu Yamamoto, Kouhei Tuduki, Taizou Sunano, Maruo Kamino, Youichi Ohashi, Minoru Kotato
  • Patent number: 8927159
    Abstract: The present invention provides non-aqueous electrolyte solution for a lithium secondary battery, comprising an ester-based compound having a branched-chain alkyl group and an ester-based compound having a straight-chain alkyl group; and a lithium secondary battery using the same.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: January 6, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Sung-Hoon Yu, Doo-Kyung Yang, Jong-Ho Jeon, Min-Jung Jou
  • Publication number: 20150004475
    Abstract: Disclosed are an electrolyte for a lithium secondary battery which includes a non-aqueous solvent and a lithium salt, wherein the non-aqueous solvent includes a cyclic carbonate and a linear solvent, wherein an amount of the cyclic carbonate in the non-aqueous solvent is in the range of 1 wt % to 30 wt % based on a total weight of the non-aqueous solvent and a lithium secondary battery including the same.
    Type: Application
    Filed: September 18, 2014
    Publication date: January 1, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Jong Ho JEON, Yoo Seok KIM, Doo Kyung YANG, Shulkee KIM
  • Patent number: 8920981
    Abstract: There is provided in one embodiment of the invention an electrolyte for use in a lithium ion electrochemical cell. The electrolyte comprises a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), an ester cosolvent, and a lithium salt. The ester cosolvent comprises methyl propionate (MP), ethyl propionate (EP), methyl butyrate (MB), ethyl butyrate (EB), propyl butyrate (PB), or butyl butyrate (BB). The electrochemical cell operates in a temperature range of from about ?60 degrees Celsius to about 60 degrees Celsius. In another embodiment there is provided a lithium ion electrochemical cell using the electrolyte of the invention.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: December 30, 2014
    Assignee: California Institute of Technology
    Inventors: Marshall C. Smart, Ratnakumar V. Bugga
  • Publication number: 20140377667
    Abstract: The invention relates to lithium-2-methoxy-1,1,2,2-tetrafluoro-ethanesulfonate, to the use thereof as conductive salt in lithium-based energy accumulators, and ionic liquids comprising 2-methoxy-1,1,2,2-tetrafluoro-ethanesulfonate as an anion.
    Type: Application
    Filed: July 25, 2012
    Publication date: December 25, 2014
    Applicants: JACOBS UNIVERSITY BREMEN gGMBH, WESTFALISCHE WILHELMS UNIVERSITAT MUNSTER
    Inventors: Gerd-Volker Roschenthaler, Martin Winter, Katja Vlasov, Nataliya Kalinovich, Christian Schreiner, Raphael Wilhelm Schmitz, Romek Ansgar Muller, Rene Schmitz, Alexandra Lex-Balducci, Miriam Kunze
  • Publication number: 20140377668
    Abstract: A nonaqueous electrolytic solution prepared by dissolving an electrolyte salt in a nonaqueous solvent and an energy storage device are provided, wherein the nonaqueous electrolytic solution contains at least one kind of a compound represented by the following general formula (I): (wherein each of R1 to R10 independently represents hydrogen atom, halogen atom, or a C1 to C4 alkyl group in which at least one hydrogen atom may be substituted with halogen atom.
    Type: Application
    Filed: December 17, 2012
    Publication date: December 25, 2014
    Applicant: UBE INDUSTRIES, LTD.
    Inventors: Koji Abe, Kei Shimamoto
  • Publication number: 20140356733
    Abstract: Provided are an additive for a lithium battery electrolyte, wherein the additive is an ethylene carbonate based compound represented by the following Formula 1 or 2, an organic electrolyte solution including the additive, and a lithium battery including the organic electrolyte solution: in the above Formulae, R1, R2, R3, and R4 are each independently a non-polar functional group or a polar functional group, the polar functional group including a heteroatom belonging to groups 13 to 16 of the periodic table of elements, and one or more of R1, R2, R3, and R4 are the polar functional groups.
    Type: Application
    Filed: May 5, 2014
    Publication date: December 4, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Makhmut Khasanov, Woo-Cheol Shin, Vladimir Egorov, Pavel Alexandrovich Shatunov, Denis Chernyshov, Sang-Hoon Kim, Ha-Rim Lee, In-Haeng Cho, Alexey Tereshchenko
  • Publication number: 20140349198
    Abstract: Provided are a non-aqueous electrolyte solution, which includes a non-aqueous organic solvent including propylene carbonate (PC) and an ester-based solvent, and lithium bis(fluorosulfonyl)imide (LiFSI), and a lithium secondary battery including the non-aqueous electrolyte solution. According to the non-aqueous electrolyte solution of the present invention, since a robust solid electrolyte interface (SEI) may be formed on an anode during initial charge of a lithium secondary battery including the non-aqueous electrolyte solution, high-temperature cycle characteristics and capacity characteristics after high-temperature storage as well as low-temperature, room temperature, and high-temperature output characteristics may be simultaneously improved.
