Oxidoreductase (1. ) (e.g., Luciferase) Patents (Class 435/189)
  • Patent number: 11326173
    Abstract: The present invention concerns a method of producing and enantiomerically pure alpha-ionone. Further, the invention concerns a nucleic acid that comprises a sequence that encodes a lycopene-epsilon-cyclase (EC), a lycopene-epsilon-cyclase (EC), plasmids, which encode components of the alpha-ionone biosynthesis and a microorganism that contains heterologous nucleotide sequences which encode the enzymes geranylgeranyl-diphosphate-synthase, isopentenyl-diphosphate-isomerase (IPI), phytoene desaturase-dehydrogenase (crtI), phytoene synthase (crtB), lycopene-epsilon-cyclase (EC) and carotenoid-cleavage-dioxygenase (CCD1). Further, the invention concerns a method of producing highly pure epsilon-carotene.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: May 10, 2022
    Assignee: PHYTOWELT GREENTECHNOLOGIES GMBH
    Inventors: Guido Jach, Sanae Azdouffal, Katrin Schullehner, Peter Welters, Angela Goergen
  • Patent number: 11319551
    Abstract: The invention relates to biotechnology and provides novel recombinant DNA molecules and engineered proteins for conferring tolerance to protoporphyrinogen oxidase-inhibitor herbicides. The invention also provides herbicide tolerant transgenic plants, seeds, cells, and plant parts containing the recombinant DNA molecules, as well as methods of using the same.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: May 3, 2022
    Assignee: Monsanto Technology LLC
    Inventors: Artem G. Evdokimov, Clayton T. Larue, Farhad Moshiri, Joel E. Ream, Xuefeng Zhou
  • Patent number: 11312754
    Abstract: A protein hydrolysate composition is provided. The protein hydrolysate composition comprises isolated peptides useful for ameliorating a condition of a subject. Compositions comprising the protein hydrolysate composition are also provided. The compositions may be adapted for oral or topical administration to the subject, and may compose a foodstuff or beverage (e.g. a medical food), a topical composition (e.g. a lotion, cream, etc.), a kit, and the like. A methods of ameliorating the condition of the subject is further provided. The method include administering the protein hydrolysate composition to the subject. The method may be useful in reducing blood pressure, inflammation, reduced immunity, and/or oxidative stress in the subject.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: April 26, 2022
    Assignee: ACCESS BUSINESS GROUP INTERNATIONAL LLC
    Inventors: Rodney A. Velliquette, Eugene Maly
  • Patent number: 11306295
    Abstract: A new thermostable luciferase of the following mutant luciferase (a) or (b): (a) a mutant of a wild-type luciferase comprising the amino acid sequence of SEQ ID NO: 1, wherein phenylalanine at position 292 and/or phenylalanine at position 294 in the amino acid sequence of SEQ ID NO: 1 is substituted with another amino acid; or (b) a mutant of a luciferase having 93% or more homology with the amino acid sequence of SEQ ID NO: 1, wherein in the amino acid sequence of the mutant, the amino acid at a site corresponding to position 292 and/or position 294 in the amino acid sequence of SEQ ID NO: 1 is substituted with another amino acid.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: April 19, 2022
    Assignees: TOYO B-NET CO., LTD., TOYO INK SC HOLDINGS CO., LTD.
