Including Means For Fluid Passage Between Compartments (e.g., Between Wells, Etc.) Patents (Class 435/288.5)
  • Patent number: 8852922
    Abstract: Assay modules, preferably assay cartridges, are described as are reader apparatuses which may be used to control aspects of module operation. The modules preferably comprise a detection chamber with integrated electrodes that may be used for carrying out electrode induced luminescence measurements. Methods are described for immobilizing assay reagents in a controlled fashion on these electrodes and other surfaces. Assay modules and cartridges are also described that have a detection chamber, preferably having integrated electrodes, and other fluidic components which may include sample chambers, waste chambers, conduits, vents, bubble traps, reagent chambers, dry reagent pill zones and the like. In certain preferred embodiments, these modules are adapted to receive and analyze a sample collected on an applicator stick.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: October 7, 2014
    Assignee: Meso Scale Technologies, LLC
    Inventors: Eli N. Glezer, Jonathan K. Leland, Mark A. Billadeau, Joseph M. Leginus, Bandele Jeffrey-Coker, Jeff D. Debad, Koustubh A. Phalnikar, Sriram Jambunathan
  • Patent number: 8846310
    Abstract: Methods of preparing assays and of assaying, using substantially self-contained, portable, user-initiated fluidic assay systems. Example assays include diagnostic assays and chemical detection assays. Diagnostic assays may include, without limitation, enzyme-linked immuno-sorbent assays (ELISA), and may include one or more sexually transmitted disease (STD) diagnostic assays. An assay system may include one or more fluid chambers, one or more fluid paths amongst the fluid chambers and/or between the fluid chambers, a sample portion, and/or an assay portion. The assay system may include a fluid controller system to dispense fluid from the one or more fluid chambers, and a user-initiated actuator to control the fluid controller system. The fluid controller system may be configured to dispense fluids serially, and may be configured to mix a plurality of fluids. The user-initiated actuator system may include an external user-operated trigger mechanism.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: September 30, 2014
    Assignee: Boston Microfluidics
    Inventors: Brandon T. Johnson, Thomas M. Zappia, David A. Vogler
  • Patent number: 8841116
    Abstract: Methods and microfluidic circuitry for inline injection of nucleic acids for capillary electrophoresis analysis are provided. According to various embodiments, microfabricated structures including affinity-based capture matrixes inline with separation channels are provided. The affinity-based capture matrixes provide inline sample plug formation and injection into a capillary electrophoresis channel. Also provided are methods and apparatuses for a microbead-based inline injection system for DNA sequencing.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: September 23, 2014
    Assignee: The Regents of the University of California
    Inventors: Richard A. Mathies, Robert Blazej, Palani Kumaresan
  • Patent number: 8841076
    Abstract: This invention is in the field of medical devices. Specifically, the present invention provides portable medical devices that allow real-time detection of analytes from a biological fluid. The methods and devices are particularly useful for providing point-of-care testing for a variety of medical applications.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: September 23, 2014
    Assignee: Theranos, Inc.
    Inventors: Elizabeth A. Holmes, Ian Gibbons, Timothy M. Kemp, John Howard, Shaunak Roy
  • Patent number: 8828715
    Abstract: A method for characterizing particle adhesion in microfluidic bifurcations and junctions comprises at least one idealized bifurcation or junction. Multiple bifurcations and/or junctions can be combined on a single microfluidic chip to create microfluidic networks configured for assays specifically to characterize particle interactions at junctions or to screen particles for desired interactions with microfluidic bifurcations and/or junctions.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: September 9, 2014
    Assignee: CFD Research Corporation
    Inventors: Kapil Pant, Balabhaskar Prabhakarpandian, Shivshankar Sundaram, Angela I. Rea-Ramsey
  • Patent number: 8828736