    Type: Application
    Filed: July 31, 2014
    Publication date: November 27, 2014
    Inventors: Young Min Lim, Chul Haeng Lee, Doo Kyung Yang, Shul Kee Kim
  • Publication number: 20140342242
    Abstract: An organic electrolyte solution and a lithium battery using the same are disclosed. The organic electrolyte solution includes a lithium salt, an organic solution, a thiophene-based compound and a nitrile-based compound.
    Type: Application
    Filed: December 30, 2013
    Publication date: November 20, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Vladimir Egorov, Woo-Cheol Shin, Jung-Yi Yu, Sang-Il Han, Sang-Hoon Kim, Duck-Hyun Kim, Myung-Hwan Jeong, Seung-Tae Lee, Tae-Hyun Bae, Mi-Hyun Lee, Eon-Mi Lee, Ha-Rim Lee, Moon-Sung Kim, In-Haeng Cho, E-Rang Cho, Dong-Myung Choi, Makhmut Khasanov, Pavel Alexandrovich Shatunov, Alexey Tereshchenko, Denis Chernyshov
  • Publication number: 20140342243
    Abstract: An electrolyte for a rechargeable lithium battery, the electrolyte including a lithium salt, a non-aqueous organic solvent, a first additive represented by Chemical Formula 1, and a second additive represented by Chemical Formula 2 is disclosed. A rechargeable lithium battery including the electrolyte is also disclosed. The structures and definitions of the Chemical Formulae 1 and 2 are the same as described in the detailed description.
    Type: Application
    Filed: January 8, 2014
    Publication date: November 20, 2014
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Sun-Il Park, Young-Kee Kim, Sumihito Ishida
  • Patent number: 8889302
    Abstract: Disclosed is a nonaqueous electrolytic solution which forms a nonaqueous-electrolyte battery having high capacity and excellent storage characteristics at high temperatures, while sufficiently enhancing safety at the time of overcharge, and a nonaqueous-electrolyte battery using the same. The nonaqueous electrolytic solution has an electrolyte and a nonaqueous solvent with (A) a compound of formula (2): wherein R7 is an optionally halogenated and/or phenylated alkyl group comprising 1-12 carbon atoms, R8 to R12 are independently a hydrogen atom, a halogen atom, an optionally halogenated ether or alkyl group comprising 1-12 carbon atoms, and at least one of R8 to R12 is an optionally halogenated alkyl group comprising 2-12 carbon atoms; and/or (B) a carboxylic acid ester with a phenyl group substituted by at least one alkyl group (having 4 or more carbon atoms) that is optionally substituted.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: November 18, 2014
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Yumiko Nakagawa, Minoru Kotato, Daisuke Noda, Shinichi Kinoshita
  • Patent number: 8883344
    Abstract: An electrolyte for a lithium secondary battery having flame retardancy, low negative electrode interfacial resistance, and excellent high temperature properties and life characteristics, and a lithium secondary battery including the same. An electrolyte for a lithium secondary battery of the present invention may include a non-aqueous organic solvent, a lithium salt, fluorinated ether or phosphazene, and a resistance-improving additive represented as the following chemical formula (1): FSO2—R1—SO2F??[Chemical Formula 1] wherein R1 is a C1-C12 hydrocarbon unsubstituted or substituted with at least one fluorine.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: November 11, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sinyoung Park, Yongbeom Lee, Sunyoung Kim, Bora Lee
  • Publication number: 20140322616
    Abstract: A non-aqueous electrolyte solution for secondary batteries, comprising a lithium salt (total number of moles of lithium atoms: NLi) and a liquid composition, wherein the liquid composition comprises a specific fluorinated solvent (?) and a cyclic carboxylic acid ester compound (total number of moles: NA), and may contain a specific compound (?) (total number of moles: NB), the content of the fluorinated solvent (?) is from 40 to 80 mass %, NA/NLi is from 1.5 to 7.0, and (NA+NB)/NLi is from 3 to 7.0; and, a lithium ion secondary battery employing such a non-aqueous electrolyte solution for secondary batteries.
    Type: Application
    Filed: March 27, 2014
    Publication date: October 30, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Yu ONOZAKI, Toyokazu ENTA, Masao IWAYA