Antigens Patents (Class 435/69.3)
  • Publication number: 20150110826
    Abstract: The present invention relates to recombinant microalgal cells and their use in heterologous protein production, methods of production of heterologous polypeptides in microalgal extracellular bodies, microalgal extracellular bodies comprising heterologous polypeptides, and compositions comprising the same.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 23, 2015
    Applicant: SANOFI VACCINE TECHNOLOGIES, S.A.S.
    Inventors: Anne-Cecile V. BAYNE, James Casey LIPPMEIER, Kirk Emil APT, Ross Eric ZIRKLE
  • Publication number: 20150110836
    Abstract: The present disclosure provides compositions and methods for the generation of an antibody or immunogenic composition, such as a vaccine, through epitope focusing by variable effective antigen surface concentration. Generally, the composition and methods of the disclosure comprise three steps: a “design process” comprising one or more in silico bioinformatics steps to select and generate a library of potential antigens for use in the immunogenic composition; a “formulation process”, comprising in vitro testing of potential antigens, using various biochemical assays, and further combining two or more antigens to generate one or more immunogenic compositions; and an “administering” step, whereby the immunogenic composition is administered to a host animal, immune cell, subject or patient. Further steps may also be included, such as the isolation and production of antibodies raised by host immune response to the immunogenic composition.
    Type: Application
    Filed: May 21, 2013
    Publication date: April 23, 2015
    Inventor: Jacob E. Glanville
  • Publication number: 20150104475
    Abstract: Provided herein are methods and compositions relating to Infectious Bursal Disease Virus (IBDV), and vaccines for treatment and prevention thereof.
    Type: Application
    Filed: July 5, 2013
    Publication date: April 16, 2015
    Applicant: The Ohio State University
    Inventor: Daral John Jackwood
  • Publication number: 20150104477
    Abstract: A method of inducing a specific immune response in a mammal, comprising: providing a first composition comprising isolated ubiquitinylated proteins in solution in the absence of membrane bound organelles, the isolated ubiquitinylated proteins comprising one or more specific antigens, and further comprising a threshold quantity of polyubiquitinylated short-lived proteins and polyubiquitinylated defective ribosomal products. The isolated ubiquitinylated proteins are affinity-purified from tumor-derived cells grown in culture, the tumor-derived cells being inhibited from degrading ubiquitinylated proteins via the proteasome while being grown in culture. In this way, highly immunogenic short-lived proteins and defective ribosomal products may be loaded onto dendritic cells for cross-presentation and priming of antigen-specific T cells restricted by either classical or non-classical MHC.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 16, 2015
    Inventors: Christopher Twitty, Erik LeShane, Bernard Fox, Hong-Ming Hu, Guangjie Yu
  • Publication number: 20150104480
    Abstract: A method of producing a virus like particle (VLP) in a plant is provided. The method comprises introducing a first nucleic acid and a second nucleic acid into the plant, or portion of the plant. The first nucleic acid comprises a first regulatory region active in the plant and operatively linked to a nucleotide sequence encoding a structural virus protein. The second nucleic acid comprises a second regulatory region active in the plant and operatively linked to a nucleotide sequence encoding a channel protein, for example but not limited to a proton channel protein. The plant or portion of the plant is incubated under conditions that permit the expression of the nucleic acids, thereby producing the VLP.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 16, 2015
    Inventors: Marc-Andre D'Aoust, Manon Couture, Louis-Philippe Vezina
  • Publication number: 20150104830
    Abstract: The invention provides a process for generating an avian cell line of duck origin by a process comprising: —cultivating embryonic avian cells in cell culture medium, preferably comprising fetal calf serum (FBS) for more than 40 passages while reducing the concentration of FBS to 1-2% vol/vol FBS, —transferring passaged cells into cell culture medium having 0% FBS, —resulting in the generation of a non-embryonic avian cell line suitable for non-adherent growth, i.e. for growth in suspended culture.