    Abstract: We have developed an microelectroporation device that combines microarrays of oligonucleotides, microfluidic channels, and electroporation for cell transfection and high-throughput screening applications (e.g. RNA interference screens). Microarrays allow the deposition of thousands of different oligonucleotides in microscopic spots. Microfluidic channels and microwells enable efficient loading of cells into the device and prevent cross-contamination between different oligonucleotides spots. Electroporation allows optimal transfection of nucleic acids into cells (especially hard-to-transfect cells such as primary cells) by minimizing cell death while maximizing transfection efficiency. This invention has the advantage of a higher throughput and lower cost, while preventing cross-contamination compared to conventional screening technologies. Moreover, this device does not require bulky robotic liquid handling equipment and is inherently safer given that it is a closed system.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: September 9, 2014
    Assignee: Sandia Corporation
    Inventors: Thomas D. Perroud, Ronald F. Renzi, Oscar Negrete, Mark R. Claudnic
  • Patent number: 8822206
    Abstract: Cell stimulation, staining, and visualization are common techniques in both clinical and research settings. The invention is directed to microfluidic devices for in situ cell stimulation, staining, and/or visualization, and related methods for applying one or more stimuli to the cells, and fixing and staining of cells in situ. The device allows for high-throughput screening of living cells using a minimal quantity of reagents where the fate of individual cells can be followed over time.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: September 2, 2014
    Assignee: The Johns Hopkins University
    Inventors: Andre Levchenko, Raymond Cheong, Chiaochun J. Wang
  • Patent number: 8821810
    Abstract: The disclosure provides low cost, portable three-dimensional devices for performing multiplexed assays. The devices comprise at least two substantially planar layers disposed in parallel planes, wherein one of the layers is movable relative to each other parallel to the planes to permit the establishment of fluid flow communication serially between the two layers.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: September 2, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Whitesides, Katherine A. Mirica, Andres W. Martinez, Chao-Min Cheng, Scott T. Phillips, Monica MascareƱas, Xinyu Liu, Xiujun Li
  • Patent number: 8821813
    Abstract: A liquid-feeding chip for feeding a liquid utilizing the action of centrifugal force and gravity by rotating the chip around an axis of rotation, includes a first storage tank (1-1) into which the liquid can be introduced when rotation of the chip is stopped, and two or more liquid-feeding units arranged in a plurality of levels adjacent to each other, each liquid-feeding unit (U-1, U-2, U-3) being composed of a first holding tank (10-1, 20-1, 30-1), a second holding tank (10-2, 20-2, 30-2) positioned in the direction of gravity with respect to the first holding tank, and a channel B (B-1, B-2, B-3) which extends from the first holding tank in the direction of gravity and which connects the first holding tank and the second holding tank, the first holding tank at a first level being connected with a channel A (A-1) which extends from the first storage tank toward an outer circumferential side.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: September 2, 2014
    Assignee: Toray Industries, Inc.
    Inventors: Kentaro Ishii, Masashi Higasa, Shingo Hiramatsu
  • Patent number: 8821814
    Abstract: A microfluidic device including a platform and a cartridge is disclosed. The platform includes a chamber containing a fluid. The reagent cartridge is mounted to the platform. and contains a solid reagent for detecting material contained in the fluid.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: September 2, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoonkyoung Cho, Dogyoon Kim, Beomseok Lee, Jongmyeon Park, Hyunmin Kim, Yangui Lee, Jong Gun Lee
  • Patent number: 8822207
    Abstract: A disposable cartridge is described which is compatible with a MEMS particle sorting device. The disposable cartridge may include passageways which connect fluid reservoirs in the cartridge with corresponding microfluidic passageways on the MEMS chip. A flexible gasket may prevent leakages and allow the fluid to cross the gasket barrier through a plurality of holes in the gasket. Vents and septums may also be included to allow air to escape and fluids to be inserted by hypodermic needle. A MEMS-based particle sorting system using the disposable cartridge is also described.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: September 2, 2014
    Assignees: Owl biomedical, Inc., Innovative Micro Technology
    Inventors: John S. Foster, Daryl W. Grummitt, John C. Harley, James P. Linton, Jaquelin K. Spong
  • Patent number: 8815521
