Carrier Is Inorganic Patents (Class 436/524)
  • Patent number: 11899011
    Abstract: An assay substrate including a first component comprising a sensor molecule labeled with a quantum dot, the quantum dot immobilized to an assay substrate surface with a first linker being a bi-polar linker comprising a first binding group for specific binding of the quantum dot and a second binding group for specific binding of the assay substrate surface, the sensor molecule having a specific binding site for an organic analyte, the sensor molecule labeled with the quantum dot in a position that has no effect on the organic analyte binding the specific binding site; and a second component comprising a chemical analogue of the organic analyte, the chemical analogue labeled with a fluorescent dye, the chemical analogue linked to the quantum dot with a second linker having a length exceeding Foster radius, and the chemical analogue reversibly binding the specific binding site of the sensor molecule of the first component.
    Type: Grant
    Filed: April 27, 2023
    Date of Patent: February 13, 2024
    Assignee: QanikDX OU
    Inventors: Sergei Babitshenko, Jaak Järv, Aleksei Kuznetsov, Anton Mastitski
  • Patent number: 11786148
    Abstract: A fully autonomous system is used to diagnose an ear infection in a patient. For example, a processor receives patient data about a patient, the patient data comprising at least one of: patient history from medical records for the patient, one or more vitals measurements of the patient, and answers from the patient about the patient's condition. The processor receives a set of biomarker features extracted from measurement data taken from an ear of the patient. The processor synthesizes the patient data and the biomarker features into input data, and applies the synthesized input data to a trained diagnostic model, the diagnostic model comprising a machine learning model configured to output a probability-based diagnosis of an ear infection from the synthesized input data. The processor outputs the determined diagnosis from the diagnostic model. A service may then determine a therapy for the patient based on the determined diagnosis.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: October 17, 2023
    Assignee: Digital Diagnostics Inc.
    Inventors: Michael D. Abramoff, Ryan Amelon
  • Patent number: 11773373
    Abstract: Disclosed is a method for rapidly amplifying CD8+T cells and functional cell subpopulations thereof in vitro. A TLR1/2 agonist, a TLR2/6 agonist and a TLR5 agonist or a combination of above agonists is added to a conventional culture system for in-vitro amplification of CD8+T cells. Recombinant cytokines IL-2, IL-7 and IL-15 as well as magnetic beads coated with an anti-human CD3 antibody and an anti-human CD28 antibody can be further added to the culture system for continuous co-stimulation.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: October 3, 2023
    Assignee: Shanghai Innovative Chang'An Biological Technology Co., Ltd.
    Inventors: Jianqing Xu, Xiaoyan Zhang, Chenli Qiu
  • Patent number: 11668646
    Abstract: A sample slide (100) for use in a spectrometer (501), wherein the sample slide comprises a plurality of sample-receiving portions (111-114) provided on a sample side (115) of the slide, and a plurality of beam-receiving portions (121-124) provided on a beam-receiving side (125) of the slide, each beam-receiving portion being arranged opposite a respective sample-receiving portion, and wherein each beam-receiving portion is configured to act as an internal reflection element (IRE). A device (300) for use with a spectrometer (501) comprises a stage (330) configured to receive a sample slide (100); and a moving mechanism (360) configured to move the sample slide relative to a sample-measuring location (320) of the device. Associated methods for preparing a sample and measuring a sample are also disclosed.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: June 6, 2023
    Assignee: DXCOVER LIMITED
    Inventors: Matthew J. Baker, Mark Hegarty, Holly Jean Butler, David Palmer
  • Patent number: 11668708
    Abstract: A method for avoiding the influence of a blood sample on a measurement error in a latex agglutination immunoassay. The measurement error caused by a blood sample in a latex agglutination immunoassay can be reduced by a method which includes a step of bringing the sample into contact, in a liquid phase, with latex particles carrying a substance having a specific affinity for an analyte in the presence of imidazole.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: June 6, 2023
    Assignee: SEKISUI MEDICAL CO., LTD.