    Type: Application
    Filed: May 2, 2013
    Publication date: April 16, 2015
    Inventors: Manfred Wirth, Lijing Sun, Zhiguo Su, Roland Riebe, Jaeger Volker, Nadine Konisch
  • Patent number: 8999347
    Abstract: The present invention relates to a novel lipoprotein particle, methods for preparing and purifying the same, its use in medicine, particularly in the prevention of malarial infections, compositions/vaccines containing the particle or antibodies against the protein particle such as monoclonal or polyclonal antibodies and use of the same, particularly in therapy. Furthermore, particles with the specific ratio can be prepared by employing yeast, Saccharomyces cerevisiae or Pichia pastoris. In particular it relates to an immunogenic protein particle comprising the following monomers: a. a fusion protein comprising sequences derived from a CS protein of P. vivax and the S antigen of Hepatitis B (CSV-S), and b. S antigen derived from Hepatitis B virus, and characterized in that the ratio of S to CSV-S is in the range 0.1 to 1. Suitably, the ratio of S to CSV-S is in the range 0.19 to 0.30 or 0.68 to 0.80.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: April 7, 2015
    Assignee: GlaxoSmithKline Biologicals, SA
    Inventors: Joseph D Cohen, Martine Marchand
  • Publication number: 20150093415
    Abstract: The present invention provides a preparation method of an antigen composition. The preparation method comprises the following steps: (1) obtaining a tumor antigen protein; (2) making the tumor antigen protein into contact with an immature dendritic cell; (3) inducing the immature dendritic cell in contact with the tumor antigen into a mature dendritic cell; and (4) separating a cell vesicle of the mature dendritic cell. The present invention further provides an antigen composition obtained through the preparation method and the application thereof in preparing a tumor vaccine.
    Type: Application
    Filed: February 4, 2013
    Publication date: April 2, 2015
    Applicant: National Center for Nanoscience and Technology
    Inventors: Guangjun Nie, Xin Tian, Motao Zhu
  • Publication number: 20150093404
    Abstract: Vaccination methods to control PCV2 infection with different PCV2 subtypes are disclosed. Specifically, a PCV2 subtype b (PCV2b) ORF2 proteins or immunogenic compositions comprising a PCV2b ORF2 protein are used in a method for the treatment or prevention of an infection with PCV2 of the same PCV2b and/or different subtype; the reduction, prevention or treatment of clinical signs caused by an infection with PCV2 of the same PCV2b or a different subtype; and/or the prevention or treatment of a disease caused by an infection with PCV2 of the same PCV2b and/or a different subtype. The present invention in particular relates to PCV2 subtype b (PCV2b) ORF2 proteins characterized in that they contain at least one mutation in the BC loop that such that the expressed protein is preferably expressed in a higher amount compared to a PCV2 ORF2 protein that does not contain such mutation.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 2, 2015
    Applicant: BOEHRINGER INGELHEIM VETMEDICA, INC.
    Inventors: Luis Alejandro HERNANDEZ, Christine Margaret MUEHLENTHALER, Eric Martin VAUGHN, Gregory HAIWICK
  • Publication number: 20150093408
    Abstract: The present invention relates to a Lyme disease vaccine, a genetic construct, recombinant protein, method for genetic construct design, method for vaccine delivery, method for recombinant proteins delivery, use of recombinant proteins in the production of Lyme disease vaccine. In particular, the method concerns the use of TROSPA and TROSPA-Salp15 recombinant proteins derived from castor bean tick (Ixodes riccinus) as a component of Lyme disease vaccine for animals. The antibodies present in blood of an immunized vertebrate directed against the TROSPA proteins considerably reduce the chance of infecting new ticks by blocking or hindering the interaction of TROSPA protein with OspA protein of Borrelia burgdorferi sensu lato. The interaction is crucial in the process of the spirochete entering a tick.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 2, 2015
    Inventors: Anna Urbanowicz, Marek Figlerowicz, Dominik Lewandowski
  • Publication number: 20150094226
    Abstract: The present invention provides detailed three-dimensional structural information for the complex formed by the Nef protein and the sdAb19 antibody fragment. In addition, the present invention also provides residues which mediate the interaction between the Nef protein and the sdAb19 antibody fragment. The present invention also provides methods for identifying compounds modulating the interaction of the Nef protein and the sdAb19 antibody.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 2, 2015
    Inventors: Serge BENICHOU, Matthias GEYER, Sebastian LULF
  • Patent number: 8992935
    Abstract: The present invention relates to a means of controlling infection persistence of Helicobacter pylori (H. pylori). In particular, the present invention relates to an isolated, genetically modified Helicobacter pylori comprising a functional urease, wherein the contiguous amino acid sequence between amino acid 529 and amino acid 555 of SEQ ID NO:1 is altered to produce said modified Helicobacter pylori which is unable to establish or maintain a persistent infection.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: March 31, 2015
    Assignee: Ondek Pty. Ltd.
