Carrier Is Inorganic Patents (Class 436/524)
  • Patent number: 7915053
    Abstract: A substrate for forming a target substance detecting device includes a supporting member, an underlying layer disposed on a surface of the supporting member, and a metal pattern layer, disposed on a surface of the underlying layer, for being bound to a target substance trapping substance capable of trapping a target substance in a specimen solution at least containing water as a liquid medium to detect the target substance by utilizing plasmon resonance. The underlying layer has a refractive index nb satisfying the following relationship: 0.90 na?nb?1.05 na, wherein na represents a refractive index of water.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: March 29, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Junta Yamamichi, Satoru Nishiuma, Tomohiro Yamada, Masaya Ogino, Ryo Kuroda, Hidenori Shiotsuka
  • Patent number: 7910383
    Abstract: The invention concerns a method for preparing a molecular fingerprint comprising sites for identifying at least one target molecule, the fingerprint being obtained from at least one master molecule of polymeric type, called master polymer. The invention is characterized in that the master polymer is different from the target molecule(s), and is capable of being eliminated by degradation and/or washing, and that at least 5% in number of monomer units constituting the master polymer are involved in the formation of the sites for identifying the target molecule(s).
    Type: Grant
    Filed: July 4, 2006
    Date of Patent: March 22, 2011
    Assignee: Polyintell
    Inventors: Sami Bayoudh, Kaynoush Naraghi, Michel Arotcarena
  • Patent number: 7910064
    Abstract: This invention provides nanowire based molecular sensors and methods for detecting analytes in a microfluidic system. Methods for sensing analytes include detecting changed electrical parameters associated with contact of a nanowire with the analyte in a microfluidic system. Sensors of the invention include nanowires mounted in microchambers of a microfluidic system in electrical contact with the detector, whereby electrical parameter changes induced in the nanowire by the analyte can be monitored by the detector.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: March 22, 2011
    Assignee: Nanosys, Inc.
    Inventors: James M. Hamilton, Robert S. Dubrow, Calvin Y. H. Chow
  • Patent number: 7906344
    Abstract: The metal fine particles 33 are sparsely fixed on the surface of the transparent substrate 32, and the acceptor 35 for attaching the specific ligand is immobilized on the transparent substrate 32 or the metal fine particles 33. The prism 36 is closely attached to the lower surface of the transparent substrate 32, and the excitation light enters the transparent substrate 32 through the prism 36. The incident light is totally reflected at the surface of the transparent substrate 32, and the evanescent light generated at the surface and the metal fine particles 33 locally plasmon resonate. As the evanescent light and the metal fine particles locally plasmon resonate, a strong electric field is enclosed in the vicinity of the metal fine particles.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: March 15, 2011
    Assignee: OMRON Corporation
    Inventors: Tomohiko Matsushita, Shigeru Aoyama, Takeo Nishikawa, Shingo Nagaoka, Tetsuichi Wazawa
  • Patent number: 7906343
    Abstract: A lanthanide chelate is linked to a noble metal substrate at a proximity wherein the substrate enhances a fluorescent emission of the lanthanide by at least 20-fold when the chelate is illuminated at an excitation wavelength that induces a transition in the lanthanide that results in the fluorescent emission.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: March 15, 2011
    Assignee: SRI International
    Inventors: Gregory W. Faris, Jeanne P. Haushalter
  • Patent number: 7897328
    Abstract: The present invention provides compositions and methods for treating or preventing antibody mediated graft rejection and blood typing.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: March 1, 2011
    Assignee: AbSorber AB
    Inventors: Jan Holgersson, Jining Liu, Linda Lindberg, Per Grufman
  • Patent number: 7892816
    Abstract: The present invention provides a method for detecting probe-target substrate binding. In particular, the present invention provides a method for detecting a surface bound target complex by detecting the redox reaction of a redox transition metal complex that is catalyzed by a redox-catalyst complex.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: February 22, 2011
    Assignee: Colorado State University Research Foundation