    Inventors: Ayumi Hori, Yutaka Yamagishi
  • Patent number: 11284577
    Abstract: Stevia varieties with a high content of RebM, are disclosed Further provided are methods for producing Stevia plants having a high RebM content by negatively regulating certain genes selecting the resulting plants, and breeding with such plants to confer such desirable Reb M phenotypes to plant progeny.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: March 29, 2022
    Assignees: PureCircle USA Inc., KeyGene N.V., The Coca-Cola Company
    Inventors: Avetik Markosyan, Seong Siang Ong, Runchun Jing, Tengfang Huang, Stephen Ezra Schauer, Fayaz Khazi, Indra Prakash, Alec Hayes
  • Patent number: 11284623
    Abstract: The present invention relates to pesticidal mixtures comprising one biological compound and at least one fungicidal, insecticidal or plant growth regulating compound as defined herein and respective agricultural uses thereof.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: March 29, 2022
    Assignee: BASF CORPORATION
    Inventors: Lutz Brahm, Burghard Liebmann, Ronald Wilhelm, Markus Gewehr
  • Patent number: 11274287
    Abstract: The present invention provides engineered polypeptides that are useful for the asymmetric synthesis of ?-hydroxy-?-amino acids under industrial-relevant conditions. The present disclosure also provides polynucleotides encoding engineered polypeptides, host cells capable of expressing engineered polypeptides, and methods of producing ?-hydroxy-?-amino acids using engineered polypeptides. Compared to other processes of preparation, the use of the engineered polypeptides of the present invention for the preparation of ?-hydroxy-?-amino acids results in high purity of the desired stereoisomers, mild reaction conditions, low pollution and low energy consumption. So, it has good industrial application prospects.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: March 15, 2022
    Assignee: Enzymaster (Ningbo) Bio-Engineering Co., Ltd
    Inventors: Haibin Chen, Yong Koy Bong, Baoqin Cai, Qing Xu, Tianran Shen, Ameng Zhou, Jiadong Yang, Zhuhong Yang, Yaoyao Ji, Yingxin Zhang
  • Patent number: 11261478
    Abstract: Provided herein are inhibitor-resistant luciferase mutants, and methods of use thereof. In particular, luciferase mutants are provided that are thermal stable and exhibit improved stability in the presence of luciferin break-down products, such as dehydroluciferin. Further provided are assay systems comprising inhibitor-resistant luciferase mutants and amino acid sequences of the inhibitor-resistant luciferase mutants.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: March 1, 2022
    Assignee: Promega Corporation
    Inventors: Ce Shi, Thomas Kirkland, Poncho Meisenheimer, Lance P. Encell, Mary Hall
  • Patent number: 11236353
    Abstract: The invention relates to biotechnology and provides novel recombinant DNA molecules and engineered proteins for conferring tolerance to protoporphyrinogen oxidase-inhibitor herbicides. The invention also provides herbicide tolerant transgenic plants, seeds, cells, and plant parts containing the recombinant DNA molecules, as well as methods of using the same.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: February 1, 2022
    Assignee: Monsanto Technology LLC
    Inventors: Artem G. Evdokimov, Clayton T. Larue, Farhad Moshiri, Joel E. Ream, Xuefeng Zhou
  • Patent number: 11236308
    Abstract: The present disclosure provides engineered ketoreductase enzymes having improved properties as compared to a naturally occurring wild-type ketoreductase enzyme. Also provided are polynucleotides encoding the engineered ketoreductase enzymes, host cells capable of expressing the engineered ketoreductase enzymes, and methods of using the engineered ketoreductase enzymes to synthesize a variety of chiral compounds.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: February 1, 2022
    Assignee: Codexis, Inc.