    Inventors: Kengo Fujimura, Junichi Kondou, Mitsuaki Yamamoto
  • Patent number: 11666411
    Abstract: Presented herein are systems, methods, and architectures related to augmented reality (AR) surgical visualization of one or more dual-modality probe species in tissue. As described herein, near infrared (NIR) images are detected and rendered in real time. The NIR images are registered and/or overlaid with one or more radiological images (e.g., which were obtained preoperatively/perioperatively) by a processor [e.g., that uses an artificial neural network (ANN) or convolutional neural network (CNN) reconstruction algorithm] to produce a real-time AR overlay (3D representation). The AR overlay is displayed to a surgeon in real time. Additionally, a dynamic motion tracker tracks the location of fiducial tracking sensors on/in/about the subject, and this information is also used by the processor in producing (e.g., positionally adjusting) the AR overlay.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: June 6, 2023
    Assignee: Memorial Sloan Kettering Cancer Center
    Inventors: Michelle S. Bradbury, Krishna Juluru
  • Patent number: 11559807
    Abstract: A method for detecting biomarkers with shortened test time and maximized precision. A sample from the body fluid is made to flow over a sensor surface coated with a capture antibody to allow binding of a biomarker in the sample to the capture body. An optical method detects and counts the individual binding events along the sensor surface with single molecule resolution, and difference in the binding events along the sensor surface is detected in real time and analyzed to determine the biomarker concentration.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: January 24, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Nongjian Tao, Wenwen Jing
  • Patent number: 11543356
    Abstract: An example apparatus includes a well plate having an array of wells, a light encoding layer positioned under the well plate, an imaging layer to capture an image of the well plate encoded by the light encoding layer, an array of electrodes positioned on a surface of a bottom floor of the at least one well, and a controller. The light encoding layer is to encode light passing through a microscopic object in at least one well of the array of wells. The light encoding layer has a substantially flat form. The controller is to direct electrical voltage to the electrodes to generate a non-rotating, non-uniform electrical field, the electrical field being to rotate an object in the electrical field.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: January 3, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Viktor Shkolnikov, Fausto D'Apuzzo, Yang Lei
  • Patent number: 11513115
    Abstract: The present application discloses methods and apparatus for detecting a complex including an analyte that include contacting a sample in a solution with a population of functionalized beads of a first type, which are magnetic functionalized beads and are functionalized to include a first moiety that associates with an analyte under suitable conditions, contacting the sample solution with a population of functionalized beads of a second type, which are functionalized to include a second moiety that associates with the analyte under suitable conditions, contact resulting in formation of a complex including one of the first type of functionalized bead, the analyte, and one of the second type of functionalized bead, and detecting the complex including the analyte by detecting magnetic fields produced by the magnetic functionalized bead and by detecting the functionalized bead of the second type associated with the analyte in the complex.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: November 29, 2022
    Assignee: Quantum Diamond Technologies Inc.
    Inventors: Colin B. Connolly, Jeffrey D. Randall, John C. Pena
  • Patent number: 11479844
    Abstract: Article comprising a polymeric substrate having a first major surface comprising a plurality of particles attached thereto with plasmonic material on the particles. Articles described herein are useful, for example, for indicating the presence, or even the quantity, of an analyte.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: October 25, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Myungchan Kang, Evan Koon Lun Yuuji Hajime, Douglas L. Elmore
  • Patent number: 11215553
    Abstract: A sample slide (100) for use in a spectrometer (501), wherein the sample slide comprises a plurality of sample-receiving portions (111-114) provided on a sample side (115) of the slide, and a plurality of beam-receiving portions (121-124) provided on a beam-receiving side (125) of the slide, each beam-receiving portion being arranged opposite a respective sample-receiving portion, and wherein each beam-receiving portion is configured to act as an internal reflection element (IRE). A device (300) for use with a spectrometer (501) comprises a stage (330) configured to receive a sample slide (100); and a moving mechanism (360) configured to move the sample slide relative to a sample-measuring location (320) of the device. Associated methods for preparing a sample and measuring a sample are also disclosed.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: January 4, 2022
    Assignee: DXCOVER LIMITED
    Inventors: Matthew J. Baker, Mark Hegarty, Holly Jean Butler, David Palmer
  • Patent number: 11119097
    Abstract: Provided are devices and methods featuring a nanoelectronic interface between graphene devices (for example, field effect transistors or FETs) and biomolecules such as proteins, which in turn provides a pathway for production of bioelectronic devices that combine functionalities of the biomolecular and inorganic components. In one exemplary application, one may functionalize graphene FETs with fluorescent proteins to yield hybrids that respond to light at wavelengths defined by the optical absorption spectrum of the protein. The devices may also include graphene in electronic communication with a biomolecule that preferentially binds to a particular analyte.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: September 14, 2021
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Alan T. Johnson, Jr., Ye Lu, Joseph J. Mitala, Bohdana Discher, Brett R. Goldsmith
  • Patent number: 11105789
    Abstract: Provided is method for evaluating a cellulose nanofiber (CNF) dispersion, the method including: (1) a step of preparing 1.0 mass % of a CNF aqueous dispersion; (2) a step of adding a coloring material into the CNF aqueous solution and stirring with a vortex mixer; (3) a step of sandwiching a film of the coloring material-containing CNF aqueous dispersion between two glass plates such that said film has a thickness of 0.15 mm; (4) a step of observing, with a microscope, the film of the coloring material-containing CNF aqueous dispersion sandwiched between the two glass plates; (5) a step of sorting observed aggregates by size (diameter along major axis) thereof; and (6) a step of calculating a CNF dispersion index from the number of sorted aggregates and evaluating the dispersibility of the CNF aqueous dispersion.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: August 31, 2021
    Assignee: NIPPON PAPER INDUSTRIES CO., LTD.