    Abstract: An apparatus for disrupting cells or viruses comprises a container having a chamber for holding the cells or viruses. The container includes at least one flexible wall defining the chamber. The apparatus also includes a transducer for impacting an external surface of the flexible wall to generate pressure waves in the chamber. The apparatus also includes a pressure source for increasing the pressure in the chamber. The pressurization of the chamber ensures effective coupling between the transducer and the flexible wall. The apparatus may also include beads in the chamber for rupturing the cells or viruses.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: August 26, 2014
    Assignee: Cepheid
    Inventors: Michael T. Taylor, Farzad Pourahmadi, William A. McMillan, Ronald Chang
  • Patent number: 8815178
    Abstract: The invention relates to a device and method for non-invasive detection of an analyte in a fluid sample. In one embodiment, the device comprises: a collection chamber containing an absorbent hydrogel material; a fluidic channel connected to the collection chamber; a sensing chamber connected to the fluidic channel, wherein the device is comprised of a compressible housing that allows transfer of fluid collected by the collection chamber to be transferred to be extracted and withdrawn to the sensing chamber upon compression of the device, wherein the sensing chamber contains a material that specifically detects the analyte and wherein the sensing chamber is operably linked to a processor containing a potentiostat that allows detection of the analyte using electrochemical sensing.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: August 26, 2014
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Daniel Bishop, Jeffrey La Belle
  • Patent number: 8815572
    Abstract: The present invention relates to a nucleic acid extracting apparatus, and the nucleic acid extracting apparatus can include a pipe-shaped tube having an open outlet at one side thereof, and a hydrogel supporting member that is provided inside the tube and filters impurities excluding an extraction target material.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: August 26, 2014
    Assignee: Postech Academy-Industry Foundation
    Inventors: Geun-Bae Lim, Ji-Min Kahng, Jin-Hwa Jung, Ho-Taik Kwon
  • Patent number: 8809041
    Abstract: The invention provides a photo bioreactor comprising an aqueous liquid comprising a photosynthetic culture and light distributors (30). Each light distributor has a surface arranged to receive light and a tapered surface arranged to emit at least part of the received light. At least part of the tapered surface is submerged in the aqueous liquid comprising the photosynthetic culture. Light may be distributed efficiently in the aqueous liquid comprising the photosynthetic culture by relatively simple and cheap means. The reactor allows a high illuminated volume fraction.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: August 19, 2014
    Assignee: Feyecon B.V.
    Inventors: Geert Feye Woerlee, Steven Elmore, Frank Emile Wubbolts
  • Patent number: 8802449
    Abstract: An objective of the present invention is to provide immunoassay microchips in which microstructures of beads having a sufficient reaction area were constructed within microchannels while suppressing flow path resistance, and to provide simple and highly-sensitive immunoassay methods for microsamples. The objective was achieved by immunoassay microchips comprising microchannels with microstructures arranged in at least a portion of the microchannels, the microstructures retaining microbeads uniformly dispersed in photo-cured hydrophilic resins, and the microbeads having a primary antibody immobilized on their surfaces, and by immunoassay methods using the microchips.
    Type: Grant
    Filed: December 25, 2006
    Date of Patent: August 12, 2014
    Assignees: Institute of Microchemical Technology, Kansai Paint Co., Ltd.
    Inventors: Masaya Kakuta, Manabu Tokeshi, Hitoshi Izumida, Takahide Takadera, Kenji Miyagawa
  • Publication number: 20140220557
    Abstract: A device and method for particle separation. The device includes at least one collimated light source operable to generate at least one collimated light source beam. The device further includes a first channel in a first plane and a focused particle stream nozzle operably connected to the first channel. The device further includes a second channel in a second plane orthogonal to the first plane. The second channel communicates with the first channel. The second channel comprises a second channel cross-section. The second channel is oriented to receive the collimated light source beam. The device further includes a third channel in a third plane orthogonal to the second plane. The third channel communicates with the second channel. The collimated light source beam is oriented to enter a cross-section of the first channel, then to pass through the second channel, and then to enter a cross-section of the third channel.