    Inventors: Oscar Alvizo, Nicholas J. Agard, Xinkai Xie, David Entwistle, Birgit Kosjek
  • Patent number: 11203774
    Abstract: The present disclosure relates to the biosynthesis of indigoid dye precursors and their conversion to indigoid dyes. Specifically, the present disclosure relates to methods of using polypeptides to produce indigoid dye precursors from indole feed compounds, and the use of the indigoid dye precursors to produce indigoid dyes.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: December 21, 2021
    Assignee: The Regents of the University of California
    Inventors: John Eugene Dueber, Zachary Nicholas Russ, Tammy Melody Hsu, Terry Don Johnson, Jr., Bernardo Cervantes, Ramya Lakshmi Prathuri, Shyam Pravin Bhakta, Arthur Muir Fong, III, Luke Nathaniel Latimer
  • Patent number: 11198886
    Abstract: The invention relates to biotechnology and provides novel recombinant DNA molecules and engineered proteins for conferring tolerance to protoporphyrinogen oxidase-inhibitor herbicides. The invention also provides herbicide tolerant transgenic plants, seeds, cells, and plant parts containing the recombinant DNA molecules, as well as methods of using the same.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: December 14, 2021
    Assignee: Monsanto Technology LLC
    Inventors: Artem G. Evdokimov, Clayton T. Larue, Farhad Moshiri, Joel E. Ream, Xuefeng Zhou
  • Patent number: 11191816
    Abstract: Provided herein are compositions comprising mutant GADPH. Methods for treating or preventing cancer in a subject by administering to the subject a therapeutically effective amount of mutant GAPDH compositions are provided.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: December 7, 2021
    Assignee: The Johns Hopkins University
    Inventor: Shanmugasundaram Ganapathy-Kanniappan
  • Patent number: 11180017
    Abstract: A device for driving a vehicle including an engine that serves as a power source of the vehicle, and a transmission that is connected to the engine, the engine and the transmission being arranged transversely such that an axial direction of an output shaft of the engine accords with a right-left direction of the vehicle includes a motor generator (MG) that serves as a power source of the vehicle, and a speed reducer that is connected to the MG. The MG and at least a part of the speed reducer are arranged outside of an engine compartment that accommodates the engine and the transmission. An output shaft of the speed reducer is connected to a power transmission system, which transmits power of an output shaft of the transmission to a drive shaft of a vehicle wheel to be capable of transmitting its power to the power transmission system.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: November 23, 2021
    Assignee: DENSO CORPORATION
    Inventors: Tomoyuki Shinkai, Takashi Sato, Takurou Nakaoka, Takeo Maekawa, Keiji Kondou
  • Patent number: 11162081
    Abstract: A ketoreductase mutant and use thereof are provided. The amino acid sequence of the ketoreductase mutant is an amino acid sequence obtained by mutation of the amino acid sequence shown in SEQ ID NO: 1, wherein the mutation at least comprises one of the following mutation sites: position 6, position 94, position 96, position 117, position 144, position 156, position 193, position 205, position 224, position 176, position 85 and position 108; alternatively, the amino acid sequence of the ketoreductase mutant has a mutation site in a mutated amino acid sequence and an amino acid sequence having 80% or more homology with the mutated amino acid sequence.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: November 2, 2021
    Assignee: JILIN ASYMCHEM LABORATORIES CO., LTD.
    Inventors: Hao Hong, Gage James, Jiangping Lu, Xingfu Xu, Wenyan Yu, Na Zhang, Yulei Ma, Yibing Cheng, Huiyan Mu
  • Patent number: 11136608
    Abstract: This Invention discloses a method for production of N-Acetyl-D-Glucosamine and/or D-Glucosamine Salt by microbial fermentation. The method is intended to manufacture N-Acetyl-D-Glucosamine and/or D-Glucosamine Salt in higher efficiency and higher yield, by expression of vitreoscilla hemoglobin in microorganism.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: October 5, 2021
    Inventor: Lan Sun
  • Patent number: 11124845
    Abstract: The presently disclosed subject matter provides methods, reporter gene constructs, and kits for using prostate-specific membrane antigen (PSMA) as an imaging reporter to image a variety of cells and tissues.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: September 21, 2021
    Assignee: The Johns Hopkins university
    Inventors: Martin G. Pomper, Mark Castanares, Il Minn, Shawn Lupold
  • Patent number: 11118200
    Abstract: The present invention relates to the preparation of amines from aldehydes and ketones by reductive amination with enzymes having a reductive aminase activity on aldehydes and ketones devoid of any carboxyl group gamma of the carbonyl group. The invention also relates to the enzymes per se and their uses in biocatalysis. The enzymes are derived from Mycobacterium smegmatis and vaccae, Cystobacter fuscus, Microbacterium sp. and Aminomonas paucivorans.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: September 14, 2021
    Assignees: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, UNIVERSITE D'EVRY VAL D'ESSONNE (UEVE)
    Inventors: Carine Vergne-Vaxelaire, VĂ©ronique De Berardinis, Anne Zaparucha
  • Patent number: 11078505
    Abstract: The present disclosure relates to polypeptides having transaminase activity, polynucleotides encoding the polypeptides, and methods of using the polypeptides.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: August 3, 2021
    Assignee: Codexis, Inc.