    Inventors: Mohammed Benghezal, Tobias Schoep, Alma Fulurija, Douglas E. Berg, Barry J. Marshall
  • Publication number: 20150086589
    Abstract: The present invention relates to novel virus-like particles (VLPs) comprising a matrix protein derived from a first plant enveloped virus and a surface polypeptide. The surface polypeptide comprises (a) a surface exposed portion derived from a target polypeptide (b) a transmembrane domain, and (c) a cytosolic tail derived from a transmembrane (e.g., glycoprotein) of a second plant enveloped virus. The target polypeptide may be antigenic or therapeutic. The first and the second plant enveloped viruses may be the same. Either plant enveloped virus may be a plant rhabdovirus. Also provided are methods of making and using the VLPs.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 26, 2015
    Applicant: FRAUNHOFER USA Inc.
    Inventors: Alexei Prokhnevsky, Vidadi Yusibov
  • Publication number: 20150086561
    Abstract: Binding agents able to disrupt bacterial biofilms of diverse origin are described, including monoclonal antibodies secreted by human B lymphocytes. Methods to prevent formation of or to dissolve biofilms with these binding agents are also described. Immunogens for eliciting antibodies to disrupt biofilms are also described.
    Type: Application
    Filed: September 25, 2014
    Publication date: March 26, 2015
    Inventors: Lawrence M. KAUVAR, Stefan RYSER, Angeles ESTELLES, Robert STEPHENSON, Reyna J. SIMON, Omar NOURZAIE
  • Publication number: 20150086588
    Abstract: The present invention provides safe, stable, efficacious, and cost-effective vaccines based on viral expression vectors that include a parainfluenza virus 5 (PIV5) genome including a heterologous nucleotide sequence expressing a heterologous polypeptide. In some embodiments, the heterologous nucleotide sequence is inserted closer to the leader than between the hemagglutinin-neuroaminidase (HN) gene and the large RNA polymerase protein (L) gene of the PIV5 genome. In some embodiments, the heterologous nucleotide sequence is inserted between the small hydrophobic protein (SH) gene and the hemagglutinin-neuroaminidase (HN) gene of the PIV 5 genome.
    Type: Application
    Filed: January 24, 2013
    Publication date: March 26, 2015
    Inventor: Biao He
  • Publication number: 20150086582
    Abstract: The invention provides proteins from Neisseria meningitidis, including the amino acid sequences and the corresponding nucleotide sequences. The proteins are predicted to be useful antigens for vaccines and/or diagnostics.
    Type: Application
    Filed: August 1, 2014
    Publication date: March 26, 2015
    Inventors: Claire FRASER, Cesira GALEOTTI, Guido GRANDI, Erin HICKEY, Vega MASIGNANI, Marirosa MORA, Jeremy PETERSEN, Mariagrazia PIZZA, Rino RAPPUOLI, Giulio RATTI, Vincenzo SCARLATO, Maria SCARSELLI, Herve TETTELIN, J. Craig VENTER
  • Patent number: 8986704
    Abstract: The present invention relates to a polypeptide comprising a mutant fragment of an outer surface protein A (OspA), a nucleic acid coding the same, a pharmaceutical composition (particularly for use as a medicament of in a method of treating or preventing a Borrelia infection) comprising the polypeptide and/or the nucleic acid, a method of treating or preventing a Borrelia infection and a method of immunizing a subject.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 24, 2015
    Assignee: Valneva Austria GmbH
    Inventors: Pär Comstedt, Markus Hanner, Urban Lundberg, Andreas Meinke, Wolfgang Schueler, Benjamin Wizel
  • Patent number: 8986702
    Abstract: Provided herein are various processes for the improved production of antibody producing organisms, antibody producing tissues, antibody producing cells and antibodies. In certain embodiments, provided herein are methods for rapidly producing antibody producing organisms, tissues, cells and antibodies derived from humans, organisms, plants or cells that are genetically altered to over-express certain proteins.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: March 24, 2015
    Assignee: Taiga Biotechnologies, Inc.