    Type: Application
    Filed: July 30, 2013
    Publication date: August 7, 2014
    Inventors: Colin G. Hebert, Sean J. Hart, Alexander V. Terray
  • Patent number: 8795523
    Abstract: An embodiment of the invention relates to a device for detecting an analyte in a sample. The device comprises a fluidic network and an integrated circuitry component. The fluidic network comprises a sample zone, a cleaning zone and a detection zone. The fluidic network contains a magnetic particle and/or a signal particle. A sample containing an analyte is introduced, and the analyte interacts with the magnetic particle and/or the signal particle through affinity agents. A microcoil array or a mechanically movable permanent magnet is functionally coupled to the fluidic network, which are activatable to generate a magnetic field within a portion of the fluidic network, and move the magnetic particle from the sample zone to the detection zone. A detection element is present which detects optical or electrical signals from the signal particle, thus indicating the presence of the analyte.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: August 5, 2014
    Assignee: Intel Corporation
    Inventors: Xing Su, David J. Liu, Kai Wu, Kenneth B. Swartz, Mineo Yamakawa
  • Patent number: 8779779
    Abstract: Techniques, systems and apparatus are disclosed for detecting impedance. In one aspect, a microelectrode sensing device includes a substrate and an array of microelectrode sensors formed on the substrate. Each sensor includes at least one conductive layer formed above the substrate and patterned to include a counter electrode and multiple sensing electrodes to detect an electrical signal in absence and presence of one or more target cells positioned on at least a portion of a surface of each sensing electrode. The sensing electrodes are spaced apart and arranged around the counter electrode to provide a spatially averaged value of the detected electrical signal.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: July 15, 2014
    Assignees: CapitalBio Corporation, Tsinghua University
    Inventors: Lei Wang, Jing Zhu, Cheng Deng, Jing Cheng
  • Patent number: 8772017
    Abstract: Integrated microfluidic cartridges for nucleic acid extraction, amplification, and detection from clinical samples are disclosed. The devices are single-entry, sanitary, and disposable. The devices enable simplex or multiplex nucleic acid target detection, as for example: assay panels for multiple infectious agents, or assay panels for cancerous cell types. Methods for use of microfluidic cartridges in a fully automated, pneumatically controlled apparatus are also disclosed.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: July 8, 2014
    Assignee: Micronics, Inc.
    Inventors: C. Frederick Battrell, John Gerdes, John R. Williford, Denise Maxine Hoekstra, Wayne L. Breidford, Stephen Mordue, John Clemmens, Melud Nabavi, Mark Kokoris
  • Patent number: 8771612
    Abstract: The present invention provides a photoresponsive gas-generating material that is to be used in a micropump of a microfluid device having fine channels formed therein, and is capable of effectively generating gases for transporting a microfluid in response to light irradiation and transporting the microfluid at an improved transport efficiency. The present invention also provides a micropump incorporating the photoresponsive gas-generating material. A photoresponsive gas-generating material 13 is to be used in a micropump having fine channels formed in a substrate, and comprises a photo-sensitive acid-generating agent and an acid-sensitive gas-generating agent, and a micropump 10 has the photoresponsive gas-generating material 13 housed therein.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: July 8, 2014
    Assignee: Sekisui Chemical Co., Ltd.
    Inventors: Masateru Fukuoka, Kazuki Yamamoto, Yoshinori Akagi, Hiroji Fukui
  • Patent number: 8765367
    Abstract: A receptacle having a plurality of interconnected chambers arranged to permit multiple process steps or processes to be performed independently or simultaneously. The receptacles are manufactured to separate liquid from dried reagents and to maintain the stability of the dried reagents. An immiscible liquid, such as an oil, is included to control loading of process materials, facilitate mixing and reconstitution of dried reagents, limit evaporation, control heating of reaction materials, concentrate solid support materials to prevent clogging of fluid connections, provide minimum volumes for fluid transfers, and to prevent process materials from sticking to chamber surfaces. The receptacles can be adapted for use in systems having a processing instrument that includes an actuator system for selectively moving fluid substances between chambers and a detector. The actuator system can be arranged to concentrate an analyte present in a sample.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: July 1, 2014
    Assignees: Gen-Probe Incorporated, Qualigen, Inc.