    Inventors: Christopher K. Savile, Emily Mundorff, Jeffrey C. Moore, Paul N. Devine, Jacob M. Janey
  • Patent number: 11008582
    Abstract: The invention relates to a method for increasing the yield and biomass of a plant, by means of an increase in the expression of the L-aspartate oxidase in the plant. The method according to the invention allows an increase in the photosynthetic capacities of the plants as a result of an increase in the quantities of NAD and the derivatives thereof in said plants. The invention relates to the plants produced by such a method.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: May 18, 2021
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), UNIVERSITE PARIS-SUB
    Inventors: Linda De Bont, Bertrand Gakiere
  • Patent number: 10995320
    Abstract: The present disclosure relates to non-naturally occurring polypeptides useful for preparing Ezetimibe, polynucleotides encoding the polypeptides, and methods of using the polypeptides.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: May 4, 2021
    Assignee: Codexis, Inc.
    Inventors: Michael A. Crowe, Oscar Alvizo, Behnaz Behrouzian, Yong Koy Bong, Steven J. Collier, Anupam Gohel, Jagadeesh Mavinahalli, Naga K. Modukuru, Emily Mundorff, Derek J. Smith, Shiwei Song, Wan Lin Yeo
  • Patent number: 10995356
    Abstract: The present disclosure provides a culture device for enumerating colonies of microorganisms. The device can comprise a base, a coversheet, and a nonporous spacer member disposed therebetween. The spacer member comprises an aperture that defines a growth compartment. Disposed in the growth compartment are a cold water-soluble gelling agent, a dry oxygen-scavenging reagent, a dry buffer system, and an effective amount of a dry carbon dioxide-generating reagent. The buffer system is selected such that, when the growth compartment is hydrated with a predetermined volume of deionized water, an aqueous mixture with a pH less than or equal to 6.35 is formed.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: May 4, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jason W. Bjork, Evan D. Brutinel, Adam J. Stanenas
  • Patent number: 10975403
    Abstract: The present invention relates to the production of eriodictyol via bioconversion.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: April 13, 2021
    Assignee: Conagen Inc.
    Inventors: Rui Zhou, Xiaodan Yu, Steven Chen
  • Patent number: 10975243
    Abstract: A genetically modified microorganism includes: an exogenous nucleic acid sequence encoding naphthalene dioxygenase (NDO), wherein the endogenous icd gene of the genetically modified microorganism is knocked out, in which the endogenous icd gene encodes isocitrate dehydrogenase (IDH), and wherein the genetically modified microorganism is capable of using glutamic acid and/or a salt thereof as a nitrogen source to grow and producing indigo dye.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: April 13, 2021
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Pei-Ching Chang, Jhong-De Lin, Chang-Jung Chang, Ya-Lin Lin, Hsiang-Yuan Chu, Jie-Len Huang
  • Patent number: 10961560
    Abstract: A mutated tryptophan oxidase suitable for practical implementation is described herein. Specifically, a mutated tryptophan oxidase wherein at least one amino acid residue of a wild-type tryptophan oxidase is mutated and, as a result, has higher tryptophan oxidase activity and/or stability as compared to the wild-type tryptophan oxidase. The mutated tryptophan oxidase can be derived from a wild-type tryptophan oxidase having at least one of Motifs (2), (3), (5), (7), (9), (11), (13), and (14), and at least one amino acid residue in any of these motifs can have mutation. The mutated tryptophan oxidase also can have a mutation of one or more amino acid residues in an amino acid sequence represented by SEQ ID NO: 2 and a sequence homologous thereto.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: March 30, 2021
    Assignee: AJINOMOTO CO., INC.