    Inventors: Yosef Refaeli, Brian Curtis Turner
  • Publication number: 20150079124
    Abstract: The invention provides proteins from Neisseria meningitidis, including the amino acid sequences and the corresponding nucleotide sequences. The proteins are predicted to be useful antigens for vaccines and/or diagnostics.
    Type: Application
    Filed: August 1, 2014
    Publication date: March 19, 2015
    Inventors: Claire FRASER, Cesira GALEOTTI, Guido GRANDI, Erin HICKEY, Vega MASIGNANI, Marirosa MORA, Jeremy PETERSEN, Mariagrazia PIZZA, Rino RAPPUOLI, Giulio RATTI, Vincenzo SCARLATO, Maria SCARSELLI, Herve TETTELIN, J. Craig VENTER
  • Publication number: 20150079120
    Abstract: The present invention relates to the preparation and use of recombinant variants of group 6 allergens of the Poaceae (true grasses), which are characterised by reduced IgE reactivity compared with known wild-type allergens and at the same time substantially retained reactivity with T-lymphocytes.
    Type: Application
    Filed: November 21, 2014
    Publication date: March 19, 2015
    Applicant: Merck Patent GmbH
    Inventors: Helmut FIEBIG, Andreas NANDY, Roland SUCK, Oliver CROMWELL, Arnd PETERSEN, Wolf-Meinhard BECKER
  • Publication number: 20150071953
    Abstract: The present invention relates to the preparation and use of recombinant variants of group 6 allergens of the Poaceae (true grasses), which are characterised by reduced IgE reactivity compared with known wild-type allergens and at the same time substantially retained reactivity with T-lymphocytes.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 12, 2015
    Applicant: MERCK PATENT GMBH
    Inventors: Martin WALD, Andreas NANDY, Helmut FIEBIG, Bernhard WEBER, Helga KAHLERT, Gerald REESE, Oliver CROMWELL
  • Patent number: 8975384
    Abstract: The present invention provides a tag peptide comprising an amino acid sequence represented by the following formula (I): X1-Tyr-X2-Gly-Gln-X3??(I) (wherein X1, X2 and X3 are the same or different and each represent any amino acid residue) and an antibody against the tag peptide. By combined use of the tag peptide and antibody of the present invention, a system that enables proteins expressed from cloned genes to be highly purified in an inexpensive and easy manner can be established.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: March 10, 2015
    Assignee: Osaka University
    Inventor: Junichi Takagi
  • Patent number: 8974797
    Abstract: The invention provides expression vectors and virus-like particles (VLPs) containing Newcastle Disease Virus Sequences in combination with sequences encoding proteins of interest. The vectors are useful in, for example, generating virus-like particles (VLPs) that contain proteins of interest. In one embodiment, the expressed VLPs elicit an immune response by an animal host against the protein. The invention's VLPs are useful as, for example, vaccines.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: March 10, 2015
    Assignee: University of Massachusetts
    Inventor: Trudy Morrison
  • Publication number: 20150056229
    Abstract: The present invention relates to the provision of a DNA sequence of the major grass pollen allergen Lol p 4. The invention also encompasses fragments, new combinations of partial sequences and point mutants having a hypoallergenic action. The recombinant DNA molecules and the derived polypeptides, fragments, new combinations of partial sequences and variants can be utilised for the therapy of pollen-allergic diseases. The proteins prepared by recombinant methods can be employed for in vitro and in vivo diagnosis of pollen allergies.
    Type: Application
    Filed: November 7, 2014
    Publication date: February 26, 2015
    Applicant: MERCK PATENT GMBH
    Inventors: Andreas NANDY, Helmut FIEBIG, Oliver CROMWELL
  • Publication number: 20150056244
    Abstract: The instant invention provides materials and methods for producing immunologically active antigens derived from members of the Picornaviridae virus family. The picornavirus antigens of the invention may be in a form for use as a vaccine administered to a subject in a therapeutic treatment or for the prevention of a picornavirus infection. The picornavirus antigens of the invention may be in the form of an immunogenic composition for use in vaccines which are administered for the prevention of an Enterovirus infection. The instant invention further encompasses immunogenic compositions comprising Human enterovirus A, Human enterovirus B, Human enterovirus C, Human enterovirus D antigens and their use in vaccines for the prevention of an Enterovirus infection.
