Including Condition Or Time Responsive Control Means Patents (Class 435/286.1)
  • Patent number: 9643835
    Abstract: In one aspect, single-sided microfluidic devices are described herein. In some embodiments, a single-sided microfluidic device comprises a substrate, a photoconductive layer positioned over the substrate, electrical contacts in electrical communication with the photoconductive layer, and a dielectric assembly positioned over the photoconductive layer. The dielectric assembly comprises a hydrophobic surface for receiving a liquid. In some embodiments, the dielectric assembly has an effective capacitance of about 10 ?F/m2 to about 10,000 ?F/m2 and/or an average thickness between about 20 nm and about 2000 nm.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: May 9, 2017
    Assignee: University of North Carolina at Charlotte
    Inventors: Srinivas Akella, Vasanthsekar Shekar
  • Patent number: 9616426
    Abstract: A heater for heating fluidic elements and fluids is provided. The heater quickly and efficiently heats elements and samples without occupying a lot of space in in vitro diagnostic environments. The heater includes an induction coil, sized and configured to allow for a fluidic element to be placed therein, and induction circuitry coupled to the induction coil that facilitates induction heating through electromagnetic induction. A current is generated to pass through the induction coil, creating a field within the induction coil that generates heat that is transferrable to conductive objects placed within the field. In this manner, heat is transferred to the fluidic element and to fluids in contact with the fluidic element.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: April 11, 2017
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventor: Paul Dulaff
  • Patent number: 9505003
    Abstract: A portable real-time heating and detection device includes a body, a cover and a detection unit. The body has an opening, and a base. The cover has a control unit and a fix unit. The detection unit is disposed on the base of the body and has a thermostat, an optical excitation, an optical detection, and a circuit board. The thermostat is disposed close to the opening and has at least one thermostat zone. The optical exciter is disposed between the thermostat and the base. The optical detector is disposed between the thermostat and the opening. The circuit board is electrical coupled to the control unit, the thermostat, the optical excitation, and the optical detector, respectively.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: November 29, 2016
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chih-Hsiang Sung, Tseng-Huang Liu, Ruey-Shyan Hong, Ting-Hsuan Chen, Ping-Jung Wu, Kuo-Hsing Wen, Wan-Chi Chang
  • Patent number: 9348130
    Abstract: A device for holding filters for a microscope includes a filter wheel (20) rotatable about an axis of rotation (16) and a drive unit (14) for rotating the filter wheel (20). The filter wheel (20) comprises a basic body (44) rotatable about the axis of rotation (16) and at least one segment (46-54) selectively connectable to the basic body. The segment (46-54) comprises at least two housing areas (58, 59) each holding at least one filter (11). Another housing area may provide a transmission range (36, 59) for unfiltered transmission of light. A second rotatable filter wheel may be arranged at a location displaced along the axis of rotation relative to the filter wheel, and may have its own respective transmission range for unfiltered transmission of light, whereby a filter on either filter wheel may be aligned with the transmission range on the other filter wheel.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: May 24, 2016
    Assignee: Leica Microsystems CMS GmbH
    Inventors: Ingo Böhm, Dirk-Oliver Fehrer
  • Patent number: 9316586
    Abstract: This invention provides a system for performing PCR, and real time PCR in particular, with great speed and specificity. The system employs a heat block containing a liquid composition to rapidly transfer heat to and from reaction vessels. The system makes use of the reflective properties of the liquid metal to reflect signal from the PCR into the vessel and out the top. In this way, the signal can be measured by an optical assembly in real time without removing the vessels from the heat block.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: April 19, 2016
    Assignee: California Institute of Technology
    Inventors: George Maltezos, Matthew Johnston, David Goodwin, Axel Scherer, Christopher I. Walker
  • Patent number: 9303257
    Abstract: A cell cultivating platform includes a substrate having a surface, at least one actuator moveable relative to the substrate, and a deformable material layer positioned above at least a portion of the supporting surface and the at least one actuator. The deformable material layer positioned opposite the substrate surface includes a biocompatible supportive surface suitable for supporting cultivated cells. The supportive surface deforms or otherwise deflects in response to activation of the at least one actuator, effectively releasing at least a portion of the cultured cells from the supportive surface. Suitable actuators include piezoelectric actuators that can be selectively energized according to one or more patterns to facilitate separation of cells from the supportive surface. Such activation cycles can be repeated.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: April 5, 2016
    Assignee: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventors: Toshimi Fukui, Motoyuki Toki
  • Patent number: 9266104
    Abstract: The present invention provides thermocycling devices useful for amplification of nucleic acids in droplets. The thermocycling device utilizes the flow of one or more fluids through a main compartment at temperatures sufficient to conduct a polymerase chain reaction. Methods of amplifying nucleic acids in droplets are also provided.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: February 23, 2016
    Assignee: Raindance Technologies, Inc.