    Inventors: Hiroki Yamaguchi, Kazutoshi Takahashi, Moemi Tatsumi
  • Patent number: 10851141
    Abstract: The present invention provides a mutant beetle luciferase and the like, having mutation in which the amino acid corresponding to valine at position 288 in the amino acid sequence of wild-type Photinus pyralis luciferase is isoleucine, leucine or phenylalanine, mutation in which the amino acid corresponding to leucine at position 376 in the aforementioned sequence is proline, mutation in which the amino acid corresponding to glutamic acid at position 455 in the aforementioned sequence is valine, alanine, serine, leucine, isoleucine or phenylalanine, or mutation in which the amino acid corresponding to glutamic acid at position 488 in the aforementioned sequence is valine, alanine, serine, leucine, isoleucine or phenylalanine, in the amino acid sequence encoding a wild-type beetle luciferase, and characterized in that a luminescence intensity due to a luciferin-luciferase luminescence reaction in a 0.9% by mass NaCl solution is 50% or more of that in a NaCl-free solution.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: December 1, 2020
    Assignee: DKK-TOA Corporation
    Inventors: Kenichi Noda, Satoshi Yawata, Ai Shimomura
  • Patent number: 10851397
    Abstract: The present disclosure provides engineered ketoreductase enzymes having improved properties as compared to a naturally occurring wild-type ketoreductase enzyme. Also provided are polynucleotides encoding the engineered ketoreductase enzymes, host cells capable of expressing the engineered ketoreductase enzymes, and methods of using the engineered ketoreductase enzymes to synthesize chiral compounds.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: December 1, 2020
    Assignee: Codexis, Inc.
    Inventors: Jack S Liang, Stephan Jenne, Emily Mundorff, Rama Voladri, James J. Lalonde, Gjalt W. Huisman
  • Patent number: 10851351
    Abstract: The present disclosure relates to engineered ketoreductase polypeptides for the preparation of hydroxyl substituted carbamate compounds, and polynucleotides, vectors, host cells, and methods of making and using the ketoreductase polypeptides.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: December 1, 2020
    Assignee: Codexis, Inc.
    Inventors: Fabien Louis Cabirol, Haibin Chen, Anupam Gohel, Steven J. Collier, Derek J. Smith, Birgit Kosjek, Jacob Janey
  • Patent number: 10813324
    Abstract: The subject invention concerns materials and methods for modulating seed size in plants. In one embodiment, seed size is decreased relative to wild type seed by inhibiting or knocking out expression of a sorbitol dehydrogenase (Sdh) gene or the gene product thereof. In another embodiment, seed size is increased relative to wild type seed by increasing expression of an Sdh gene or the gene product thereof. The subject invention also concerns materials and methods for modulating seed number or sugar content in plants. In one embodiment, seed number or sugar content is increased relative to wild type seed by inhibiting or knocking out expression of a sorbitol dehydrogenase (Sdh) gene or the gene product thereof. In another embodiment, seed number or sugar content is decreased relative to wild type seed by increasing expression of an Sdh gene or the gene product thereof.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: October 27, 2020
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Karen Elaine Koch, Sylvia Morais De Sousa
  • Patent number: 10808215
    Abstract: The present disclosure provides a culture device for enumerating colonies of sulfate-reducing microorganisms. The device includes a body having a waterproof base, a waterproof coversheet attached to the base, and a growth compartment disposed therebetween. The growth compartment has a perimeter and an opening. A portion of the perimeter is defined by a waterproof seal. The portion can include >50% of the perimeter. Disposed in the growth compartment are a dry cold water-soluble gelling agent, a dry culture medium selected to facilitate growth of a sulfate-reducing bacterium or indicator reagent for detecting hydrogen sulfide production by a sulfate-reducing bacterium, and a dry first oxygen-scavenging reagent.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: October 20, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Evan D. Brutinel, Jason W. Bjork, Adam J. Stanenas
  • Patent number: 10750741
    Abstract: A microbial oil comprising dihomo-?-linolenic acid as a constituent fatty acid of an oil, the microbial oil has a content, in terms of a weight ratio of arachidonic acid relative to dihomo-?-linolenic acid (arachidonic acid/dihomo-?-linolenic acid) of less than 1/13. Preferably, the microbial oil has a triglyceride content of greater than or equal to 70% by weight, and a saturated fatty acid content of less than or equal to 40% by weight. Moreover, a lower alcohol ester of dihomo-?-linolenic acid or a free fatty acid of dihomo-?-linolenic acid obtained from the microbial oil is provided.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: August 25, 2020
    Assignee: NIPPON SUISAN KAISHA, LTD.