    Type: Application
    Filed: August 20, 2014
    Publication date: February 26, 2015
    Applicant: SENTINEXT THERAPEUTICS SDN BHD
    Inventors: Mary Jane Cardosa, Mohamad Fakruddin Jamiluddin, Sharifah Binti Hamid
  • Publication number: 20150056240
    Abstract: The present invention concerns methods and compositions for treating or preventing a bacterial infection, particularly infection by a Staphylococcus bacterium. The invention provides methods and compositions for stimulating an immune response against the bacteria. In certain embodiments, the methods and compositions involve a non-toxigenic Protein A (SpA) variant.
    Type: Application
    Filed: August 22, 2014
    Publication date: February 26, 2015
    Inventors: Olaf SCHNEEWIND, Alice G. Cheng, Dominique M. Missiakas, Hwan Keun Kim
  • Publication number: 20150056653
    Abstract: Provided herein are methods of producing a heterologous polypeptide and compositions comprising same.
    Type: Application
    Filed: July 27, 2012
    Publication date: February 26, 2015
    Applicant: GEORGIA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: George E. Pierce, Susan A. Burran, Trudy Ann Tucker, Shelby Jones-Dozier, Jennifer Hooker, Sidney A. Crow, JR.
  • Publication number: 20150056197
    Abstract: The present invention relates to therapeutic compounds, such as vaccines against human papillomavirus (HPV) and in particular to DNA vaccines against HPV16 or HPV18. The invention further relates to protein construct encoding homodimeric peptides, which peptides may be released from a DNA vaccine or used separately. Further described are pharmaceutical formulations, host cells and methods for producing the vaccines, as well as methods for the treatment of various HPV induced diseases, such as cancers and infectious diseases by application.
    Type: Application
    Filed: December 20, 2012
    Publication date: February 26, 2015
    Inventors: Ole Henrik Brekke, Agnete Brunsvik Fredriksen, Ali Areffard, Mona Mari Lindeberg
  • Publication number: 20150050311
    Abstract: The present invention relates to a method for the preparation of a strain-adapted vaccine specific for a bacterial strain, comprising the steps of: (a) genetically engineering a bacterial strain obtained from a subject, wherein said genetic engineering comprises introducing a nucleic acid molecule encoding a fusion protein, wherein the fusion protein comprises a bacterial membrane protein fused to at least one affinity tag, (b) growing the genetically engineered bacterial strain obtained in step (a) in solution, (c) isolating membrane vesicles from the growth culture of step (b) by affinity purification using the affinity tag, and (d) formulating the membrane vesicles isolated in step (c) into a strain-adapted vaccine. The present invention further relates to a nucleic acid molecule encoding a fusion protein comprising a bacterial membrane protein fused to at least one affinity tag and a kit comprising said fusion protein.
    Type: Application
    Filed: April 5, 2013
    Publication date: February 19, 2015
    Applicant: Ludwig-Maximilians-Universitat München
    Inventors: Sören Schubert, Andreas Wieser
  • Publication number: 20150044254
    Abstract: The present invention is directed to a bioconjugate vaccine, such as an O1-bioconjugate vaccine, comprising: a protein carrier comprising a protein carrier containing at least one consensus sequence, D/E-X-N-Z-S/T, wherein X and Z may be any natural amino acid except proline; at least one antigenic polysaccharide from at least one pathogenic bacterium, linked to the protein carrier; and, optionally, an adjuvant. In another aspect, the present invention is directed to a method of producing an O1-bioconjugate in a bioreactor comprising a number steps.
    Type: Application
    Filed: October 23, 2014
    Publication date: February 12, 2015
    Applicant: GLYCOVAXYN AG
    Inventors: Fabiana Fernandez, Michael Wetter, Michael Kowarik, Michael Wacker
  • Publication number: 20150045536
    Abstract: The present invention concerns an universal polypeptidic carrier for targeting directly or indirectly a molecule to Gb3 receptor expressing cells and having the following formula STxB-Z(n)-Cys, wherein: STxB is the Shiga Toxin B subunit or a functional equivalent thereof, Z is an amino-acid devoided of sulfydryl group, n being 0, 1 or a polypeptide, Cys is the amino-acid Cysteine, and the use thereof for MHC class I and MHC class II presentation of antigens.