    Inventor: Darren Roy Link
  • Patent number: 9206383
    Abstract: Disclosed are bioreactor devices, systems and methods. A bioreactor system can include one or more bioreactor modules that can be individually controllable and identifiable. A bioreactor module can be connected to one or more functional modules such as a pump module, a stimulation signal generation module, a motor module, a mechanical transmission module, a gas exchange module, a temperature module, a humidity module and/or a CO2 module, among others. The bioreactor and functional modules can include standard or universal connectors to facilitate connection and movement of modules. The bioreactor system can be controlled and/or monitored by a controller that can individually identify and control each connected module and that can be adapted to collect signal data from sensors embedded in any of the modules.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: December 8, 2015
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Gordana Vunjak-Novakovic, Warren Grayson, Qun Wan, Donald O. Freytes, Amandine Godier-Furnémont, Nina Tandon, Keith Yeager, George Eng, Sarindr Bhumiratana, Robert Maidhof
  • Patent number: 9090485
    Abstract: A core column simulator device and methods of assessing the efficacy of a wastewater biotreatment system using the core column simulator device are disclosed.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: July 28, 2015
    Inventor: Carl E. Adams
  • Patent number: 9060474
    Abstract: Systems and methods that facilitate the creation and harvesting of algae using tufted products. One exemplary tufted product comprises a substrate and tufts tufted through the substrate. The use of a tufted product provides various advantages with respect to the creation and harvesting of algae. Among other things, such products can be configured to improve the amount of algal-growing surface area provided and other growing environment characteristics and to facilitate the harvesting of the algae from the tufted product by facilitating the release of all or most of the algae from attachment to the tufted product.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: June 23, 2015
    Assignee: Interface, Inc.
    Inventors: William N. Jones, Daniel Price, James Hobbs
  • Patent number: 9045724
    Abstract: The present invention is directed to a photobioreactor for continuous or semi-continuous flow culturing photosynthesizing biomass and related method. In particular, the invention relates to a photobioreactor for continuous or semi-continuous flow culturing photosynthesizing algal biomass and related method. The photobioreactor comprises a gas feeding portion (60), a biomass-directing flow propulsion device (47) on a lighting system (5).
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: June 2, 2015
    Inventor: Jean-Louis Roux Dit Buisson
  • Patent number: 9040272
    Abstract: The present invention provides a method and system for using eye-safe infrared energy from a Class I laser to manipulate cells in culture. The laser energy produces one or more phase boundary propulsion events, which generate hydrodynamic forces sufficient to manipulate cells at the focal point.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: May 26, 2015
    Assignee: Hamilton Thorne, Inc.
    Inventors: Diarmaid H. Douglas-Hamilton, Thomas G. Kenny
  • Publication number: 20150140545
    Abstract: An improved actuator for use in a microfluidic particle sorting system utilizes a staggered packing scheme for a plurality of actuators used to selectively deflect a particle in an associated sorting channel from a stream of channels. An actuator block may be provided for housing a two-dimensional array of actuators, each configured to align with an actuation port in an associated sorting chip containing a plurality of sorting channels. The actuator block may include a built-in stressing means to pre-stress each actuator housed by the block. An actuator comprising a piezo-electric stack may employ contact-based electrical connection rather than soldered wires to improve packing density. The actuator may be an external actuator. That is, the external actuator is external to the substrate in which the sorting channels are formed.