    Inventors: Takeshi Fujii, Fumiko Iwahori, Kaori Yamabe, Takeshi Nakatani, Shinji Sato, Koji Kimura
  • Patent number: 11092587
    Abstract: Herein provided are methods for evaluating cellulose nanofiber dispersions, comprising the steps of: (1) preparing a cellulose nanofiber dispersion; (2) adding a color material into the cellulose nanofiber dispersion; and (3) observing the cellulose nanofiber dispersion to which a colored pigment has been added with a light microscope. The methods allow for easy evaluation of whether or not agglomerates of cellulose nanofibers exist in cellulose nanofiber dispersions, which cannot be visually determined.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: August 17, 2021
    Assignee: NIPPON PAPER INDUSTRIES CO., LTD.
    Inventors: Takeshi Nakatani, Shinji Sato, Koji Kimura
  • Patent number: 11045555
    Abstract: In various embodiments nanoparticle drug delivery vehicles are provided that specifically deliver a cargo to a target pathogenic organism. In certain embodiments the drug delivery vehicle comprises a mesoporous silica nanoparticle comprising a plurality of pores and an outer surface through which the pores are disposed; a cargo disposed in the pores; one or more antigens attached to the surface of the nanoparticle; an antibody that specifically binds the antigens and are bound to the antigens, wherein the antibody inhibits diffusion of the cargo out of the pores and permit release of the cargo when the drug delivery vehicle is in the presence of the antigen or a pathogen displaying the antigen.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: June 29, 2021
    Assignee: The Regents of the University of California
    Inventors: Jeffrey I. Zink, Bastian Ruehle, Marcus A. Horwitz, Daniel L. Clemens, Bai-Yu Lee Clemens
  • Patent number: 11016095
    Abstract: Disclosed herein are diagnostic assays using surface enhanced Raman spectroscopy (SERS)-active particles, including liquid-based assays; magnetic capture assays; microparticle-nanoparticle satellite structures for signal amplification in an assay; composite SERS-active particles useful for enhanced detection of targets; and sample tubes and processes for using the same.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: May 25, 2021
    Assignee: BECTON DICKINSON AND COMPANY
    Inventors: Kristin Weidemaier, Christian Sandmann, William Shannon Dillmore, James L. Schram, W. William Stewart, Robert E. Pearson, Helen Hsieh, Steven Keith, Rajendra R. Bhat, Andrea Liebmann-Vinson, Adam Craig Curry, Alexander G. Lastovich
  • Patent number: 11002730
    Abstract: The compositions described herein include a substrate, wherein the substrate is a metal, metal oxide, metal nitride or a silicon containing material; a self-assembled monolayer (SAM) bonded to the substrate, wherein the self-assembled monolayer comprises: a surface binding unit bonded to the substrate, wherein the surface binding unit is selected from the group consisting of hydroxamates, phosphonates, catechols, halosilanes, alkoxysilanes, phosphonic acids, alkenes, alkynes, alcohols, 1,2-diols, and thiols; a separator unit bonded to the surface binding unit; a mass altering unit bonded to the separator unit; and a detector unit bonded to the separator unit.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: May 11, 2021
    Assignee: International Business Machines Corporation
    Inventors: Bharat Kumar, Sufi Zafar, Ali Afzali-Ardakani
  • Patent number: 10962536
    Abstract: The invention is related to the field of biotechnology, specifically to the investigation of biomolecular interactions and sensing of biomolecules using a surface plasmon resonance. The biological sensor and a method of its production based on the thin films of graphene, graphene oxide, or single-walled or multi-walled carbon nanotubes are described. The technical results of the invention are a high sensitivity of the biosensor in combination with a high biospecificity; an expansion of the range of device applications; the protection of the metal film from an environmental exposure; the possibility to detect large biological objects.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: March 30, 2021
    Assignee: MOSCOW INSTITUTE OF PHYSICS AND TECHNOLOGY (STATE UNIVERSITY)
    Inventors: Alexey Vladimirovich Arsenin, Yury Viktorovich Stebunov
  • Patent number: 10822637