    Inventors: C. Michael Elliott, Carlo Alberto Bignozzi, Di Xue, David W. Grainger, Stefano Caramori, Valeria Dissette
  • Patent number: 7892759
    Abstract: Detection of miniscule amounts of an analyte is accomplished via multiple bindings of specific materials on a sensor configured to sense mass. The sensor is prepared by immobilizing an antibody to a surface of the sensor, wherein the antibody is known to bind to the analyte. The prepared sensor is exposed to the analyte. The analyte binds to the antibody. The sensor then is exposed to additional antibody, which binds to the analyte. The sensor then can be sequentially exposed to additional antibodies that are known to bind to previously bound antibodies. Each additional binding further increases the effective mass of accumulated material on the sensor. The total effective mass is greater than the mass of the accumulated analyte, thus providing means for detecting extremely minute amounts of analyte. Applications include detection of pathogens and DNA.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: February 22, 2011
    Assignees: Drexel University, Leversense, LLC
    Inventors: Rajakkannu Mutharasan, David R. Maraldo, Kishan Rijal, Gossett Augustus Campbell, Paul Karl Horan
  • Patent number: 7892774
    Abstract: The invention relates to a diagnostic method for detecting susceptibility to delivery, and to a test kit for this purpose. A low, but higher than baseline level concentration of Insulin-like Growth Factor Binding Protein 1 (IGFBP-1), which is due to leakage from decidual cells, is detected by an immunological assay in a vaginal secretion sample.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: February 22, 2011
    Assignee: Oy Medix Biochemica AB
    Inventor: Eeva-Marja Rutanen
  • Patent number: 7888134
    Abstract: An apparatus and methods for binding an analyte of interest in a sample are provided. The apparatus comprises a substrate with an exposed surface with an compound, that is electrostatically charged or capable of forming hydrogen bonds, provided bound to the solid substrate. A recombinant single chain antibody (scFv) molecule specific for the analyte of interest, having one or more amino acids with charged or hydrogen-bond forming sidechains in a linker polypeptide portion, is bound to the layer on the solid substrate. When the analyte of interest is present in the sample the scFv binds the analyte to the solid substrate. The apparatus can be used with an immunoglobulin layer to detect Fc receptors, so as to detect microorganisms such as Staphylococcus aureus having protein A or protein G.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: February 15, 2011
    Assignees: Oakland University, Vanderbilt University
    Inventors: Xiangqun Zeng, Raymond L. Mernaugh
  • Patent number: 7879559
    Abstract: A method and kit for detecting Trichomonas vaginalis infection in a human subject are disclosed. In the method, a body-fluid sample such as a vaginal-swab sample or urine is obtained from the subject and contacted with an antibody specific against a Trichomonas adhesin peptide, forming an antibody-adhesin peptide complex if the subject is infected with Trichomonas. The presence or absence of the complex establishes, with a reliability of at least 80%, in the case of a vaginal swab sample, and with a reliability of at least 40% in the case of a urine sample, the presence or absence, respectively, of Trichomonas infection in the subject. A preferred test kit employs a dry-strip, sandwich assay, format.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: February 1, 2011
    Assignee: Xenotope Diagnostics, Inc.
    Inventors: John P. Alderete, Paul C. Castella
  • Patent number: 7879396
    Abstract: We have developed an improved vapor-phase deposition method and apparatus for the application of layers and coatings on various substrates. The method and apparatus are useful in the fabrication of biotechnologically functional devices, Bio-MEMS devices, and in the fabrication of microfluidic devices for biological applications. In one important embodiment, oxide coatings providing hydrophilicity or oxide/polyethylene glycol coatings providing hydrophilicity can be deposited by the present method, over the interior surfaces of small wells in a plastic micro-plate in order to increase the hydrophilicity of these wells. Filling these channels with a precise amount of liquid consistently can be very difficult. This prevents a water-based sample from beading up and creating bubbles, so that well can fill accurately and completely, and alleviates spillage into other wells which causes contamination.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: February 1, 2011
    Assignee: Applied Microstructures, Inc.