    Inventors: Scott S. Breidenthal, Sara H. Fan, Richard S. Lee, Norman C. Nelson, Matthew J. Scott, Jason A. Taylor
  • Patent number: 8765454
    Abstract: The present invention describes microfluidic devices that provide novel fluidic structures to facilitate the separation of fluids into isolated, pico-liter sized compartments for performing multiplexing chemical and biological reactions. Applications of the novel devices including biomolecule synthesis, polynucleotide amplification, and binding assays are also disclosed.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: July 1, 2014
    Inventors: Xiaochuan Zhou, Xiaollan Gao, Erdogan Gulari
  • Patent number: 8759081
    Abstract: A test element, analytical system and method for optical analysis of fluid samples is provided. The test element has a substrate and a microfluidic channel structure, which is enclosed by the substrate and a cover layer. The channel structure has a measuring chamber with an inlet opening. The test element has a first level, which faces the cover layer, and a second level, which interconnects with the first level such that the first level is positioned between the cover layer and the second level. A part of the measuring chamber extending through the first level forms a measuring zone connecting with a part of the measuring chamber that extends partially into the second level, forming a mixing zone. Optical analysis of fluid samples is carried out by light guided through the first level parallel to the cover layer, such that the light traverses the measuring zone along an optical axis.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: June 24, 2014
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Christoph Klaunick, Romi Roedl, Daniel Rohleder, Valerie Winckler-Desprez
  • Patent number: 8759017
    Abstract: The present invention relates to a structure comprising a biological membrane and a porous or perforated substrate, a biological membrane, a substrate, a high throughput screen, methods for production of the structure membrane and substrate, and a method for screening a large number of test compounds in a short period. More particularly it relates to a structure comprising a biological membrane adhered to a porous or perforated substrate, a biological membrane capable of adhering with high resistance seals to a substrate such as perforated glass and the ability to form sheets having predominantly an ion channel or transporter of interest, a high throughput screen for determining the effect of test compounds on ion channel or transporter activity, methods for manufacture of the structure, membrane and substrate, and a method for monitoring ion channel or transporter activity in a membrane.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: June 24, 2014
    Assignee: Xention Limited
    Inventors: David Geraint Owen, Nicholas Gerard Byrne
  • Patent number: 8753868
    Abstract: Embodiments of the present techniques provide systems and methods for isolating particular classes of biological molecules, for example, proteins or nucleic acids, from mixtures of biological components. The methods use solutions that react with the biological molecules to enhance their adsorption by substrates, allowing contaminants to be washed away from the targeted molecules. Embodiments include automated systems that can be used to implement the technique with no or minimal intervention. Other embodiments include separation column technologies that may be used in the techniques.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: June 17, 2014
    Assignee: General Electric Company
    Inventors: Robert Scott Duthie, Wei-Cheng Tian, Tarun Khurana
  • Patent number: 8753890
    Abstract: An apparatus and method for analyzing a biological fluid sample is provided. The method includes the steps of: a) providing an analysis cartridge having a channel and an analysis chamber, wherein the channel is in fluid communication with the analysis chamber and includes at least one hydrophobic interior wall surface; b) admixing one or more anti-adsorption agents with fluid sample disposed within the channel, wherein the anti-adsorption agents are operable to inhibit adsorption of fluid sample onto the interior wall surface of the channel; c) moving the fluid sample into the analysis chamber; and d) analyzing the sample within the analysis chamber.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: June 17, 2014
    Assignee: Abbott Point of Care, Inc.
    Inventors: Niten V. Lalpuria, Darryn W. Unfricht, Igor Nikonorov, Benjamin Ports, Douglas R. Olson
  • Patent number: 8748165
    Abstract: This invention provides a method for generating short tandem repeat (STR) profiles on each of a plurality of samples comprising, for each sample: a) isolating DNA from the sample; b) amplifying STR markers in the isolated DNA and c) analyzing the amplification product by electrophoresis.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: June 10, 2014
    Assignee: IntegenX Inc.
    Inventors: Mattias Vangbo, William D. Nielsen, Iuliu I. Blaga, Michael Van Nguyen, Steven B. Jovanovich
  • Patent number: 8735055
    Abstract: A receptacle having a plurality of interconnected chambers arranged to permit multiple process steps or processes to be performed independently or simultaneously. The receptacles are manufactured to separate liquid from dried reagents and to maintain the stability of the dried reagents. An immiscible liquid, such as an oil, is included to control loading of process materials, facilitate mixing and reconstitution of dried reagents, limit evaporation, control heating of reaction materials, concentrate solid support materials to prevent clogging of fluid connections, provide minimum volumes for fluid transfers, and to prevent process materials from sticking to chamber surfaces. The receptacles can be adapted for use in systems having a processing instrument that includes an actuator system for selectively moving fluid substances between chambers and a detector. The actuator system can be arranged to concentrate an analyte present in a sample.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: May 27, 2014
    Assignees: Gen-Probe Incorporated, Qualigen, Inc.