    Abstract: The present invention relates to a method for detecting and/or characterizing molecular interactions between two molecules, in particular two proteins and most particular between an antigen and an antibody by using an immobilized single-stranded nucleic acid molecule to which single-stranded nucleic acid molecules having a ligand attached thereto are hybridized.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: November 3, 2020
    Assignee: DYNAMIC BIOSENSORS GMBH
    Inventors: Paul Hampel, Johannes Reusch, Ulrich Rant, Ralf Strasser
  • Patent number: 10795144
    Abstract: A sample is bathed in a solution that includes labels having a binding affinity for a structure on the sample and that emit light in response to excitation light. A sheet of excitation light having a FWHM thickness is provided to the sample. Light emitted from labels in response to the excitation light is imaged onto a detector, where the light is imaged with a detection objective having a depth of focus comparable to or greater than the FWHM thickness. The bathing of the sample and the imaging of the light emitted from the bound labels is controlled, such that the imaged light from different individual labels bound to the structure is resolved on the detector. The providing, imaging, and controlling are repeated to image, at different times, light from labels bound to the structure at different locations on or within the sample.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: October 6, 2020
    Assignee: Howard Hughes Medical Institute
    Inventors: Robert Eric Betzig, Wesley Legant
  • Patent number: 10770197
    Abstract: The present disclosure provides organic-inorganic hybrid polymer particles, which have desirable surface chemistry and optical properties that make them particularly suitable for biological and optical applications. The present disclosure also provides methods of making organic-inorganic hybrid polymer particles. The present disclosure also provides methods of using the organic-inorganic hybrid polymer particles for biological and optical applications.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: September 8, 2020
    Assignee: University of Washington
    Inventors: Daniel T. Chiu, Jiangbo Yu, Yu Rong, Changfeng Wu
  • Patent number: 10697931
    Abstract: Methods described herein, in some embodiments, permit extraction of particle structural and/or surface charge data from gradient induced particle motion in channels. In one aspect, a method of manipulating particle motion comprises introducing a fluid into a channel, the fluid comprising particles, and driving particle accumulation to a preselected location in the channel by setting advective velocity of the fluid to offset diffusiophoretic mobility of the particles at the preselected location.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: June 30, 2020
    Assignee: The Trustees of Princeton University
    Inventors: Jesse Ault, Sangwoo Shin, Howard A. Stone, Jie Feng, Patrick Warren
  • Patent number: 10384188
    Abstract: De novo synthesized large libraries of nucleic acids are provided herein with low error rates. Further, devices for the manufacturing of high-quality building blocks, such as oligonucleotides, are described herein. Longer nucleic acids can be synthesized in parallel using microfluidic assemblies. Further, methods herein allow for the fast construction of large libraries of long, high-quality genes. Devices for the manufacturing of large libraries of long and high-quality nucleic acids are further described herein.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: August 20, 2019
    Assignee: TWIST BIOSCIENCE CORPORATION
    Inventors: William Banyai, Bill James Peck, Andres Fernandez, Siyuan Chen, Pierre Indermuhle
  • Patent number: 10344062
    Abstract: The present invention relates to a vaccine comprising at least one peptide consisting of 7 to 19 amino acid residues consisting of the amino acid sequence (X3)mKDX2QLGX1 (SEQ ID No. 99), wherein X1 is an amino acid residue selected from the group consisting of alanine, asparagine, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, serine, threonine, tyrosine and valine, X2 is an amino acid residue selected from the group consisting of alanine, arginine, histidine, isoleucine, leucine, lysine, methionine, threonine, tyrosine and valine. X3 is (X4)nANISX5 (SEQ ID No. 100) or an N-terminal truncated fragment thereof consisting of 1 to 4 amino acid residues, X4 is VVASQLR (SEQ ID No.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: July 9, 2019
    Assignee: AFFIRIS AG
    Inventors: Guenther Staffler, Christine Landlinger, Frank Mattner
  • Patent number: 10258983
