Including Measuring Or Testing Patents (Class 435/287.1)
  • Patent number: 11921102
    Abstract: An optical imaging system for cell culture monitoring is provided. The system includes an illumination segment having an illumination source and a collimating lens positioned between a first surface of a cell culture vessel and the illumination source. The illumination source and the collimating lens are arranged to transmit light through the first surface at an angle oblique to the first surface of the cell culture vessel. The system also includes a detection segment having a detector and a lens positioned between the first surface of the cell culture vessel and the detector. The lens focuses light to the detector through an aperture stop, and the detector receives light that exits the first surface of the cell culture vessel at an angle oblique to the first surface.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: March 5, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Joshua Monroe Cobb, Mark Christian Sanson
  • Patent number: 11921104
    Abstract: This disclosure relates to verifying the operation of cell analyzers, including microscope-based cell imaging and counting analyzers. In one general aspect, a mixture of micro-beads having known characteristics is introduced into the analyzer. One or more images of the mixture are acquired with the analyzer's microscope, the images are analyzed, and a determination is made about whether results meet one or more predetermined quality control thresholds. Also disclosed is a hematology control material that can be used to perform the verification and includes a solvent, a dye dissolved in the solvent, and micro-beads suspended in the solvent. In another general aspect, a quality control method for the analyzers includes capturing images of samples that include patient cells using at least a microscope, extracting sample-specific information about properties of the patient samples from the images, and testing information from the samples against predetermined standards to verify the operation of the analyzer.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: March 5, 2024
    Assignee: Medica Corporation
    Inventors: Donald E. Barry, Jr., Lindsay Goetz
  • Patent number: 11913936
    Abstract: An apparatus for supporting an array of layers of amphiphilic molecules, the apparatus comprising: a body, formed in a surface of the body, an array of sensor wells capable of supporting a layer of amphiphilic molecules across the sensor wells, the sensor wells each containing an electrode for connection to an electrical circuit, and formed in the surface of the body between the sensor wells, flow control wells capable of smoothing the flow of a fluid across the surface.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: February 27, 2024
    Assignee: Oxford Nanopore Technologies PLC
    Inventors: Jason Robert Hyde, James Anthony Clarke, Gaëlle Anne-Leonie Andreatta
  • Patent number: 11915422
    Abstract: Techniques for processing multiplexed immunofluorescence (MxIF) images. The techniques include obtaining at least one MxIF image of a same tissue sample, obtaining information indicative of locations of cells in the at least one MxIF image, identifying multiple groups of cells in the at least one MxIF image at least in part by determining feature values for at least some of the cells using the at least one MxIF image and the information indicative of locations of the at least some cells in the at least one MxIF image and grouping the at least some of the cells into the multiple groups using the determined feature values, and determining at least one characteristic of the tissue sample using the multiple cell groups.
    Type: Grant
    Filed: December 27, 2021
    Date of Patent: February 27, 2024
    Assignee: BostonGene Corporation
    Inventors: Viktor Svekolkin, Ilia Galkin, Ekaterina Postovalova, Ravshan Ataullakhanov, Alexander Bagaev, Arina Varlamova, Pavel Ovcharov
  • Patent number: 11904312
    Abstract: The present disclosure is drawn to microfluidic devices. A microfluidic device can include a substrate, a lid mounted to the substrate, and a microchip mounted to the substrate. The lid mounted to the substrate can form a discrete microfluidic chamber between structures including an interior surface of the lid and a portion of the substrate. The lid can include an inlet and a vent positioned relative to one another to facilitate loading of fluid to the discrete microfluidic chamber via capillary action. A portion of the microchip can be positioned within the discrete microfluidic chamber.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: February 20, 2024
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Hilary Ely, Adam Higgins, Rachel M. White, Erik D. Torniainen, Tod Woodford, Michael W. Cumbie, Chien-Hua Chen
  • Patent number: 11884905
    Abstract: The present invention provides a fluidic chip for cell culture use which can prevent a decrease in the activity of cultured cells in a preparation stage, and which makes it possible to observe a cultured cell tissue while detaching the cultured cell tissue from the fluidic chip.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: January 30, 2024
    Assignee: UNIVERSITY PUBLIC CORPORATION OSAKA
    Inventor: Masaya Hagiwara
  • Patent number: 11879120
    Abstract: In some aspects, the invention relates to automated cell culture incubators and their methods of use. In one aspect, the disclosure provides cell culture incubators having an airlock chamber, a storage chamber and/or an internal chamber. In some aspects, the disclosure provides methods for producing autologous mammalian cell cultures.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: January 23, 2024
    Assignee: Thrive Bioscience, Inc.