    Inventors: Scott S. Breidenthal, Sara H. Fan, Richard S. Lee, Norman C. Nelson, Matthew J. Scott, Jason A. Taylor
  • Patent number: 8722389
    Abstract: A system and method for culturing algae are presented. The system and method utilize a fog of growth medium that is delivered to an algal mat generator along with a stream of CO2 to promote growth of algal cells contained in the generator.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: May 13, 2014
    Assignee: U.S. Department of Energy
    Inventors: Keshav C. Das, Benjamin R. Cannon, Ashish Bhatnagar, Senthil Chinnasamy
  • Patent number: 8716008
    Abstract: In a detection method for detecting the quantity of a target material, a labeled binding material in the amount corresponding to the quantity of the target material contained in a liquid specimen is bonded to the top of a sensor portion; and a signal based on light emitted from a label in an evanescent field or an enhanced optical field produced on a surface of the sensor portion when the sensor portion is irradiated with excitation light is detected. After the labeled binding material is bonded to the immobilization layer, the signal is detected while the fluid over the sensor portion is controlled to flow at a constant flow rate at which bonds between the labeled binding material and the immobilization layer are not broken and the above signal can be detected with a greater magnitude than when the liquid specimen exists over the sensor portion at rest.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: May 6, 2014
    Assignee: Fujifilm Corporation
    Inventor: Kazuyoshi Horii
  • Patent number: 8709787
    Abstract: The present technology provides for a microfluidic substrate configured to carry out PCR on a number of polynucleotide-containing samples in parallel. The substrate can be a single-layer substrate in a microfluidic cartridge. Also provided are a method of making a microfluidic cartridge comprising such a substrate. Still further disclosed are a microfluidic valve suitable for use in isolating a PCR chamber in a microfluidic substrate, and a method of making such a valve.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: April 29, 2014
    Assignee: Handylab, Inc.
    Inventor: Kalyan Handique
  • Patent number: 8703061
    Abstract: The present invention relates to an immunoaffinity device for capturing one or more analytes present at high or low concentrations in simple or complex matrices. The device is designed as an integrated modular unit and connected to capillary electrophoresis or liquid chromatography for the isolation, enrichment, separation and identification of polymeric macromolecules, primarily protein biomarkers. The integrated modular unit includes an analyte-concentrator-microreaction device connected to a modified cartridge-cassette.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: April 22, 2014
    Assignee: Princeton Biochemicals, Inc.
    Inventor: Norberto A. Guzman
  • Patent number: 8697435
    Abstract: A system for sample preparation and analyte detection includes a cartridge, with a fluidic channel, a waveguide, and a capture spot. The system further includes a force field generator, an imaging system, and a fluid, which includes a sample potentially containing a target analyte, first type particles, which include binding moieties specific for the target analyte and are responsive to a force field, and second type particles, which include binding moieties specific for the target analyte and are capable of generating a signal. When the sample contains the target analyte, specific binding interactions between the target analyte and binding moieties link first and second type particles via the target analyte to form multiple-particle complex capturable at a capture spot. The force field allows manipulation of the particles and multiple-particle complex such that the detected signal from the second type particles is indicative of the target analyte within the sample.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: April 15, 2014
    Assignee: MBio Diagnostics, Inc.
    Inventors: James R. Heil, Michael J. Lochhead, Kevin D. Moll, Christopher J. Myatt
  • Patent number: 8685714
    Abstract: This invention describes a quantitative, inexpensive, disposable immunosensor that requires no wash steps and thus generates no liquid waste. Moreover, in preferred embodiments of the sensor no timing steps are required of the user, and the sensor can be readily adapted to antigen-antibody interactions over a wide kinetic range.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: April 1, 2014
    Assignee: Universal Biosensors Pty Ltd
    Inventors: Alastair Hodges, Ron Chatelier
  • Patent number: 8685715
    Abstract: The present invention provides an agglutination based assay system for determining the presence and/or amount of analyte in a sample comprising a test device having one or more capillary pathways comprising detection regions adapted for non-visual detection of a sample which is releasably engageable with a reader which comprises detection means for detecting the sample at the detection regions in each of said capillary pathways and electronic means for indicating the presence and/or amount of analyte.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: April 1, 2014
    Assignee: Platform Diagnostics Limited
    Inventors: Stephen John Minter, Damian Joseph Peter Bond, Carolyn Jennifer Ruddell
  • Patent number: 8685708
    Abstract: The invention provides a device for preparing a fluid sample, including but not limited to a sample comprising genomic DNA.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: April 1, 2014
    Assignee: PathoGenetix, Inc.