    Type: Application
    Filed: October 17, 2014
    Publication date: May 21, 2015
    Inventors: Andrew Johnson, John R. Gilbert, Manish Deshpande, Hugh Lewis, Bernard Bunner
  • Patent number: 9034639
    Abstract: A device is provided for use with a tissue penetrating system and/or a metering device for measuring analyte levels. The device comprises a cartridge and a plurality of analyte detecting members mounted on the cartridge. The cartridge may have a radial disc shape. The cartridge may also be sized to fit within the metering device. The analyte detecting members may be optical system using fluorescence lifetime to determine analyte levels. In one embodiment, the device may also include a fluid spreader positioned over at least a portion of the analyte detecting member to urge fluid toward one of the detecting members. A plurality of analyte detecting members may be used. Each analyte detecting member may be a low volume device.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: May 19, 2015
    Assignee: SANOFI-AVENTIS DEUTSCHLAND GMBH
    Inventors: Dominique M. Freeman, Dirk Boccker, Robert Jones, David Cullen, Malcolm MacLood, William Carlson, Michael J. Owen, Christopher Dryer
  • Patent number: 9034635
    Abstract: A thermocycler apparatus and method for rapidly performing the PCR process employs at least two thermoelectric modules which are in substantial spatial opposition with an interior space present between opposing modules. One or multiple sample vessels are placed in between the modules such that the vessels are subjected to temperature cycling by the modules. The sample vessels have a minimal internal dimension that is substantially perpendicular to the modules that facilitates rapid temperature cycling. In embodiments of the invention the sample vessels may be deformable between: a) a shape having a wide mouth to facilitate filling and removing of sample fluids from the vessel, and b) a shape which is thinner for conforming to the sample cavity or interior space between the thermoelectric modules of the thermocycler for more rapid heat transfer.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: May 19, 2015
    Assignee: Streck, Inc.
    Inventors: Joel R. Termaat, Hendrik J. Viljoen, Scott E. Whitney
  • Patent number: 9029130
    Abstract: A contacting-type conductivity sensor includes an electrically-insulative plastic body and a plurality of electrodes. The plurality of conductive electrodes is disposed in the plastic body. Each electrode is constructed of plastic and fused with the electrically-insulative plastic body. A method of manufacturing the conductivity sensor is provided along with a single-use bioreactor employing the sensor.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: May 12, 2015
    Assignee: Rosemount Analytical Inc.
    Inventors: Chang-Dong Feng, Barry W. Benton
  • Publication number: 20150125937
    Abstract: A method and apparatus for managing a zone. Information is obtained about an environment in the zone with a sensor system. A determination is made by an analyzer system as to whether a contagious condition is present in the zone using the information from the sensor system. An action is performed by a management system in response to the contagious condition being present.
    Type: Application
    Filed: January 7, 2015
    Publication date: May 7, 2015
    Inventors: Leora Peltz, Shawn Hyunsoo Park
  • Publication number: 20150111286
    Abstract: The present invention relates to a method and a system for reducing foam formation in slurry pits of swine rearing facilities with slatted floors.
    Type: Application
    Filed: November 21, 2013
    Publication date: April 23, 2015
    Applicant: Biocover A/S
    Inventor: Morten Toft
  • Publication number: 20150111196
    Abstract: A microfluidic chip orients and isolates components in a sample fluid mixture by two-step focusing, where sheath fluids compress the sample fluid mixture in a sample input channel in one direction, such that the sample fluid mixture becomes a narrower stream bounded by the sheath fluids, and by having the sheath fluids compress the sample fluid mixture in a second direction further downstream, such that the components are compressed and oriented in a selected direction to pass through an interrogation chamber in single file formation for identification and separation by various methods. The isolation mechanism utilizes external, stacked piezoelectric actuator assemblies disposed on a microfluidic chip holder, or piezoelectric actuator assemblies on-chip, so that the actuator assemblies are triggered by an electronic signal to actuate jet chambers on either side of the sample input channel, to jet selected components in the sample input channel into one of the output channels.
    Type: Application
    Filed: December 22, 2014
    Publication date: April 23, 2015
    Applicant: PREMIUM GENETICS (UK) LTD.