    Abstract: An apparatus comprises a biosensor disk structure including a first substrate with a first inner surface, a second substrate with a second inner surface facing oppositely toward the first inner surface, and fluidic channels reaching between the first and second inner surfaces; wherein the first inner surface has binding sites and non-binding sites adjoining the binding sites, the first substrate is transparent at the non-binding sites, and the non-binding sites have discrete polygonal configurations of equal size and shape; and the second inner surface has non-reflective areas and reflective areas bounded by the non-reflective areas, and the reflective areas have discrete polygonal configurations sized and shaped equally with the non-binding sites such that the reflective areas are located coextensively opposite the non-binding sites.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: April 16, 2019
    Assignee: ADVANCED TECHNOLOGY APPLICATIONS, LLC
    Inventors: Jeffery R. X. Auld, James E. Smith
  • Patent number: 10126263
    Abstract: A device for detecting a concentration of a substance in a fluid sample includes a substrate; an insulating layer arranged on the substrate; and a plurality of individually electrically addressable semiconducting nanowires arranged on the insulating layer. Each one of the plurality of nanowires is covered by an insulating material and arranged for sensing of the substance through an electrical characteristic of the nanowire. The device further includes a sample compartment for providing the fluid sample in contact with each of the plurality of nanowires. For each of the plurality of nanowires, at least one of the cross sectional dimension, the insulator thickness and the type of insulating material is selected such that each of the nanowires has a different detection range, and such that the dynamic range of the device is higher than the dynamic range of each of the individual nanowires.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: November 13, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Johan Hendrik Klootwijk, Marcel Mulder
  • Patent number: 10040066
    Abstract: A biosensor disk includes a detection substrate with an upper side surface, a reflection substrate with a lower side surface facing oppositely toward the upper side surface, and fluidic channels reaching between the opposed side surfaces. The upper side surface has binding sites, and has non-binding sites adjoining the binding sites. The detection substrate is transparent at the non-binding sites. The lower side surface has non-reflective areas, and has reflective areas adjoining the non-reflective areas. The reflective areas are located opposite the non-binding sites and have discrete polygonal configurations of equal size and shape.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: August 7, 2018
    Assignee: Advanced Technology Applications, LLC
    Inventor: Jeffery R. X. Auld
  • Patent number: 9915651
    Abstract: A new signal amplification method exploiting the dense atom packing in metallic nanocrystals has been developed for detecting target substances. By dissolving nanocrystals to individual ions that are stoichiometrically converted to chromophores and quantified photometrically, extremely high signal amplification can be achieved. Signal amplification is fully determined by the total number of atoms in the nanocrystals bound to a single target molecule. The disclosed nanocrystal amplification method can be implemented with a rich selection of metal/metal oxide nanocrystals and metal-reactive chromogenic substrates. The chromogenic reactions can be either solution-based or surface-based and performed in aqueous or organic phase, supporting a variety of assay formats.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: March 13, 2018
    Inventors: Gang Bao, Sheng Tong
  • Patent number: 9783733
    Abstract: Quantum dots (QDs) are encapsulated within microbeads having a silyl surface shell. The microbeads are prepared by copolymerizing unsaturated resins and an unsaturated organosilane in the presence of QDs. During the copolymerization, the unsaturated resin and the organosilane phase separate, forming beads having a silyl surface shell surrounding an essentially unsilylated interior. The QDs are encapsulated within the interior. The silyl shell provides a barrier against oxygen and other contaminants diffusing into the bead and reacting with the QDs.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: October 10, 2017
    Assignee: Nanoco Technologies Ltd.