    Type: Application
    Filed: September 5, 2014
    Publication date: February 12, 2015
    Inventors: Ludger JOHANNES, Eric TARTOUR, Bruno GOUD, Wolf Herve FRIDMAN
  • Publication number: 20150037826
    Abstract: The invention relates to standards for quantifying pathogenic aggregates or oligomers of endogenous proteins which characterize a protein aggregation disease, amyloid degeneration or protein misfolding diseases and use of these standards for quantifying these pathogenic aggregates or oligomers.
    Type: Application
    Filed: December 21, 2012
    Publication date: February 5, 2015
    Inventors: Dieter Willbold, Susanne Aileen Funke
  • Publication number: 20150037371
    Abstract: The invention provides a method of enhancing the immunogenicity of pathogenic antigens by removing or disrupting intrachain disulfide bonds responsible for maintaining tertiary protein structure. Removal of one or more disulfide bonds can increase the titer of neutralizing antibodies to a pathogen (e.g., a bacterium, fungus, virus, or parasite). The invention also features vaccines, expression vectors, and methods for the manufacture and use thereof.
    Type: Application
    Filed: October 14, 2014
    Publication date: February 5, 2015
    Inventor: Samuel J. LANDRY
  • Publication number: 20150040251
    Abstract: The present invention is based upon the identification of a number of antigens derived from species of the genus Teladorsagia, which can be used to raise immune responses in animals—particularly those animals susceptible or predisposed to infection by (or with) one or more Teladorsagia species. The antigens may be exploited to provide compositions and vaccines for raising protective immune responses in animals—the protective immune responses serving to reduce, prevent, treat or eliminate Teladorsagia infections/infestations.
    Type: Application
    Filed: February 4, 2013
    Publication date: February 5, 2015
    Inventors: Jacqueline Matthews, Alasdair Justice Nisbet, David Knox
  • Publication number: 20150037842
    Abstract: The disclosure relates to a Gram negative bacterial cell that is transformed with a nucleic acid molecule that encodes a Gram positive twin-arginine translocase and including methods for the production of polypeptides.
    Type: Application
    Filed: February 22, 2013
    Publication date: February 5, 2015
    Inventor: Colin Robinson
  • Publication number: 20150031566
    Abstract: The invention demonstrates an improved choice of biotinylation peptide to be used in a combination or fusion with an MHC molecule for immobilizing or multimerising such MHC molecules for a variety of purposes.
    Type: Application
    Filed: July 24, 2014
    Publication date: January 29, 2015
    Inventors: Catherine Elizabeth NAPPER, Nikolai Franz Gregor SCHWABE
  • Patent number: 8940502
    Abstract: The present invention relates to methods for producing a polypeptide, comprising: (a) cultivating a fungal host cell in a medium conducive for the production of the polypeptide, wherein the fungal host cell comprises a first polynucleotide comprising a nucleic acid sequence encoding the polypeptide operably linked to a copper-inducible promoter sequence comprising a copper-responsive upstream activation sequence activated by a copper-dependent trans-acting transcription factor and a second polynucleotide comprising one or more (several) additional copper-responsive upstream activation sequences operably linked upstream to the promoter sequence, wherein the promoter sequence is foreign to the nucleic acid sequence encoding the polypeptide and the copper-responsive upstream activation sequences are responsible for copper-induced transcription of the promoter sequence, and a third polynucleotide comprising at least one copy of a gene encoding the copper-dependent trans-acting transcription factor; and (b) isolat
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: January 27, 2015
    Assignees: Novozymes, Inc., Novozymes A/S
    Inventors: Debbie Yaver, Mads Eskelund Bjornvad, Barbara Cherry
  • Publication number: 20150023995
    Abstract: The present invention provides polypeptides having a composite amino acid sequence derived from a consensus sequence representing the capsid proteins of two or more circulating strains of a non-enveloped virus. In particular, the invention provides virus-like particles comprising at least one composite polypeptide. Such virus-like particles have antigenic epitopes of two or more circulating strains of a non-enveloped virus and produce an increase in antisera cross-reactivity to one or more circulating strains of the non-enveloped virus. Methods of making composite virus-like particles and vaccine formulations comprising composite virus-like particles are also disclosed.