    Inventor: Alan Blanchard
  • Patent number: 11833514
    Abstract: The present disclosure generally pertains to a biomimetic array device and methods of using the device to expose biological samples to an array of fluids. The device includes a cassette and an inlet region, where the cassette comprises at least one microchamber array and at least one microchannel. Each microchamber within a microchamber array has a top interface that is open to the external environment, so that a biological sample placed at the top interface is positioned to draw fluid from the microchambers. The inlet region comprises at least one well and at least one inlet channel, each well in fluid communication with one inlet channel. Fluid deposited into wells flows through each inlet channel and microchannel in fluid communication with each well containing fluid, so that each microchamber within one microchamber array provides an approximately equal volume of fluid to the biological sample.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: December 5, 2023
    Assignee: Cerflux, Inc.
    Inventors: Karim I. Budhwani, Brahma Mubarak K. Budhwani, Khidr Kishan K. Budhwani
  • Patent number: 11834697
    Abstract: A method of determining the presence of bacteria expressing cytochrome c oxidase (‘the bacteria’), the method comprising: —providing a sample suspected of containing the bacteria; —providing a compound that has two redox states: a reduced state and an oxidised state, wherein cytochrome c oxidase can convert the compound from its reduced state to its oxidised state; —contacting an electrode either with (i) the compound in its oxidised state in the presence of the sample, then applying a reductive potential and measuring the current at the electrode; or (ii) the compound in its reduced state in the presence of the sample, then applying an oxidative potential and measuring the current at the electrode; and—comparing the magnitude of the current produced by the reductive potential or oxidative potential in the presence of the sample suspected of containing the bacteria with the magnitude of the current produced under the same conditions, but in the absence of the sample suspected of containing the bacteria, where
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: December 5, 2023
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Richard Guy Compton, Sabine Kuss
  • Patent number: 11828766
    Abstract: In some aspects, automated rapid antimicrobial susceptibility testing systems for performing a multi-assay testing sequence can include an automated incubation assembly having a nest assembly adapted to house at least one test panel having a plurality of wells for receiving a sample comprising microorganisms originating from a clinical sample, the incubation assembly facilitating incubation of one or more test panels in order to undergo the multi-assay testing sequence; a robotic handling assembly configured to accept one or more incoming test panels and move them to and from the incubation assembly for incubation between each assay of the multi-assay testing sequence; an automated liquid handling assembly configured to exchange one or more fluids in the plurality of wells of the test panels; and an optical assembly for interrogation and readout of each assay of the multi-assay testing sequence being performed in the plurality of wells.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: November 28, 2023
    Assignee: SELUX DIAGNOSTICS, INC.
    Inventors: Aleksandar Vacic, Nathan Purmort, Eric Stern, Anna Passernig, Paul Otten, Randy Tragni, Ronan Hayes, Andriy Tsupryk, Bruce Richardson
  • Patent number: 11815510
    Abstract: The invention relates to a method for detecting a dengue infection in a patient blood sample, comprising the steps: a) Performing an analysis of prespecified parameters of blood platelets and prespecified types of blood cells in the sample and determining parameter values for the prespecified parameters of the platelets and the prespecified types of cells; b) Obtaining sample parameters from the values determined in step a); and c) Evaluating the sample parameters in relation to a prespecified criterion, wherein, if the criterion is fulfilled, a dengue infection is present.