    Inventors: Siobhan Daniels, Imad Naasani
  • Patent number: 9786405
    Abstract: Structures and methods for forming a patterned graphene layer on a substrate. One such method includes forming at least one patterned structure of a carbide-forming metal or metal-containing alloy on a substrate, applying a layer of graphene on top of the at least one patterned structure of a carbide-forming metal or metal-containing alloy on the substrate, heating the layer of graphene on top of the at least one patterned structure of a carbide-forming metal or metal-containing alloy in an environment to remove graphene regions proximate to the at least one patterned structure of a carbide-forming metal or metal-containing alloy, and removing the at least one patterned structure of a carbide-forming metal or metal-containing alloy to produce a patterned graphene layer on the substrate, wherein the patterned graphene layer on the substrate provides carrier mobility for electronic devices.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: October 10, 2017
    Assignees: International Business Machines Corporation, Egypt Nanotechnologies Center
    Inventors: Ali Afzali-Ardakani, Ahmed Maarouf, Glenn J. Martyna, Katherine Saenger
  • Patent number: 9752986
    Abstract: Described herein is a time-gated, two-step FRET relay effective to provide temporal transference of a prompt FRET pathway, or provide spectro-temporal encoding analytical signals and other information. A FRET relay assembly includes a long lifetime FRET donor (for example, a lanthanide complex), a semiconductor quantum dot (QD) configured as an intermediate acceptor/donor in FRET, and a fluorescent dye configured as a terminal FRET acceptor, wherein the long lifetime FRET donor has an excited state lifetime of at least one microsecond and the QD and fluorescent dye each have excited state lifetimes of less than 100 nanoseconds.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: September 5, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: W. Russ Algar, Niko Hildebrandt, Alan L. Huston, Igor L. Medintz
  • Patent number: 9618431
    Abstract: Electrokinetic devices and methods are described with the purpose of collecting assayable agents from a dielectric fluid medium. Electrokinetic flow may be induced by the use of plasma generation at high voltage electrodes and consequent transport of charged particles in an electric voltage gradient. In one embodiment, the agents are directed electrokinetically to the sample collection assay device with no intermediate transfer steps. The agents are directed by creation of an electrokinetic potential well, which will effect their capture on to an assay device. Environmental agents such as biowarfare agents, pathogens, allergens or pollutants are collected autonomously on to the assay device, without any human intervention. The dielectric fluid medium, such as air, is sampled by electrokinetic propulsion with no moving parts or optionally, by transporting the dielectric fluid by a fan, pump or by breath.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: April 11, 2017
    Assignee: Inspirotec, Inc.
    Inventors: Julian Gordon, Prasanthi Gandhi
  • Patent number: 9557259
    Abstract: A particle detector apparatus for optically ascertaining a number of particles arranged on a surface of, for example, a particle filter. The particle detector apparatus includes a light source, an optical focusing device, a spatially resolving light detector and an evaluation device. The light source emits source light onto the surface. The optical focusing device focuses image light that is emitted from the surface in response to the source light onto the spatially resolving light detector. The spatially resolving light detector includes light sensors that measure brightness values based on the image light, such that the light detector produces image data based on the brightness values delivered by the light sensors. The evaluation device then ascertains the number of particles based on the image data.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: January 31, 2017
    Assignee: EADS Deutschland GmbH
    Inventors: Alois Friedberger, Ulrich Martin, Leonhard Meixner
  • Patent number: 9435800
    Abstract: Described are embodiments of an invention for a sample assembly with an electrical conductor for generating an electromagnetic field to speed up the tagging of target antigens with antiparticles for detection of the antigens by electromagnetic read heads. A sample assembly includes a surface with a first set of antibodies bonded thereon. Target antigens are bonded with the first set of antibodies. A second set of antibodies bonded to nanoparticles are exposed to the sample surface to bond with the target antigens. The electrical conductor generates an electromagnetic field that moves the nanoparticle-labeled antibodies toward the antigens to shorten the time to complete their bonding process.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 6, 2016
    Assignee: International Business Machines Corporation
    Inventors: Allen K. Bates, Nils Haustein, Stephen L. Schwartz, Anna W. Topol, Daniel J. Winarski
  • Patent number: 9425253
    Abstract: Passivated semiconductor nanoparticles and methods for the fabrication and use of passivated semiconductor nanoparticles is provided herein.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: August 23, 2016
    Assignee: Crystalplex Corporation
    Inventors: Lianhua Qu, Gregory Miller