    Inventors: Zheng XIA, Yu ZHOU, John LARSEN, Guocheng SHAO, Shane PETERSON, Marjorie FAUST
  • Publication number: 20150093740
    Abstract: A totipotent plant tissue multiplication system can include a sterile enclosure and a bioreactor in the sterile enclosure. The bioreactor can include a number of ports. A sensor can be inserted into a first port. A matter insertion system can input matter into the bioreactor via tubing configured to be connected to a second port. The sensor can be removed from the first port during operation of the matter insertion system. The tubing can be disconnected from the second port during operating of the sensor and the culture transfer system.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 2, 2015
    Applicant: WEYERHAEUSER NR COMPANY
    Inventor: Anthony P. Swanda
  • Patent number: 8993308
    Abstract: A cryopreservation storage device (100), in particular for cryopreservation of biological samples, comprises a plurality of multi sample modules (20) being adapted for accommodating the biological samples and sample memories, a module control device (30) controlling an access to sample memories accommodated by the multi sample modules (20), and a data interface (41) for accessing to the module control device (30), wherein the module control device (30) includes a data management processor (31), which can be controlled via the data interface (41). Furthermore, a cryopreservation apparatus including at least one cryopreservation storage device (100) and a method for cryopreservation of biological samples are described.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: March 31, 2015
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Heiko Zimmermann, Günter R. Fuhr, Stephen Shirley, Frank Ihmig
  • Patent number: 8986979
    Abstract: The present invention relates to a cell culture device (1) comprising a disposable culture vessel comprising at least one external wall made of a material having a Young modulus E of less than 50 GPa, in which there is situated at least one cell culture zone and at least one cell-free medium transfer zone, allowing a flow of a culture medium between the cell culture zone and the transfer zone, and at least one sensor element of a cell-density sensor wherein said sensor element is situated in the cell culture zone of said vessel. The sensor element is an electrode arrangement of at least two and preferably at least four measuring electrodes arranged on the inner side of an external wall of the disposable culture vessel and directed towards the cell culture zone. The present invention further relates to a method of culturing cells.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: March 24, 2015
    Assignee: Pall Artelis BVBA
    Inventors: José Castillo, Jean-Christophe Drugmand
  • Patent number: 8969074
    Abstract: The present invention relates to an electromagnetic bioaccelerator for obtaining biomass by simulating environmental marine conditions, comprising at least the following elements: octagonal biomass converters (1), seawater reserve tanks (3), particle filters (4), UV light filters (5), feedback and mixture tanks (6), pressurization feed tanks (8), manometers (9), pressure controllers (10), buffer tanks (11), expansion tanks with a safety valve (12), heat exchangers (13), temperature control thermostats (14), recycled water feedback tanks (15), reinjection pumps (16), centrifuges for separating the biomass from the water (17), desuperheaters (18); control panels (25), recirculation pumps (26), densimeters (27), biomass mechanical extraction systems by means of centrifugation (32) and biomass accumulation tanks (33).
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: March 3, 2015
    Assignee: Bio Fuel Systems, S.L.
    Inventors: Bernard A. J. Stroïazzo-Mougin, Cristian Gomis Catala
  • Publication number: 20150056665
    Abstract: A method of producing a chemical includes culturing cells in a culture solution in a fermentor to ferment a feedstock to produce a chemical; supplying the culture solution containing the chemical produced in the culturing to a plurality of separation membrane units arranged in parallel; filtering the culture solution supplied in the supplying to separate a permeate containing the chemical; refluxing a retentate that is not filtered in the filtering to the fermentor; and supplying a gas containing oxygen to the plurality of separation membrane units while a supply amount is changed to at least two different values to perform scrubbing, wherein the supply amount and supply time of the gas containing oxygen supplied in the culturing and the supplying the gas are set so that a kLa value is within a predetermined range from an optimal kLa value for the cells cultured in the culturing.
    Type: Application
    Filed: March 27, 2013
    Publication date: February 26, 2015
    Inventors: Satoko Kanamori, Hideki Sawai, Norihiro Takeuchi
  • Publication number: 20150050638
    Abstract: Disclosed is a system for setting the timing or phase of the separation of droplets from a fluid stream in a flow cytometer, or the timing or phase of a charge pulse generator, based upon the collected charge of charged droplets. In one embodiment, a conductive mesh can be used to collect the charged droplets that are either deflected or not deflected by the deflection plates. In another embodiment, the charge can be collected from metal plates in the waste collection device. In addition, a defanning device is disclosed that allows substantially uniform deflection of charged cells.