    Type: Grant
    Filed: December 19, 2022
    Date of Patent: November 14, 2023
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Kieran O'Donoghue, Rory Sobolewski
  • Patent number: 11806118
    Abstract: Systems and methods are provided for operating a physiological monitoring system that comprises a distributed algorithm. The physiological monitoring system may comprise a sensor and a physiological monitor that may be communicatively coupled with the sensor. The sensor may store algorithm configuration data; and the physiological monitor may store an executable code segment configured to execute a first algorithm. The physiological monitor may be configured to receive the algorithm configuration data and to configure or modify at least part of the first algorithm based upon the algorithm configuration data to determine at least one physiological parameter of a subject based on physiological signal provided by the sensor.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: November 7, 2023
    Assignee: COVIDIEN LP
    Inventor: Daniel Lisogurski
  • Patent number: 11794184
    Abstract: The present disclosure provides a device for patterning extracellular matrix (ECM) hydrogel comprising a first layer surface patterned to define a microchannel, a second layer comprising a loading channel in fluid communication with loading ports to receive an ECM hydrogel, wherein the first layer is attached over the second layer such that the patterned surface faces the loading channel to define an open chamber with regions of reduced cross-sectional area, and wherein the ECM hydrogel is confined to fill said regions, thereby forming a perfusable channel in the open chamber. The present disclosure also provides the same device wherein the second layer is a substrate without a loading channel and is optically pervious; and additionally provides a method of patterning ECM hydrogel comprising use of the aforementioned device. Importantly, ECM patterning is achieved by surface tension between the ECM hydrogel and the first layer at the boundaries of the microchannel.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: October 24, 2023
    Assignee: NANYANG TECHNOLOGICAL UNIVERSITY
    Inventors: Han Wei Hou, Nishanth Venugopal Menon, Soon Nan Wee, King Ho Holden Li
  • Patent number: 11788042
    Abstract: A method, apparatus, and system are provided for the printing and maturation of living tissue in an Earth-referenced reduced gravity environment such as that found on a spacecraft or on other celestial bodies. The printing may be three-dimensional structures. The printed structures may be manufactured from low viscosity biomaterials.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: October 17, 2023
    Assignee: REDWIRE SPACE TECHNOLOGIES, INC.
    Inventors: John C. Vellinger, Eugene Boland, Michael A. Kurk, Krystal Milliner, Nester Samuel Logan, Carlos Chang
  • Patent number: 11788046
    Abstract: The invention provides a device for growing cells—referred to as a cassette. The cell culturing device includes a housing that contains a lid having an optically clear window; a fluid distribution channel; a sample injection port fluidically connected to the fluid distribution channel; a base housing a porous media pad; and a media injection port fluidically connected to the media pad. The lid mates to the base to form a sterile seal; the fluid distribution channel is disposed over the media pad, which is viewable through the optical window; and sample fluid introduced into the fluid distribution channel is distributed evenly to the media pad, e.g., via a plurality of channels. The invention also provides kits that include cassettes of the invention and a tube set.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: October 17, 2023
    Assignee: Rapid Micro Biosystems, Inc.
    Inventors: Robert C. Aviles, Devin T. Michaud, Douglas J. Browne
  • Patent number: 11788943
    Abstract: A system and method for sorting sperm is provided. The system includes a housing and a microfluidic system supported by the housing. The system also includes an inlet providing access to the microfluidic system to deliver sperm to the microfluidic system and an outlet providing access to the microfluidic system to harvest sorted sperm from the microfluidic system. The microfluidic system provides a flow path for sperm from the inlet to the outlet and includes at least one channel extending from the inlet to the outlet to allow sperm delivered to the microfluidic system through the inlet to progress along the flow path toward the outlet. The microfluidic system also includes a filter including a first plurality of micropores arranged in the flow path between the inlet and the outlet to cause sperm traveling along the flow path to move against through the filter and gravity to reach the outlet.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: October 17, 2023
    Assignee: THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: Utkan Demirci, Waseem Asghar
  • Patent number: 11779672
    Abstract: A control method of an intelligent sterility test pump, a sterilization method and its application. The control method includes monitoring the real-time current of a DC drive motor through a current detection module, to adjust the rotating linear velocity of a peristaltic pump head in real time; when the peristaltic pump head is in a state of pushing a liquid to be tested, reducing the rotating linear velocity of the peristaltic pump head; and when the peristaltic pump head is in an idling state, increasing the rotating linear velocity of the peristaltic pump head. A sterilization method includes the control method of the intelligent sterility test pump. Application of the sterilization method in preparation or detection of foods and medicines.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: October 10, 2023
    Assignee: JIANGSU SUJING GROUP CO., LTD.