    Inventors: Seizo Sato, Takuro Fukae, Naomi Ohtsuka, Hideaki Yamaguchi, Rie Ikeda
  • Patent number: 10751393
    Abstract: The present invention relates to a Bacillus amyloliquefaciens strain that produces superoxide dismutase (SOD), and also relates to an antioxidant, anti-inflammatory pharmaceutical composition and a pharmaceutical composition and food composition for preventing or treating hyperlipidemia, which include a superoxide dismutase produced by the Bacillus amyloliquefaciens strain. The compositions of the present invention exhibit excellent effects without causing side effects, and may thus be used as functional raw materials or products having an enhanced activity of preventing or treating inflammation, cancer or hyperlipidemia in the pharmaceutical drug, food, cosmetic and livestock fields.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: August 25, 2020
    Assignee: GENOFOCUS INC.
    Inventors: Do Young Yum, Jeong Hyun Kim, Jae Gu Pan, Eui Joong Kim, Taek Ho Yang, Ji Eun Kang, Soo Young Park, Hyun Do Kim
  • Patent number: 10704070
    Abstract: The present disclosure relates to the biosynthesis of indigoid dye precursors and their conversion to indigoid dyes. Specifically, the present disclosure relates to methods of using polypeptides to produce indigoid dye precursors from indole feed compounds, and the use of the indigoid dye precursors to produce indigoid dyes.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: July 7, 2020
    Assignee: The Regents of the University of California
    Inventors: John Eugene Dueber, Zachary Nicholas Russ, Tammy Melody Hsu, Terry Don Johnson, Jr., Bernardo Cervantes, Ramya Lakshmi Prathuri, Shyam Pravin Bhakta, Arthur Muir Fong, III, Luke Nathaniel Latimer
  • Patent number: 10683546
    Abstract: An ex vivo method and a kit for predicting the response to a treatment with glucocorticoids (GC) in patients affected by inflammatory diseases, based on quantification of fold change ratio in GR isoform levels.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: June 16, 2020
    Assignee: UNIVERSIDAD DE CHILE
    Inventors: Cristhian Alejandro Urzua Salinas, Irmgadt Annelise Goecke Sariego
  • Patent number: 10619176
    Abstract: The present disclosure relates to polypeptides having transaminase activity, polynucleotides encoding the polypeptides, and methods of using the polypeptides.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: April 14, 2020
    Assignee: Codexis, Inc.
    Inventors: Christopher K. Savile, Emily Mundorff, Jeffrey C. Moore, Paul N. Devine, Jacob M. Janey
  • Patent number: 10604761
    Abstract: The present invention provides host cells for use in an inducible coexpression system that is capable of controlled induction of expression of each gene product.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: March 31, 2020
    Assignee: AbSci LLC
    Inventors: Sean McClain, Mark Valasek
  • Patent number: 10590396
    Abstract: The disclosure relates to engineered ketoreductase polypeptides and processes of using the polypeptides for production of phenylephrine.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: March 17, 2020
    Assignee: Codexis, Inc.