    Type: Application
    Filed: August 15, 2014
    Publication date: February 19, 2015
    Inventor: Edward Marquette
  • Publication number: 20150047401
    Abstract: Composting Appliances are useful in reducing waste.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 19, 2015
    Inventors: Jennifer Melissa Ross DEVINE, Russell Lance SPEILLER, Arthur Hampton NEERGAARD
  • Patent number: 8956567
    Abstract: A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: February 17, 2015
    Assignee: ALSTOM Technology Ltd
    Inventors: Xinsheng Lou, Abhinaya Joshi, Hao Lei
  • Patent number: 8956858
    Abstract: The present invention relates to a Polymerase Chain Reaction and High Resolution Melt genetic identification system, and, more specifically, to a tactical and portable Polymerase Chain Reaction and High Resolution Melt genetic analysis and identification system that is configured to determine and communicate analysis and identification results and a tiered confidence/alert level related to the analysis and identification results.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 17, 2015
    Assignee: SRC, Inc.
    Inventors: Zachary J Dineen, David B. Knaebel
  • Patent number: 8956671
    Abstract: The present invention provides for passive VOC recovery in the fermentation process that does not affect or minimally affects the conditions within the fermentor vessel and does not affect or minimally affects the conditions within the headspace of the fermentor vessel itself while using the production of CO2 emitted during the fermenting process as the source of driving energy to move a portion of the gaseous/vaporous material in the headspace of the fermentor through an appropriately sized conduit to a chilled surface condensing device to condense the VOCs (principally ethanol) for recovery and to exhaust the CO2 to the atmosphere or to recover the CO2 for other uses.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: February 17, 2015
    Assignee: EcoPAS LLC
    Inventors: Marci Norkin, Steven D. Colome
  • Publication number: 20150040625
    Abstract: Composting Appliances are useful in reducing waste.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventors: Jennifer Melissa Ross DEVINE, Russell Lance SPEILLER, Arthur Hampton NEERGAARD
  • Publication number: 20150044727
    Abstract: Aspects of the present teachings describe a method and apparatus for automatically controlling a block temperature to reduce undershooting and overshooting of the temperatures of a sample contained in the block and participating in a polymerase chain reaction (PCR). The adaptive thermal block temperature control begins when a sample temperature enters a sample window region between a preliminary setpoint temperature and a target setpoint temperature for the sample. Based on thermodynamic behavior of the sample and the predetermined phase of PCR, predicting a time period measured subsequent to the preliminary setpoint temperature when the sample will reach the target setpoint suitable for the predetermined phase of PCR. During this time period, varying the block temperature ramp rate with a series of cooling and heating changes to ensure the block temperature reaches the target setpoint temperature at approximately the same time as the sample reaches the same.
    Type: Application
    Filed: October 22, 2014
    Publication date: February 12, 2015
    Inventors: Chee Kiong Lim, Chee Wee Ching
  • Patent number: 8951480
    Abstract: A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: February 10, 2015
    Assignee: The Regents of the University of California
    Inventors: Nagichettiar Satyamurthy, Jorge R. Barrio, Bernard Amarasekera, R. Michael Van Dam, Sebastian Olma, Dirk Williams, Mark A. Eddings, Clifton Kwang-Fu Shen
  • Publication number: 20150037786
    Abstract: A handheld diagnostic system may include a disposable sample holder for receiving and containing a biological sample and an analysis module having a chip-scale microscope. The sample holder may include a plurality of uniformly spaced tick marks. The analysis module may include a sensor for detecting the tick marks as the sample holder is inserted into the analysis module. The chip-scale microscope may include an image sensor for capturing images of the sample. Each time the sensor detects a tick mark, control circuitry may issue a control signal to the image sensor to capture an image of the biological sample. This type of automated image capture mechanism ensures that images are captured at a uniform spatial distribution even when the sample holder is inserted into the analysis module at variable speed. The analysis module may transmit sample imaging data to a portable electronic device.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 5, 2015
    Inventor: Kenneth Edward Salsman
  • Patent number: 8945486
    Abstract: A microwell device is provided. The device includes a plate having a upper surface. The upper surface has first and second recesses formed therein. Each recess has an outer periphery. First and second portions of microwells are formed in upper surface of the plate. The first portion of microwells are spaced about the outer periphery of the first recess and the second portion of microwells spaced about the outer periphery of the first recess. A first barrier is about a first portions of the microwells for fluidicly isolating the first portion of the microwells and a second barrier about a second portions of microwells for fluidicly isolating the second portion of the microwells.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: February 3, 2015
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Jay W. Warrick, John Yin, Stephen M. Lindsay
  • Publication number: 20150024472
    Abstract: A biological growth monitoring and parameter extraction system includes a comparison group platform and an experimental group platform. First environmental sensing modules of the comparison group platform extracts first environmental parameters of a biological comparison area, a first control module transmits the parameters to the experimental group platform, and a first biological inspection module extracts growth conditions of organisms of the biological comparison area. A biological experiment area of the experimental group platform emulates growth environment of the biological comparison area, second environmental sensing modules extract second environmental parameters of the biological experiment area, and the first environmental parameters are used as reference inputs of the experimental group platform, so as to enable the second control module to obtain an error value by comparing the second and the first environmental parameters.