  • Patent number: 9410892
    Abstract: An optofluidic architecture for label free, highly parallel, detection of molecular interactions is based on the use of optically resonant devices whose resonant wavelength is shifted due to a local change in refractive index caused by a positive binding event between a surface bound molecule and its solution phase target. These devices have an extremely low limit of detection and are compatible with aqueous environments. The device combines the sensitivity (limit of detection) of nanosensor technology with the parallelity of the microarray type format.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: August 9, 2016
    Assignee: CORNELL UNIVERSITY
    Inventors: David Erickson, Sudeep Mandal
  • Patent number: 9410949
    Abstract: Natural and/or synthetic antibodies for specific proteins are adhered to nanoparticles. The nanoparticles are adhered to a substrate and the substrate is exposed to a sample that may contain the specific proteins. The substrates are then tested with surface enhanced Raman scattering techniques and/or localized surface plasmon resonance techniques to quantify the amount of the specific protein in the sample.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: August 9, 2016
    Assignee: Washington University in St. Louis
    Inventors: Srikanth Singamaneni, Evan Kharasch, Jeremiah J. Morrissey, Chang Hee Lee
  • Patent number: 9289511
    Abstract: The present disclosure relates to compositions and methods for the treatment of a disease, e.g., cancer or pathogenic infection, using a bioconjugated nanoparticle comprising a biocompatible quantum dot conjugated to a targeting moiety. The targeting moiety allows for the nanopaticle to bind to a cancer cell or pathogenic organism. The quantum dot, upon excitation by soft x-rays, emits electromagnetic radiation at a frequency of ultraviolet light, thereby allowing for the disruption of the DNA found in the cancer cell or pathogenic organism.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: March 22, 2016
    Assignee: The Boeing Company
    Inventor: Maurice P. Bianchi
  • Patent number: 9278993
    Abstract: The invention generally refers to a cell-targeting nanoparticle, wherein the cell-targeting nanoparticle is directly conjugated to at least one cysteine-containing peptide, wherein the cysteine-containing peptide is selected from the group consisting of glutathione (GSM, a GSH-containing peptide, and a peptide comprising a nuclear localization signal (NLS) sequence and a transporter sequence, and methods of using the cell-targeting nanoparticle.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: March 8, 2016
    Assignee: Agency for Science, Technology and Research
    Inventors: Tamil Selvan Subramanian, Padmanabhan Parasuraman, Dominik Janczewski, Kishore K. Bhakoo
  • Patent number: 9057825
    Abstract: A plurality of photonic crystal resonator optical trapping apparatuses and a plurality optical trapping methods using the plurality of photonic crystal resonator optical trapping apparatuses include located and formed over a substrate a photonic waveguide that is coupled (i.e., either separately coupled or integrally coupled) with a photonic crystal resonator. In a particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a monocrystalline silicon (or other) photonic material absent any chemical functionalization.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: June 16, 2015
    Assignee: Cornell University
    Inventors: David Erickson, Yih-Fan Chen
  • Patent number: 9040251
    Abstract: This invention provides a biomolecule modifying substrate comprising biomolecules selectively fixed to given regions thereon. The biomolecule modifying substrate comprises: a substrate at least comprising a first surface and a second surface; a first linker molecule comprising a hydrocarbon chain and a functional group capable of selectively binding to the first surface at one end of the hydrocarbon chain, which is bound to the first surface via such functional group; a second linker molecule comprising a reactive group capable of binding to the hydrocarbon chain of the first linker molecule, which is bound to the first linker molecule via a bond between the reactive group and the hydrocarbon chain; and a biomolecule bound thereto via the second linker molecule.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: May 26, 2015
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Yasuhiko Tada, Hiroshi Yoshida, Toshiro Saito, Masatoshi Narahara, Hiroaki Nakagawa
  • Patent number: 9034659
    Abstract: A chemiresistive biosensor for detecting an analyte can include a high specific surface area substrate conformally coated with a conductive polymer, and a binding reagent immobilized on the conductive polymer, wherein the binding reagent has a specific affinity for the analyte. The conductive polymer can be deposited on a substrate by oCVD.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: May 19, 2015
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Dhiman Bhattacharyya, Karen K. Gleason
  • Patent number: 9029132