    Inventors: Fengfei Liang, Jiyong Sun, Weidong Shen, Jian Chen
  • Patent number: 11770210
    Abstract: Disclosed herein are methods and systems for receiving an encoded data packet, one or more activation commands, and a communication identifier, decoding the received data packet, validating the decoded received data packet, and executing one or more routines associated with the respective one or more activation commands.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: September 26, 2023
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: Jeffery M. Sicurello, Mark K. Sloan
  • Patent number: 11717830
    Abstract: An open microfluidic system is provided. The open microfluidic system including the extreme wettability of exclusive liquid repellency (ELR), open microchannels with high lateral resolution and low profile, various valve arrangements, capable of a broad range flow rates, and capable of spatially and temporally trapping particles in open fluid.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: August 8, 2023
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Chao Li, David J. Beebe, Duane S. Juang
  • Patent number: 11709122
    Abstract: A system and method for sorting sperm is provided. The system includes a housing and a microfluidic system supported by the housing. The system also includes an inlet providing access to the microfluidic system to deliver sperm to the microfluidic system and an outlet providing access to the microfluidic system to harvest sorted sperm from the microfluidic system. The microfluidic system provides a flow path for sperm from the inlet to the outlet and includes at least one channel extending from the inlet to the outlet to allow sperm delivered to the microfluidic system through the inlet to progress along the flow path toward the outlet. The microfluidic system also includes a filter including a first plurality of micropores arranged in the flow path between the inlet and the outlet to cause sperm traveling along the flow path to move against through the filter and gravity to reach the outlet.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: July 25, 2023
    Assignee: THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: Utkan Demirci, Waseem Asghar
  • Patent number: 11685889
    Abstract: The present disclosure provides automated modules and instruments for improved detection of nuclease genome editing of live cells. The disclosure provides improved modules—including high throughput modules—for screening cells that have been subjected to editing and identifying and selecting cells that have been properly edited.
    Type: Grant
    Filed: April 30, 2022
    Date of Patent: June 27, 2023
    Assignee: INSCRIPTA, INC.
    Inventors: Andrew Garst, Richard Fox, Eileen Spindler, Amy Hiddessen, Phillip Belgrader, Don Masquelier, Bruce Chabansky, Michael Graige
  • Patent number: 11623213
    Abstract: A microbiological testing device for testing a liquid to be analysed that is liable to contain at least one microorganism, includes a closed inner space, a microbiological filtration member and an inlet port. The device has a nutritive layer in contact with the filtration member, and in that, in a configuration for providing the device an open/close member of the inlet port is in a closed state; the absolute gas pressure inside the closed inner space is strictly less than the standard atmospheric pressure, such that the device is able to create suction through the inlet port during a first opening of the open/close member.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: April 11, 2023
    Assignee: BIOMÉRIEUX SA
    Inventors: Florian Michel, Frédéric Foucault, Christine Rozand
  • Patent number: 11618019
    Abstract: An exemplary mobile impedance-based flow cytometer is developed for the diagnosis of sickle cell disease. The mobile cytometer may be controlled by a computer (e.g., smartphone) application. Calibration of the portable device may be performed using a component of known impedance value. With the developed portable flow cytometer, analysis may be performed on two sickle cell samples and a healthy cell sample. The acquired results may subsequently be analyzed to extract single-cell level impedance information as well as statistics of different cell conditions. Significant differences in cell impedance signals may be observed between sickle cells and normal cells, as well as between sickle cells under hypoxia and normoxia conditions.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: April 4, 2023
    Assignee: Florida Atlantic University Board of Trustees
    Inventors: E Du, Darryl Dieujuste, Jia Liu, Yuhao Qiang
  • Patent number: 11614385
    Abstract: A gas detecting module is disclosed. A gas-inlet concave and a gas-outlet concave are formed on a sidewall of a base. A gas-inlet-groove region and a gas-outlet-groove region are formed on a surface of the base. The gas-inlet concave is in communication with a gas-inlet groove of the gas-inlet-groove region, and the gas-outlet concave is in communication a gas-outlet groove of the gas-outlet-groove region. The gas-inlet-groove region and the gas-outlet-groove region are covered by a thin film to achieve the effectiveness of laterally inhaling and discharging out gas relative to the gas detecting module.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: March 28, 2023
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Ching-Sung Lin, Wen-Yang Yang, Yung-Lung Han, Chi-Feng Huang, Chun-Yi Kuo, Chin-Wen Hsieh
  • Patent number: 11610679