    Type: Application
    Filed: April 17, 2014
    Publication date: January 22, 2015
    Applicant: National Taiwan University
    Inventors: Jui-Jen Chou, Mei-Wen Fang, Ming-Yen Lin
  • Publication number: 20150024401
    Abstract: An object of the present invention relates to providing a nucleic acid analyzer capable of testing a plurality of test items in parallel, and of obtaining high efficiency of specimen processing even if the test item or a measuring object is changed. The present invention relates to an analyzer including a carousel rotatable about a rotation axis, a plurality of reaction containers held along a circumferential edge of the carousel, and at least one detector having a light source for irradiating the reaction container with excitation light and a detection element for detecting fluorescence from a reaction liquid in the reaction container. The detector is removable. By attaching a desired detector, it is possible to perform fluorescence measurement in response to the test item. According to the present invention, it is possible to test a plurality of test items in parallel, and even if the test item or the measuring object is changed, the high efficiency of specimen processing can be obtained.
    Type: Application
    Filed: October 7, 2014
    Publication date: January 22, 2015
    Inventors: Minoru SANO, Masato ISHIZAWA, Shuhei YAMAMOTO
  • Publication number: 20150024375
    Abstract: Embodiments disclosed herein relate to methods and systems for performing automated assays, and particularly to performing sequential assays on a sample on an automated instrument.
    Type: Application
    Filed: October 9, 2014
    Publication date: January 22, 2015
    Inventors: Celine Roger Dalbert, Joel Daniel Krayer, Adam Bruce Steel, Denis Roy
  • Patent number: 8936752
    Abstract: A sample analyzer is disclosed. The sample analyzer comprises: a reader for reading ID of a sample from a sample container; an aspirator that aspirates a sample in a sample container; an analyzing section that analyzes the aspirated sample; a manual input receiver for receiving a manual input of an ID of a sample; an start instruction receiver for receiving a start instruction to cause the aspirator to aspirate a sample; and a controller. When receiving the start instruction without receiving the manual input, the controller controls the reader to read an ID from a sample container and then controls the aspirator to aspirate the sample from the sample container. When receiving the start instruction after receiving the manual input, the controller controls the aspirator to aspirate a sample without reading of an ID of the sample.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: January 20, 2015
    Assignee: Sysmex Corporation
    Inventor: Keisuke Kuwano
  • Patent number: 8936764
    Abstract: The present invention provides microfluidic devices and methods using the same in various types of thermal cycling reactions. Certain devices include a rotary microfluidic channel and a plurality of temperature regions at different locations along the rotary microfluidic channel at which temperature is regulated. Solution can be repeatedly passed through the temperature regions such that the solution is exposed to different temperatures. Other microfluidic devices include an array of reaction chambers formed by intersecting vertical and horizontal flow channels, with the ability to regulate temperature at the reaction chambers. The microfluidic devices can be used to conduct a number of different analyzes, including various primer extension reactions and nucleic acid amplification reactions.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: January 20, 2015
    Assignee: California Institute of Technology
    Inventors: Markus M. Enzelberger, Carl L. Hansen, Jian Liu, Stephen R. Quake, Chiem Ma
  • Publication number: 20150017711
    Abstract: An integrated cell culture system may include one or more cell culture vessels, manipulation apparatus, pumping apparatus, cell release apparatus, monitoring apparatus, and a control apparatus. The control apparatus may be used to monitor and control the system to facilitate effective cell culturing. The cell release apparatus may be used to release a plurality of cells adhered to the cell culture surfaces of the cell culture vessels.