    Type: Application
    Filed: July 25, 2014
    Publication date: January 22, 2015
    Applicant: TAKEDA VACCINES, INC.
    Inventors: Charles RICHARDSON, Robert F. BARGATZE, Joel HAYNES, Bryan STEADMAN
  • Publication number: 20150018533
    Abstract: The present invention relates to a polypeptide (repebody) selectively bound to an immunoglobulin G, a polynucleotide which encodes the repebody, a vector containing the polynucleotide, a recombinant microorganism in which the polynucleotide is introduced, a method for producing the repebody using the recombinant microorganism, and a method for immobilizing or purifying an immunoglobulin G using the repebody. The repebody according to the present invention is useful as utilized for immobilization of an immunoglobulin G, purification of an immunoglobulin G, and production of an immunosensor, since the repebody selectively bound to an immunoglobulin G.
    Type: Application
    Filed: July 2, 2014
    Publication date: January 15, 2015
    Inventors: Hak-Sung Kim, Woosung Heu, Joong-Jae Lee, Seong-Min Jo
  • Publication number: 20150017198
    Abstract: Techniques from two basic approaches, structure-based immunogen design and phage T4 nanoparticle delivery, are developed to construct new plague vaccines. The NH2-terminal ?-strand of F1 of Yersinia pestis is transplanted to the COOH-terminus of F1 of Yersinia pestis and the NH2-terminus sequence flanking the ?-strand of F1 of Yersinia pestis is duplicated to eliminate polymerization but to retain the T cell epitopes. The mutated F1 is fused to the V antigen of Yersinia pestis to thereby form a fusion protein F1mut-V mutant, which produces a completely soluble monomer. The fusion protein F1mut-V is then arrayed on phage T4 nanoparticles via a small outer capsid protein, Soc, from a T4 phage or a T4-related phage. Both the soluble and T4 decorated F1mut-V provided approximately 100% protection to mice and rats against pneumonic plague evoked by high doses of Yersinia pestis CO92.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 15, 2015
    Inventors: Venigalla B. RAO, Pan Tao
  • Publication number: 20150018251
    Abstract: The present invention relates to the field of medicine, in particular of research and diagnosis. It relates more particularly to a novel tool for detecting antibodies in a biological sample originating from a mammal. This tool, which is in the form of a protein chip, can be used in screening for new targets of interest involved in the occurrence of an autoimmune disease, in particular of a disease affecting the nervous system of a mammal, and also in the diagnosis or the monitoring of the progression of such an autoimmune disease. The invention also relates to a method for producing such a tool and also to kits comprising it and enabling its use.
    Type: Application
    Filed: February 1, 2013
    Publication date: January 15, 2015
    Inventors: Florian Lesage, Franck Chatelain, Michel Mazzuca, Veronique Rogemond, Marie-Madeleine Larroque, Jerome Honnorat
  • Publication number: 20150017684
    Abstract: The present invention relates to antigens more particularly antigens of Streptococcus pyogenes (also called group A Streptococcus (GAS)) bacterial pathogen which are useful as vaccine component for therapy and/or prophylaxis.
    Type: Application
    Filed: July 31, 2014
    Publication date: January 15, 2015
    Inventors: Denis Martin, Bernard R. Brodeur, Josee Hamel, Stephane Rioux, Patrick Rheault
  • Publication number: 20150017193
    Abstract: The present invention provides oligopeptides comprising the amino acid sequence selected from the group consisting of SEQ ID NOs: 3, 4 and 5. The present invention also provides a pharmaceutical composition containing the amino acid sequence of selected from the group consisting of SEQ ID NOs: 3, 4 and 5 formulated for the treatment or prevention of cancer in a subject. Furthermore, the present invention provides a method of inducing immune response using such oligopeptides and pharmaceutical agents.