    Abstract: The present disclosure relates to providing personalized prediction and prevention of various types of medical events (e.g., emergency department visits, hospital admissions, complications) using machine-learning algorithms. An exemplary method comprises: obtaining a plurality of feature values of the patient; providing the plurality of feature values to a set of one or more trained machine-learning models to obtain: a first probabilistic value indicating a likelihood of a future medical event, a second probabilistic value indicating a likelihood of a reason for the future medical event, a third probabilistic value indicating a likelihood that the future medical event can be prevented, displaying, on the display, a risk value of the future medical event based on the first probabilistic value, a reason of the future medical event based on the second probabilistic value, an interceptability value of the future medical event based on the third probabilistic value.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: March 21, 2023
    Assignee: Health at Scale Corporation
    Inventors: Tiange Zhan, Dahee Lee, John Guttag, Zeeshan Syed
  • Patent number: 11607687
    Abstract: A reaction processing vessel includes: a substrate; a channel for a sample to move that is formed on the substrate; a first air communication port and a second air communication port provided at respective ends of the channel; and a thermal cycle region for applying a thermal cycle to the sample that is formed between the first air communication port and the second air communication port in the channel. The channel includes a first branch channel and a second branch channel between the thermal cycle region and the first air communication port.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: March 21, 2023
    Assignee: Nippon Sheet Glass Company, Limited
    Inventor: Takashi Fukuzawa
  • Patent number: 11607688
    Abstract: A single junction sorter for a microfluidic particle sorter, the single-junction sorter comprising: an input channel, configured to receive a fluid containing particles; an output sort channel and an output waste channel, each connected to the input channel for receiving the fluid therefrom; a bubble generator, operable to selectively displace the fluid around a particle to be sorted and thereby to create a transient flow of the fluid in the input channel; and a vortex element, configured to cause a vortex in the transient flow in order to direct the particle to be sorted into the output sort channel.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: March 21, 2023
    Assignee: TTP Plc
    Inventors: Mikhail Bashtanov, Richard Gold, Calum Hayes, Fred Hussain, Robyn Pritchard, Salman Samson Rogers, Nuno Varelas, Alexander Zhukov
  • Patent number: 11609537
    Abstract: A cell area extraction unit (241) extracts a cell area in a phase image that is created based on a hologram obtained by in-line holographic microscope (IHM). A background value acquisition unit (242) obtains a background value from phase values at a plurality of positions outside the cell area. An intracellular phase value acquisition unit (243) averages a plurality of phase values on a sampling line set at a position close to the periphery of a cell, while avoiding a central portion in which the phase value may be lowered in the cell area, to obtain an intracellular phase value. A phase change amount calculation unit (244) obtains the difference between the intracellular phase value and the background value. A phase change amount determination unit (245) compares the value of the difference with thresholds in two levels to determine whether the cell is in an undifferentiated state or an undifferentiation deviant state.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: March 21, 2023
    Assignees: SHIMADZU CORPORATION, iPS PORTAL, Inc.
    Inventors: Yasushi Kondo, Shuhei Yamamoto, Mika Okada, Minoru Okada
  • Patent number: 11604133
    Abstract: This disclosure provides methods and systems for classifying biological particles, e.g., blood cells, microbes, circulating tumor cells (CTCs). Using impedance flow cytometry, such as multi-frequency impedance cytometry, in conjunction with supervised machine learning, the disclosed methods and systems demonstrated improved accuracy in classifying biological particles.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: March 14, 2023
    Assignee: Rutgers, the State University of New Jersey
    Inventors: Mehdi Javanmard, Karan Ahuja, Jianye Sui, Joseph R. Bertino
  • Patent number: 11604145
    Abstract: The invention relates to the field of biotechnology and pharmaceutics. Proposed is a method for ultra-high performance screening of biological objects which is based on microfluidic generation of droplets of a biocompatible water-in-oil-in-water double emulsion, and also a method for producing a monodisperse biocompatible water-in-oil-in-water double emulsion. The invention can be used in diagnosing conditions and diseases in mammals, as well as for investigating biological objects.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: March 14, 2023
    Assignee: SHEMYAKIN-OVCHINNIKOV INSTITUTE OF BIOORGANIC CHEMISTRY OF THE RUSSIAN ACADEMY OF SCIENCES
    Inventors: Alexander Gabibovich Gabibov, Ivan Vitalievich Smirnov, Stanislav Sergeevich Terekhov
  • Patent number: 11597921
    Abstract: In an illustrative embodiment, automated multi-module cell editing instruments are provided to automate multiple edits into nucleic acid sequences inside one or more cells.
    Type: Grant
    Filed: March 11, 2022
    Date of Patent: March 7, 2023
    Assignee: Inscripta, Inc.