    Inventors: John L. Harris, Adrian Mark Thomas West, Dirk Peter Ten Broeck, Ekaterina Protozanova
  • Patent number: 8679838
    Abstract: It is intended to provide a serum which contains a large amount of growth factors capable of efficiently promoting the growth of stem cells. A human serum for cell culture which shows a residual ratio of platelets remaining within 20 minutes after blood collection in relation to the whole amount of the platelets is 0% to 20%, and a release ratio of cell growth factors is 20% to 100%.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: March 25, 2014
    Assignee: JMS Co., Ltd.
    Inventors: Koji Suzuki, Seishin Tanaka
  • Patent number: 8679828
    Abstract: The sample container has a two-layer membrane filter comprising a first layer as an upper layer serving as a hydrophilic membrane filter and a hydrophobic membrane filter as an underlying second layer capable of filtering an aqueous solution without the use of a wetting agent and by means of a formed negative pressure. Using this sample container, a large amount of an aqueous sample solution is filtered by means of a negative pressure formed by a suction portion to capture microbes in the aqueous sample solution by the hydrophilic membrane filter. Then, the negative pressure is restored to normal pressure, and a microbial dissolution solution is then added to the membrane filter to retain the microbial dissolution solution for a given time on the hydrophobic membrane filter. Then, the microbial dissolution solution is dispensed to a reaction container containing a luminescent reagent, and luminescence is detected to detect the microbes.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: March 25, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Masahiro Okanojo, Hideyuki Noda, Noe Miyashita
  • Patent number: 8679827
    Abstract: The present invention relates to methods for measuring an amount of an analyte using an electrochemical assay in a conduit comprising a sensor, wherein said sensor comprises an electrode having a surface layer of immobilized antibody that binds said analyte, and a counter/reference electrode disposed within said conduit. A solution comprising a substrate for said enzyme and at least one air segment contacts the sensor to remove unbound analyte and labeled antibody from a region of the sensor. The disclosed invention is adaptable to the point-of-care clinical diagnostic field, including use in accident sites, emergency rooms, surgery, nursing homes, intensive care units, and non-medical environments.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: March 25, 2014
    Assignee: Abbott Point of Care Inc.
    Inventors: Graham Davis, Imants Lauks, Chao Lin, Cary James Miller
  • Patent number: 8679751
    Abstract: Embodiments of the present disclosure feature a filtration system comprising a filtration module for particle filtration and methods of using the device for the isolation of particles (e.g., viable cells). Advantageously, embodiments of the device provide for the high throughput filtration of large volumes of sample while preserving cell viability and. providing high yields.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: March 25, 2014
    Assignee: Cytovera Inc.
    Inventor: Lotien Huang
  • Patent number: 8663977
    Abstract: A system for combinatorial processing is provided. The system includes a plurality of reactor cells. Each of the plurality of reactor cells includes a vertical recess extending along a length of the outer surface of the plurality of reactor cells. The vertical recess is operable to receive a vertical rail. The system also includes a plurality of horizontal rails extending between rows of the plurality of reactor cells. Each of the plurality of horizontal rails has a member slidably mounted thereon. The member is coupled to the vertical rail thereby enabling independent horizontal and vertical movement for each of the plurality of reactor cells.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: March 4, 2014
    Assignee: Intermolecular, Inc.