    Inventors: Oscar Alvizo, Steven J. Collier, Hans-Georg Joerg Hennemann, Seong Ho Oh, Wenjuan Zha
  • Patent number: 10570408
    Abstract: This invention provides recombinant DNA constructs, transgenic plant nuclei and cells with such recombinant DNA construct for expression of proteins that are useful for imparting enhanced agronomic trait(s) to transgenic crop plants. This invention also provides transgenic plants and progeny seed comprising the transgenic plant cells where the plants are selected for having an enhanced trait selected from the group of traits consisting of enhanced water use efficiency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil. Also disclosed are methods for manufacturing transgenic seed and plants with enhanced traits.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: February 25, 2020
    Assignee: Monsanto Technology LLC
    Inventors: Molian Deng, Zhidong Xie
  • Patent number: 10563230
    Abstract: The present disclosure relates to a multi-enzyme conjugate, a method for preparing the same and a method for preparing an organic compound using the same. More particularly, a multi-enzyme conjugate exhibiting improved catalytic efficiency over respective free enzymes using site-specific incorporation of a clickable non-natural amino acid into the enzymes and two compatible click reactions, a method for preparing the same and a method for preparing an organic compound using the same may be provided.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: February 18, 2020
    Assignee: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Inchan Kwon, Jinhwan Cho, Sung In Lim
  • Patent number: 10544400
    Abstract: The present disclosure relates to non-naturally occurring polypeptides useful for preparing Ezetimibe, polynucleotides encoding the polypeptides, and methods of using the polypeptides.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: January 28, 2020
    Assignee: Codexis, Inc.
    Inventors: Michael A. Crowe, Oscar Alvizo, Behnaz Behrouzian, Yong Koy Bong, Steven J. Collier, Anupam Gohel, Jagadeesh Mavinahalli, Naga K. Modukuru, Emily Mundorff, Derek J. Smith, Shiwei Song, Wan Lin Yeo
  • Patent number: 10533153
    Abstract: The present invention relates to a process for the production of squalene and/or sterol in high amounts using an alkaline solution and an organic lysis solvent at high temperature and high pressure for effectively lysing yeast cells and extracting squalene and/or sterol into an organic extraction solvent, thus obtaining squalene and/or sterolin high amount and of high purity.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: January 14, 2020
    Assignee: SANOFI-AVENTIS DEUTSCHLAND GMBH
    Inventors: Andreas Haubrich, Gerhard Korb, Jean-Francois Trotzier
  • Patent number: 10378023
    Abstract: The invention relates to biotechnology and provides novel recombinant DNA molecules and engineered proteins for conferring tolerance to protoporphyrinogen oxidase-inhibitor herbicides. The invention also provides herbicide tolerant transgenic plants, seeds, cells, and plant parts containing the recombinant DNA molecules, as well as methods of using the same.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: August 13, 2019
    Assignee: Monsanto Technology LLC
    Inventors: Artem G. Evdokimov, Clayton T. Larue, Farhad Moshiri, Joel E. Ream, Xuefeng Zhou
  • Patent number: 10377722
    Abstract: An object of the present invention is to provide a novel method capable of producing rosuvastatin calcium and intermediates therefor efficiently, inexpensively and with high purity. The present invention provides a method of efficiently producing rosuvastatin calcium and intermediates therefor having a high purity at an industrial scale, without using an extremely low temperature reaction or a special asymmetric catalyst.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: August 13, 2019
    Assignee: API CORPORATION
    Inventors: Naoyuki Watanabe, Tomoko Maeda, Yasumasa Dekishima, Hiroshi Kawabata, Masaki Nagahama, Kosuke Ito
  • Patent number: 10370677
    Abstract: The invention relates to biotechnology and provides novel recombinant DNA molecules and engineered proteins for conferring tolerance to protoporphyrinogen oxidase-inhibitor herbicides. The invention also provides herbicide tolerant transgenic plants, seeds, cells, and plant parts containing the recombinant DNA molecules, as well as methods of using the same.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: August 6, 2019
    Assignee: Monsanto Technology LLC
    Inventors: Artem G. Evdokimov, Clayton T. Larue, Farhad Moshiri, Joel E. Ream, Xuefeng Zhou
  • Patent number: 10358631
    Abstract: The disclosure relates to engineered ketoreductase polypeptides and processes of using the polypeptides for production of phenylephrine.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: July 23, 2019
    Assignee: Codexis, Inc.