    Inventors: Jorge Bernate, Kevin Ness, Phillip Belgrader, Don Masquelier, Ryan Gill
  • Patent number: 11568536
    Abstract: One type of tissue-based assay, the companion diagnostic (“CDx”) allows for the identification of individuals within a larger patient population who are more likely to respond to a therapy. The CDx paradigm typically applies to drugs that target a specific gene product or biologic pathway involving a gene product of interest. It is possible, especially for popular therapeutic targets, for multiple drugs and multiple associated CDx to be developed for a single gene product or biologic pathway involving the gene product. Currently, each of these similar CDx must be applied to identify the best therapy. The present invention can determine the outcome of one CDx using an image of a tissue section used for another CDx. Using a single tissue section and a single CDx, it becomes possible to obtain the outcome of multiple, related CDx.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: January 31, 2023
    Assignee: Flagship Biosciences, Inc
    Inventors: Cris L Luengo Hendriks, Joseph Krueger, Nathan T. Martin, Joshua C. Black
  • Patent number: 11566213
    Abstract: A microfabricated device having at least one gas-entrapping feature formed therein in a configuration that entraps air bubbles upon wetting the feature with a solvent or solution is described. The device includes a sacrificial residue in contact with the gas-entrapping feature, the dissolution of which guides the wetting of the gas-entrapping feature.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: January 31, 2023
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Nancy L. Allbritton, Yuli Wang, Christopher Sims
  • Patent number: 11542541
    Abstract: Methods, systems, and devices for sampling/isolating material from cells. An exemplary system may comprise a chip including an electrode array of sampling electrodes arranged along a surface of the chip. A cell-receiving area may be located adjacent the surface of the chip. The system also may comprise a tag array of tags supported by the chip and aligned with the electrode array. Each tag of the tag array may include an identifier that is unique to the tag within the tag array. Each tag may be configured to bind nucleic acids, or a capturing agent distinct from the tag may be aligned with each sampling electrode of the electrode array to capture a protein or other analyte of interest. The system further may comprise a control circuit configured to apply an individually controllable voltage to each sampling electrode of the electrode array and measure an electrical property of the sampling electrode.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: January 3, 2023
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Arkadiusz Bibillo, Pranav Patel, Christopher Reggiardo, Jonathan Petersen
  • Patent number: 11525153
    Abstract: Described herein are methods, systems, and non-transitory computer-readable media to non-destructively acquire three-dimensional profiles of cellular microbiological samples growing on the surface of a solid growth medium. Acquisitions can be performed by an optical microscope that includes a vertical scanning interferometer. The three-dimensional profiles can enable measurement of sample parameters of microcolonies, which can be made of microbial colony forming units. The methods and systems enable early and rapid detection and quantification of microbes.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: December 13, 2022
    Assignee: BATTELLE MEMORIAL INSTITUTE
    Inventors: Curtis J. Larimer, Raymond S. Addleman
  • Patent number: 11525161
    Abstract: Provided are compositions and methods for differentiating and diagnosing ischemic stroke and subgroups thereof (e.g., cardioembolic stroke, large vessel stroke, atherothrombotic stroke, lacunar stroke) from intracerebral hemorrhage.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: December 13, 2022
    Assignee: The Regents of the University of California
    Inventors: Boryana Stamova-Kiossepacheva, Glen C. Jickling, Frank Sharp
  • Patent number: 11525628
    Abstract: Process for producing biomethane from a biogas stream including methane, carbon dioxide and at least one impurity chosen from ammonia, volatile organic compounds, water, sulfur-based impurities (H2S) and siloxanes. A biogas stream is dried, the at least one impurity is at least partially removed by solidification and removal of the impurity. The methane and the carbon dioxide contained in the biogas obtained from the second step are separated so as to produce a biomethane stream and a CO2 stream.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: December 13, 2022
    Assignee: L'Air Liquide, Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Guillaume Cardon, Antonio Trueba, Solene Valentin
  • Patent number: 11525152
    Abstract: A system and method for rapid detection of viable microorganisms (e.g., pathogens) in liquid media suspensions utilizes at least two electrodes in electrical communication with a suspension (e.g., liquid media possibly containing microorganisms). Electrical response to an electrical pulse in a short initial time window (e.g., no longer than a time required to attain 95% (or another threshold percentage) of a steady state electrical response value after a change in state of the pulse) permits bulk electrical response of the suspension between the electrodes to be determined before electrical response signals are dominated by double layer formation at surfaces of the electrodes. Pulse application and detection of electrical response to a change in state of a pulse may be repeated over time, with changes in such response being useful to detect microorganism proliferation in a bulk suspension.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: December 13, 2022
    Assignee: Acenxion Biosystems, Inc.