    Type: Application
    Filed: January 31, 2013
    Publication date: January 15, 2015
    Inventors: Scott Matthew Bennett, David Alan Kenney, Gregory Roger Martin, Allison Jean Tanner
  • Publication number: 20150010990
    Abstract: Systems and methods for automatically controlling conditions of a process are disclosed. In one example, a controller is programmed with a sequence of steps and parameters required to carry out a bioreactor process. A sensor system interacts with the bioreactor to receive information related to a condition of the bioreactor and/or receive a sample from the bioreactor, which it analyzes. The sensor system sends data signals related to the information and/or the sample to a controller, which determines a control signal based on the received information. The controller sends the control signal to the sensor system which, based on the control signal, performs an action that affects a condition of the bioreactor or affects the sensor system itself.
    Type: Application
    Filed: June 13, 2014
    Publication date: January 8, 2015
    Inventor: Larry Eugene West
  • Patent number: 8926903
    Abstract: To perform accurate measurement in the analysis of chemical components with low concentration, pretreatment such as concentration and purification of samples is essential. For high-throughput of pretreatment of biological samples, various random clinical testing is encountered, where analytes change from sample to sample. The pretreatment apparatus has a separating agent selectively separating a specific component by allowing a sample solution to flow therethrough. A holding section holds a plurality of housing sections, which house the separating agent therein, and has an endless track. A pressurizing section applies pressure to the housing section in a continuous and random-accessible manner; and an extraction solution receiver mechanism selectively receives an extracted solution from the separating agent housed in the housing section. A mass spectrometer is that can be connected to the pretreatment apparatus. Thus, a large number of specimens can be simultaneously processed.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: January 6, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Makoto Nogami, Katsuhiro Kanda, Izumi Waki
  • Publication number: 20150004702
    Abstract: The present disclosure provides an automated system for isolating stromal vascular fraction cells from the mammalian tissue. The system comprises a plurality of containers for storing buffer solutions, tissue samples and digestive buffers. A tissue processing unit fluidly connected to the containers for processing the tissues. The tissue processing unit performs at least one of washing process, digestion process, phase separation process and combination thereof for separating an aqueous fraction of tissue and a fatty fraction. A cell concentration unit fluidly connected to the tissue processing unit for receiving the aqueous fraction of tissue from the tissue processing unit. The cell concentration unit filters the aqueous fraction of tissue by vibrating a filtration assembly by a filter vibrator. A waste collection unit fluidly connectable to the tissue processing unit and cell concentration unit is provided for receiving waste tissues.
    Type: Application
    Filed: August 28, 2012
    Publication date: January 1, 2015
    Applicant: STEMPEUTICS RESEARCH PRIVATE LIMITED
    Inventors: Swathi Sundar Raj, Venkatesh Gopal, Nancy Priya, Balagangadhara Krishnegowda, Prajod Thiruvampattil, Anish Sen Majumdar, Murali Cherat
  • Publication number: 20150005190
    Abstract: A biological and chemical sample processing device that b. comprises a high pressure-resistant, shallow and wide area microfluidic chamber having at least one wall formed by a detachable slide containing samples such as immobilized entities, biological samples or molecules, c. comprises an arrangement of microfluidic access holes for injecting to and collecting fluid form said chamber, d. is interfaced with inlet ports and microfluidic channels which are formed external to the chamber, e. is configured so that the slide may be brought into contact with the device to form the said chamber, f. is adapted to deliver and to transport fluidic substances and reagents inside said chamber in a fast manner, preferably within less than 15 seconds, and in a regular or uniform way owing to said arrangement of microfluidic access holes.