    Type: Application
    Filed: September 29, 2014
    Publication date: January 15, 2015
    Inventors: Yasuharu NISHIMURA, Katsunori IMAI, Yusuke NAKAMURA, Takuya TSUNODA
  • Patent number: 8932830
    Abstract: The invention relates to a chimeric monomer-dimer hybrid protein wherein the protein comprises a first and a second polypeptide chain, the first polypeptide chain comprising at least a portion of an immunoglobulin constant region and a biologically active molecule, and the second polypeptide chain comprising at least a portion of an immunoglobulin constant region without the biologically active molecule of the first chain. The invention also relates to methods of using and methods of making the chimeric monomer-dimer hybrid protein of the invention.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: January 13, 2015
    Assignee: Biogen Idec Hemophilia, Inc.
    Inventors: Robert T. Peters, Adam R. Mezo, Daniel S. Rivera, Alan J. Bitonti, James McGivney, Susan C. Low
  • Publication number: 20150010587
    Abstract: This invention provides an anti-cancer immunogenic agent(s) (e.g. vaccines) that elicit an immune response specifically directed against renal cell cancers expressing a G250 antigenic marker. Preferred immunogenic agents comprise a chimeric molecule comprising a kidney cancer specific antigen (G250) attached to a granulocyte-macrophage colony stimulating factor (GM-CSF). The agents are useful in a wide variety of treatment modalities including, but not limited to protein vaccination, DNA vaccination, and adoptive immunotherapy.
    Type: Application
    Filed: May 2, 2014
    Publication date: January 8, 2015
    Applicant: The Regents of the University of California
    Inventors: Arie Belldegrun, Cho-Lea Tso
  • Patent number: 8927225
    Abstract: Disclosed is an assay (method) to quantify the amounts of catecholamine-O-methyltransferase (COMT) protein in samples, such as extracts from cell cultures, body fluids, tissues, and environmental samples. It uses novel agents (anti-NE, COMT-NE, or COMT-epitope-NE) in combination with two previously described agents (anti-COMT and COMT) in a competitive ELISA system to achieve this aim.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: January 6, 2015
    Assignee: The University of Hong Kong
    Inventors: Shu Leong Ho, Wing Lok Ho, David Boyer Ramsden
  • Publication number: 20150004185
    Abstract: Prion peptides comprising prion epitopes and fusions thereof, that display enhanced immunogenicity are described. Also described are methods of treating and diagnosing prion disease.
    Type: Application
    Filed: April 29, 2014
    Publication date: January 1, 2015
    Applicant: University of Saskatchewan
    Inventors: Kristen Marciniuk, Ryan Taschuk, Scott Napper, Andrew Potter, Neil Cashman
  • Patent number: 8916372
    Abstract: The present invention relates to a new bacterial strain of Samonella enterica serovar Typhimurium VNP20009 deposited in the Polish Collection of Microorganisms under access no. B/00024 and its us in the production of a vaccine, especially an anti-cancer vaccine. The present invention also relates to a method of obtaining a therapeutic vaccine vector, characterized in that a genetic modification is introduced into the vector strain specific to cancer cells, resulting in the delayed over expression of a gene encoding a protein responsible for the invasive ability of this strain.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: December 23, 2014
    Assignee: Jagiellonian University
    Inventors: Paulina Chorobik, Joanna Bereta
  • Patent number: 8911746
    Abstract: Compositions and methods for preventing, treating and detecting leishmaniasis are disclosed. The compositions generally comprise fusion polypeptides comprising multiple Leishmania antigens, in particular, KMP11, SMT, A2 and/or CBP, or immunogenic portions or variants thereof, as well as polynucleotides encoding such fusion polypeptides.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: December 16, 2014
    Assignee: Infectious Disease Research Institute
    Inventors: Yasuyuki Goto, Steven G. Reed
  • Publication number: 20140363462
    Abstract: Alternative and improved approaches to the heterologous expression of the proteins of Neisseria meningitidis and Neisseria gonorrhoeae are disclosed. These approaches typically affect the level of expression, the ease of purification, the cellular localization, and/or the immunological properties of the expressed protein.
    Type: Application
    Filed: July 31, 2014
    Publication date: December 11, 2014
    Inventors: Maria ARICÒ, Maurizio COMANDUCCI, Cesira GALEOTTI, Vega MASIGNANI, Marzia Monica GIULIANI, Mariagrazia PIZZA