    Abstract: A sensor for biomolecules includes a silicon fin comprising undoped silicon; a source region adjacent to the silicon fin, the source region comprising heavily doped silicon; a drain region adjacent to the silicon fin, the drain region comprising heavily doped silicon of a doping type that is the same doping type as that of the source region; and a layer of a gate dielectric covering an exterior portion of the silicon fin between the source region and the drain region, the gate dielectric comprising a plurality of antibodies, the plurality of antibodies configured to bind with the biomolecules, such that a drain current flowing between the source region and the drain region varies when the biomolecules bind with the antibodies.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: May 12, 2015
    Assignee: International Business Machines Corporation
    Inventors: Marwan H. Khater, Tak H. Ning, Lidija Sekaric, Sufi Zafar
  • Patent number: 9023659
    Abstract: Disclosed is a quantum dot-embedded silica nanoparticle having plural quantum dots embedded within the silica nanoparticle, wherein the number of quantum dots existing in a concentric area within 10% of a radius from a center of the silica nanoparticle accounts for 10 to 70% of the number of total quantum dots embedded in the silica nanoparticle.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: May 5, 2015
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventors: Takuji Aimiya, Masaru Takahashi
  • Patent number: 9012207
    Abstract: A biomolecular assay includes a substrate with a metallic layer on at least one surface thereof. The metallic film includes nanocavities. The nanocavities are configured to enhance signals that are representative of the presence or amount of one or more analytes in a sample or sample solution, and may be configured to enhance the signal by a factor of about two or more or by a factor of about three or more. Such signal enhancement may be achieved with nanocavities that are organized in an array, randomly positioned nanocavities, or nanocavities that are surrounded by increased surface area features, such as corrugation or patterning, or nanocavities that have quadrilateral or triangular shapes with tailored edge lengths, or with a plurality of nanoparticles. Methods for fabricating biomolecular substrates and assay techniques in which such biomolecular substrates are used are also disclosed.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: April 21, 2015
    Assignee: University of Utah Research Foundation
    Inventors: Steven M. Blair, Farhad Mahdavi, Yongdong Liu, James N. Herron, Ajay Nahata
  • Patent number: 9012204
    Abstract: The use of nanostructures to monitor or modulate changes in cellular membrane potentials is disclosed.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: April 21, 2015
    Assignee: Life Technologies Corporation
    Inventors: Michael J. Ignatius, Elena Molokanova, Alexei Savtchenko, Joseph A. Bartel, Weiwen Zhao, Joseph A. Treadway
  • Patent number: 9005994
    Abstract: The present application pertains to improved methods of detecting biomolecules in a biological sample (or system), In particular, embodiments discussed herein allow for the detection of biomolecule complexes. The embodiments enable for the first time the elucidation of the significance of biomolecule complexes for certain disease states, which in turn enables the diagnosis of disease states based on the identity and complexing level of a biomolecule complex in a particular biological sample.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: April 14, 2015
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Qun Huo
  • Patent number: 9005995
    Abstract: The present invention relates to a nanoscale or microscale particle for encapsulation and delivery of materials or substances, including, but not limited to, cells, drugs, tissue, gels and polymers contained within the particle, with subsequent release of the therapeutic materials in situ, methods of fabricating the particle by folding a 2D precursor into the 3D particle, and the use of the particle in in-vivo or in-vitro applications. The particle can be in any polyhedral shape and its surfaces can have either no perforations or nano/microscale perforations. The particle is coated with a biocompatible metal, e g gold, or polymer e g parvlene, layer and the surfaces and hinges of the particle are made of any metal or polymer combinations.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: April 14, 2015
    Assignee: The Johns Hopkins University
    Inventors: David H. Gracias, Timothy Gar-Ming Leong, Hongke Ye
  • Patent number: 8999264
    Abstract: A coating formula and method for surface coating non-porous surfaces. Microfluidic devices including said coating achieve desired properties including increased hydrophilicity, improved adhesion, stability and optical clarity.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: April 7, 2015
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventor: Michael J. Pugia
  • Patent number: 8993236
    Abstract: Devices having an electromagnetic detector for the detection of analytes are disclosed. The devices include an electromagnetic detector, including effective inductance-change magnetic detectors, and a binding moiety. The device can include an electromagnetic material that can be detected by the detector. The device is configured such that binding of an analyte to the binding moiety changes the relationship between the electromagnetic detector and the electromagnetic material such that a change in electromagnetic field is detected by the electromagnetic detector.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: March 31, 2015
    Assignee: California Institute of Technology
    Inventors: Seyed Ali Hajimiri, Hua Wang