    Inventor: Stephen D O'Connor
  • Patent number: 11484234
    Abstract: Method and apparatus for optimizing analyte sensor calibration including receiving a current blood glucose measurement, retrieving a time information for an upcoming scheduled calibration event for calibrating an analyte sensor, determining temporal proximity between the current blood glucose measurement and the retrieved time information for the upcoming calibration event, initiating a calibration routine to calibrate the analyte sensor when the determined temporal proximity is within a predetermined time period, and overriding the upcoming scheduled calibration event using the current blood glucose measurement are provided.
    Type: Grant
    Filed: June 7, 2022
    Date of Patent: November 1, 2022
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: Erwin Satrya Budiman, Wesley Scott Harper, Timothy Christian Dunn
  • Patent number: 11480539
    Abstract: The purpose of the present invention is to provide a method for accurately measuring and controlling intracellular potential by a simple method that is less invasive to the cell and does not require a skilled technique. The present invention makes it possible to provide an intracellular recording electrode inside the cytoplasm by introducing conductive nanoparticles into a cell cultured on a conductive plate electrode, attracting the conductive nanoparticles inside the cell to the side of the cell adhered to the conductive plate electrode, and causing the conductive nanoparticles to pass through the cell membrane. Measuring the current or voltage between the intracellular recording electrode and an extracellular electrode in extracellular solution makes it possible to measure the intracellular potential.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: October 25, 2022
    Assignee: Ion Chat Research Corporate
    Inventor: Mitsuyoshi Saito
  • Patent number: 11480536
    Abstract: A method for determining a value indicative of the permittivity of a cell population in the context of impedance spectroscopy comprises the following steps: generating an excitation current through the cell population, which oscillates with an excitation frequency; measuring a voltage in the cell population between a first measuring electrode (12) and a second measuring electrode (14); sampling the excitation current, wherein first sampled values for the excitation current are generated; sampling the voltage between the first measuring electrode (12) and the second measuring electrode (14), wherein second sampled values for the voltage between the first measuring electrode and the second measuring electrode are generated; and determining the value indicative of the permittivity of the cell population on the basis of the first sampled values and the second sampled values.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: October 25, 2022
    Assignee: HAMILTON BONADUZ AG
    Inventor: Manuel Imhof
  • Patent number: 11467081
    Abstract: A device and method for detecting particles by using electrical impedance measurement, in particular, relating to an improved electrical impedance measurement microfluidic chip and an improved particle detection method. The device comprises a sample injection part, a main channel (4) and an electrical impedance detection part. By means of said device and method, the present invention can accurately distinguish, detect and count different particles.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: October 11, 2022
    Assignee: NANJING YITIAN BIOTECHNOLOGY CO., LTD.
    Inventors: Chen-Yi Lee, Chao-Hong Chen, Chun-Kai Chiang, Yi Lu
  • Patent number: 11464434
    Abstract: Method and apparatus for optimizing analyte sensor calibration including receiving a current blood glucose measurement, retrieving a time information for an upcoming scheduled calibration event for calibrating an analyte sensor, determining temporal proximity between the current blood glucose measurement and the retrieved time information for the upcoming calibration event, initiating a calibration routine to calibrate the analyte sensor when the determined temporal proximity is within a predetermined time period, and overriding the upcoming scheduled calibration event using the current blood glucose measurement are provided.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: October 11, 2022
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: Erwin Satrya Budiman, Wesley Scott Harper, Timothy Christian Dunn
  • Patent number: 11421275
    Abstract: The invention relates generally to the THAP1 gene and mutations in this gene, as well as the THAP1 protein and mutations in this protein, that are associated with dystonia. The invention relates to the identification, isolation, cloning and characterization of the DNA sequence corresponding to the wild type and mutant THAP1 genes, as well as isolation and characterization of their transcripts and gene products. The invention further relates to methods and kits useful for detecting mutations in THAP1 that are associated with dystonia, as well as to methods and kits useful for diagnosing dystonia. The present invention also relates to therapies for treating dystonia, including gene therapeutics and protein/antibody based therapeutics.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: August 23, 2022
    Assignee: Icahn School of Medicine at Mount Sinai
    Inventors: Laurie Ozelius, Susan Bressman
  • Patent number: 11422106
    Abstract: Biosensors utilizing 4-acetoxyphenol are described. The biosensors typically include 4-acetoxyphenol in a substrate and utilize one or more enzymes to detect the presence of pollutant agents. Also described are related methods using the biosensors to detect the presence of pollutant agents in water such as As(III).