    Inventors: Oscar Alvizo, Steven J. Collier, Hans-Georg Joerg Hennemann, Seong Ho Oh, Wenjuan Zha
  • Patent number: 10264807
    Abstract: The invention relates to fusarium toxin-cleaving polypeptide variants of a fusarium toxin carboxyl esterase with the SEQ ID NO:46. Each of the polypeptide variants has an amino acid sequence shortened by 47 amino acids at the N terminus, and the amino acid sequences have at least 70%, preferably 80%, in particular 100%, sequence identity, namely SEQ ID NO:1, to the amino acid sequence portion 48-540 of the SEQ ID NO:46. The invention also relates to isolated polynucleotides which code for the polypeptide variants, to a fusarium toxin-cleaving additive containing at least one polypeptide variant and optionally at least one auxiliary agent, to the use of the polypeptide variants or the additive, and to a method for hydrolytically cleaving at least one fusarium toxin.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: April 23, 2019
    Assignee: ERBER AKTIENGESELLSCHAFT
    Inventors: Markus Aleschko, Corinna Kern, Dieter Moll, Eva Maria Binder, Gerd Schatzmayr
  • Patent number: 10253303
    Abstract: The present disclosure relates to engineered ketoreductase polypeptides for the preparation of hydroxyl substituted carbamate compounds, and polynucleotides, vectors, host cells, and methods of making and using the ketoreductase polypeptides.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: April 9, 2019
    Assignee: Codexis, Inc.
    Inventors: Fabien Louis Cabirol, Haibin Chen, Anupam Gohel, Steven J. Collier, Derek J. Smith, Birgit Kosjek, Jacob Janey
  • Patent number: 10246687
    Abstract: The present disclosure provides engineered ketoreductase enzymes having improved properties as compared to a naturally occurring wild-type ketoreductase enzyme including the capability of reducing 5-((4S)-2-oxo-4-phenyl (1,3-oxazolidin-3-yl))-1-(4-fluorophenyl) pentane-1,5-dione to (4S)-3-[(5S)-5-(4-fluorophenyl)-5-hydroxypentanoyl]-4-phenyl-1,3-oxazolidin-2-one. Also provided are polynucleotides encoding the engineered ketoreductase enzymes, host cells capable of expressing the engineered ketoreductase enzymes, and methods of using the engineered ketoreductase enzymes to synthesize the intermediate (4S)-3-[(5S)-5-(4-fluorophenyl)-5-hydroxypentanoyl]-4-phenyl-1,3-oxazolidin-2-one in a process for making Ezetimibe.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: April 2, 2019
    Assignee: Codexis, Inc.
    Inventors: Emily Mundorff, Erik Jan De Vries
  • Patent number: 10239922
    Abstract: The present disclosure pertains to methods of producing recombinant peptides that contain between 10 and 200 amino acid residues using novel carrier proteins derived from superfolder green fluorescent protein and its mutants.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: March 26, 2019
    Assignee: Suzhou Kunpeng Biotech Co., Ltd.
    Inventors: Wenshe Liu, Wei Wan
  • Patent number: 10202627
    Abstract: An object of the present invention is to provide enzymes and a DNA encoding the enzymes that are involved in biosynthesis of trehangelin which has the potential to be a therapeutic agent for photosensitivity disorder and cosmetics, and to provide a method for producing trehangelin by utilizing the enzymes and a recombinant microorganism. The present invention is directed to a protein having an amino acid sequence of SEQ ID NO: 3, 5, 7 or 9, or a protein having an amino acid sequence of SEQ ID NO: 3, 5, 7 or 9 in which one to several amino acids are deleted, substituted, added and/or inserted or an amino acid sequence having 60% or more homology with the amino acid sequence of SEQ ID NO: 3, 5, 7 or 9 and having an enzyme activity involved in biosynthesis of trehangelin; and a DNA encoding said protein.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: February 12, 2019
    Assignees: The Kitasato Institute, Nagase & Co., Ltd.
    Inventors: Satoshi Omura, Yoko Takahashi, Takuji Nakashima, Yuki Inahashi