    Inventor: Edwin Adhiprakasha
  • Patent number: 8658418
    Abstract: The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and/or detection of particles, such as cells and/or beads. The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and/or analysis of particles, such as cells, viruses, organelles, beads, and/or vesicles. The invention also provides microfluidic mechanisms for carrying out these manipulations and analysis. These mechanisms may enable controlled input, movement/positioning, retention/localization, treatment, measurement, release, and/or output of particles. Furthermore, these mechanisms may be combined in any suitable order and/or employed for any suitable number of times within a system.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: February 25, 2014
    Assignee: Fluidigm Corporation
    Inventor: Antoine Daridon
  • Patent number: 8658367
    Abstract: A microfluidic device is provided for analyzing or sorting biological materials, such as polynucleotides, polypeptides, proteins, enzymes, viruses and cells. The invention can be used for high throughput or combinatorial screening. The device comprises a main channel and an inlet channel that communicate at a droplet extrusion region so that droplets of solution are deposited into an immiscible solvent in the main channel. Droplets can thereafter be sorted according to biological material detected in each droplet.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: February 25, 2014
    Assignee: California Institute of Technology
    Inventors: Stephen R. Quake, Todd Thorsen
  • Patent number: 8658368
    Abstract: A microfluidic device is provided for analyzing or sorting biological materials, such as polynucleotides, polypeptides, proteins, enzymes, viruses and cells. The invention can be used for high throughput or combinatorial screening. The device comprises a main channel and an inlet channel that communicate at a droplet extrusion region so that droplets of solution are deposited into an immiscible solvent in the main channel. Droplets can thereafter be sorted according to biological material detected in each droplet.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: February 25, 2014
    Assignee: California Institute of Technology
    Inventors: Stephen R. Quake, Todd Thorsen
  • Patent number: 8647859
    Abstract: An apparatus for analyzing bacteria is described that includes an analytic sample preparation section for preparing an analytic sample by treating a specimen so as to generate a morphological difference between Gram-negative bacteria and Gram-positive bacteria, a detector for detecting optical information from each particle contained in the analytic sample and an analyzing section for detecting Gram-positive bacteria contained on the basis of the detected optical information. A method for analyzing bacteria is also described.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: February 11, 2014
    Assignee: Sysmex Corporation
    Inventor: Yasuyuki Kawashima
  • Patent number: 8647861
    Abstract: System and method includes a body having a central microchannel separated by one or more porous membranes. The membranes are configured to divide the central microchannel into a two or more parallel central microchannels, wherein one or more first fluids are applied through the first central microchannel and one or more second fluids are applied through the second or more central microchannels. The surfaces of each porous membrane can be coated with cell adhesive molecules to support the attachment of cells and promote their organization into tissues on the upper and lower surface of the membrane. The pores may be large enough to only permit exchange of gases and small chemicals, or to permit migration and transchannel passage of large proteins and whole living cells. Fluid pressure, flow and channel geometry also may be varied to apply a desired mechanical force to one or both tissue layers.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: February 11, 2014
    Assignee: Children's Medical Center Corporation
    Inventors: Donald E. Ingber, Dongeun Huh
  • Patent number: 8641973
    Abstract: An apparatus, system, and method for determining the osmolarity of a fluid. The apparatus includes at least one micro-fluidic circuit and at least one electrical circuit disposed in communication with the micro-fluidic circuit for determining a property of a fluid contained within the at least one micro-fluidic circuit.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: February 4, 2014
    Assignee: International Business Machines Corporation
    Inventors: Govindarajan Natarajan, Emmanuel Delamarche, Eric A. Eckberg, James N. Humenik, Kathleen A. McGroddy-Goetz, Scott Partington, Christopher F. Perrera, Marco G. Trivella, Timothy M. Wiwel
  • Patent number: 8642322
    Abstract: The present invention relates to methods for measuring an amount of an analyte using an electrochemical assay in a conduit comprising a sensor, wherein said sensor comprises an electrode having a surface layer of immobilized antibody that binds said analyte, and a counter/reference electrode disposed within said conduit. A solution comprising a substrate for said enzyme and at least one air segment contacts the sensor to remove unbound analyte and labeled antibody from a region of the sensor. The disclosed invention is adaptable to the point-of-care clinical diagnostic field, including use in accident sites, emergency rooms, surgery, nursing homes, intensive care units, and non-medical environments.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: February 4, 2014
    Assignee: Abbott Point of Care Inc.
    Inventors: Graham Davis, Imants Lauks, Chao Lin, Cary James Miller
  • Publication number: 20140030752
    Abstract: The systems and methods disclosed herein are generally related to a cell culture system. More particularly, the systems and methods enable the culturing and interconnecting of a plurality of tissue types in a biomimetic environment. By culturing organ specific tissue types within a biomimetic environment and interconnecting each of the organ systems in a physiologically meaningful way, experiments can be conducted on in vitro cells that substantially mimic the responses of in vivo cell populations. In some implementations, the system is used to monitor how organ systems respond to agents such as toxins or medications. The system enables the precise and controlled delivery of these agents, which, in some implementations, enables the biomimetic dosing of drugs in humans to be mimicked.
    Type: Application
    Filed: July 25, 2013
    Publication date: January 30, 2014
    Inventors: Joseph Cuiffi, Jeffrey T. Borenstein, Anilkumar Harapanahalli Achyuta, Mark J. Mescher, Linda Griffith, Samuel Walker Inman