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: August 23, 2022
    Assignee: United States Government, as represented by the Administrator of the U.S. EPA
    Inventors: Tao Li, Endalkachew Sahle-Demessie
  • Patent number: 11402375
    Abstract: The present invention provides apparatus and methods for the rapid determination of analytes in liquid samples by immunoassays incorporating magnetic capture of beads on a sensor capable of being used in the point-of-care diagnostic field.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: August 2, 2022
    Assignee: Abbott Point of Care Inc.
    Inventors: John Lewis Emerson Campbell, Cary James Miller
  • Patent number: 11397152
    Abstract: Methods of measuring attributes of animal urine, using a test pad comprising multiple test patches and urine detection patches in a BAYER pattern is described. The pad comprises different test patches, each surrounded by urine detection patches. When a camera, electronics and software automatically detect fresh urine from a color change of a detection patch, nearby test patches are read with a color camera, after a specific time delay, and compared to color reference spots. Multiple layers and isolation zones in the test pad allow urine to enter the test and detection patches, while keeping urine puddles from spreading. Once used, detection and test patches are not used again. An array of many detection and test patches allows the test pad to be used for multiple urine samples in one vivarium cage before replacing. Embodiments use a mix of IR and white light, and IR cameras and color cameras.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: July 26, 2022
    Assignee: Recursion Pharmaceuticals, Inc.
    Inventors: Jonathan Betts-Lacroix, Laura R. Schaevitz, Kyle Howard Heath
  • Patent number: 11391747
    Abstract: The present invention relates to analytical testing devices comprising fluidic junctions and methods for assaying coagulation in a fluid sample received within the fluidic junctions. For example, the present invention may be directed to a sample analysis cartridge including an inlet chamber, a first conduit comprising a first junction configured to split a biological sample into at least first and second segments, a second conduit comprising a first reagent, a first sensor region, and a first fluidic lock valve, and a third conduit comprising a second reagent, a second sensor region, and a second fluidic lock valve. The sample analysis cartridge further includes a pump configured to push the first segment over the first sensor region to the first fluidic lock valve, and push the second segment over the second sensor region to the second fluidic lock valve.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: July 19, 2022
    Assignee: Abbott Point of Care Inc.
    Inventors: Katrina Petronilla Di Tullio, Jay Kendall Taylor, Niko Daniel Lee-Yow, Sheila Diane Ball, John Lewis Emerson Campbell
  • Patent number: 11385227
    Abstract: The present invention provides a membrane carrier 3 comprising a flow path 2 and a detection zone 3y, wherein a microstructure is provided at the bottom of the flow path 2 and a mean surface roughness of the microstructure is 0.005 to 10.0 ?m.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: July 12, 2022
    Assignee: Denka Company Limited
    Inventors: Shuhei Aoyama, Kenji Monden
  • Patent number: 11364502
    Abstract: A microfluidic device includes a first substrate including at least one microfluidic channel and a plurality of microwells, as well as a cooperating second substrate defining multiple split-walled cell trap structures that are registered with and disposed within the plurality of microwells. A method for performing an assay includes flowing cells and a first aqueous medium into a plurality of microwells of a microfluidic device, wherein each microwell includes a cell trap structure configured to trap at least one cell. The method further comprises flowing a nonpolar fluid with low permeability for analytes of interest through a microfluidic channel to flush a portion of the first aqueous medium from the microfluidic channel while retaining another portion of the first aqueous medium and at least one cell within each microwell. Surface tension at a non-polar/polar medium interface prevents molecule exchange between interior and exterior portions of microwells.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: June 21, 2022
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventors: Deirdre Meldrum, Laimonas Kelbauskas, Wacey Teller, Meryl Rodrigues, Hong Wang, Ganquan Song, Yanqing Tian, Fengyu Su, Xiangxing Kong, Liqiang Zhang