    Type: Application
    Filed: February 15, 2013
    Publication date: January 1, 2015
    Inventors: Ata Tuna Ciftlik, Martin Gijs
  • Patent number: 8921098
    Abstract: An instrument for monitoring replication of DNA is provided.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: December 30, 2014
    Assignee: Applied Biosystems, LLC
    Inventors: Michael R. Gambini, Edward J. Lakatos, Anthony L. Cerrone, Eugene F. Young, Susan Atwood Stone, Judith K. Atwood
  • Publication number: 20140377829
    Abstract: A system (100, 200, 300, 400) for producing biogas from waste stream (101) including organic material includes a liquid waste container (102) and a solid waste container (103). In addition, it includes a separator (104) for at least partially separating liquid fraction into the liquid waste container (102) and solid fraction into the solid waste container (103) from the waste stream (101) so that the solid waste container includes more solid content than the liquid waste container. Furthermore, the system includes a communication member (106, 111) between the liquid waste container (102) and a mixer (105, 202) for introducing liquid from the liquid waste container to the waste stream portion containing solid fraction in order to extract more liquid from the solid fraction.
    Type: Application
    Filed: February 1, 2013
    Publication date: December 25, 2014
    Applicant: MAASEUDUN VOIMA OY
    Inventors: Jarmo Jarvinen, Niklas Tornkvist
  • Patent number: 8916112
    Abstract: Devices for handling liquid, for example microfluidic devices, are described, which are rotatable about an axis of rotation to drive liquid flow within the device. The 5 devices provide one or more of an aliquoting structure (6) having a plurality of daisy chained aliquoting chambers (100, 200, 300) for providing a plurality of aliquots, arrangements for sequencing the dispensing of the aliquots by controlling the rotation of the device and arrangements for ensuring that a fault condition can be detected when insufficient liquid is present in the device to fill 10 all aliquots. Further disclosed are arrangements for ensuring a detection chamber (12) of the device remains filled with liquid, arrangements for reducing the risk of air ingress to the detection chamber (12) on repeated emptying and filling of a supply structure (10) and arrangements for reducing the risk of bubble formation when filling the detection chamber (12).
    Type: Grant
    Filed: March 26, 2011
    Date of Patent: December 23, 2014
    Assignee: Biosurfit, S.A.
    Inventors: Jo{hacek over (a)}o Garcia Da Fonseca, Nuno Alexandre Esteves Reis
  • Publication number: 20140370492
    Abstract: The present invention provides a liquid reflux reaction control device including an additional mechanism that allows more stable temperature control, a pre-treatment mechanism that performs pre-treatment including a pre-PCR reaction reverse transcription reaction process that allows RNA detection, a melting curve analysis function, chip technology optimal for holding liquid droplets and optical measurement and the optical measurement function for PCR, and a temperature gradient control mechanism using a quantitative infrared light irradiation/absorption control technique.
    Type: Application
    Filed: November 27, 2012
    Publication date: December 18, 2014
    Inventors: Kenji Yasuda, Hideyuki Terazono, Akihiro Hattori
  • Publication number: 20140363806
    Abstract: Bio-electro reactors with real-time adjustable electric parameters and sequencing programmable power supplies are disclosed. According to an aspect, a bio-electro reactor for control of electrolysis gases bubbles within a biologically-active substance includes a vessel defining an interior for holding a biologically-active substance. The bio-electro reactor also includes electrodes positioned to be electrically coupled with at least a portion of the biologically-active substance. Further, the bio-electro reactor includes an electric source configured to apply voltage across the electrodes. The bio-electro reactor also includes an electrical controller configured to determine an electrical impedance at one or more of the electrodes for use in controlling electrolysis gases bubbles within the biologically active substance.
    Type: Application
    Filed: February 22, 2013
    Publication date: December 11, 2014
    Inventors: Claudio Fillipone, Daniel Pryor Maceachran, Gregg Anthony Deluga
  • Publication number: 20140356934
    Abstract: An incubation chamber (10) having a water reservoir (12) has a climate controlling device, which makes it possible to set a desired temperature, as well as an object holder (18) for biological or chemical specimens. To make defined and replicable conditions possible, for instance for digestion processes of proteins, it is proposed that the climate controlling device has two separate climate zones (14, 16), which can be regulated separately from one another, a first climate zone (14) being located in the vicinity of the cover of the chamber (10).
    Type: Application
    Filed: May 28, 2014
    Publication date: December 4, 2014
    Applicant: SunChrom GmbH
    Inventors: Günes BARKA, Dominic BÄUMLISBERGER