    Inventors: Boris Kobrin, Jeffrey D. Chinn, Romuald Nowak, Richard C. Yi
  • Patent number: 7879594
    Abstract: The present invention relates to a method for detecting a target biomolecule in a sample comprising a plurality of biomolecules, whereby the target biomolecule is provided with a tag, said tag comprising a catalytic active moiety which catalyses a reaction yielding an insoluble reaction product which precipitates on flexible electrically conductive nanoelectrodes. The precipitation onto said nanoelectrodes causes a change in their electroconductivity which is accessible to electroanalytical methods. The invention relates further to a biochip comprising a solid support with nanoelectrodes attached thereto and probe molecules bound to all or to a plurality of said nanoelectrodes which may be the same or different, a segment of said probe molecules being able to interact specifically with a segment of the target biomolecules.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: February 1, 2011
    Assignee: Biomerieux
    Inventors: Bernard Mandrand, Agnes Dupont-Filliard
  • Patent number: 7879596
    Abstract: The present invention relates to a method and apparatus for detecting analytes in a medium, and more particularly the present invention relates to an assay based on light diffraction which appears or changes upon the binding of analytes to their specific receptors laid out in patterns on a substrate, which has high sensitivity due to the appropriate choice of such patterns. The present invention is based on the principle that the pattern of recognition elements, which gives rise to the diffraction of the incident light in a diffraction-based assay, can be chosen in such a way so as to facilitate detection, and to enhance the signal to be detected compared to known gratings such as parallel straight lines. In one aspect the substrate itself has a surface topography designed to enhance the diffraction pattern signals. In another aspect the substrate is a diffractive optic element having the analyte-specific receptors affixed to the optic element.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: February 1, 2011
    Assignee: Axela Inc.
    Inventors: Cynthia M. Goh, Richard Loo, Jane B. Goh, Richard McAloney
  • Patent number: 7875435
    Abstract: A method and apparatus for use in a flow through assay process is disclosed. The method is characterized by a “pre-incubation step” in which the sample which is to be analysed (typically for the presence of a particular protein), and a detection analyte (typically one or more antibodies bound to colloidal gold or a fluorescent tag) which is known to bind to the particular protein may bind together for a desired period of time. This pre-incubation step occurs before the mixture of sample and detection analyte come into contact with a capture analyte bound to a membrane. The provision of the pre-incubation step has the effect of both improving the sensitivity of the assay and reducing the volume of sample required for an assay. An apparatus for carrying out the method is disclosed defining a pre-incubation chamber for receiving the sample and detection analyte having a base defined by a membrane and a second membrane to which a capture analyte is bound.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: January 25, 2011
    Assignee: Proteome Systems Ltd
    Inventors: David Ian Marlborough, Andrew John Sloane, Robert Alan Cole, William Samuel Hunter
  • Patent number: 7875434
    Abstract: The instant invention provides compositions and methods for determining cell interactions that are faster than conventional methods and that require the use of fewer reagents than conventional methods.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: January 25, 2011
    Assignee: SRU Biosystems, Inc.
    Inventors: Bo Lin, Brian T. Cunningham, Peter Li
  • Patent number: 7875324
    Abstract: A method of laser forward transfer is disclosed. Photon energy is directed through a photon-transparent support and absorbed by a polymer interlayer coated thereon. The energized interlayer causes the transfer of a biological material coated thereon across a gap and onto a receiving substrate.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: January 25, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jason Barron, Bradley R Ringeisen, Heungsoo Kim, Peter K Wu
  • Patent number: 7867756
    Abstract: A sample analysis device is provided in which a target component to be analyzed is prevented from being contaminated by a sample itself, which can be formed in an appropriate size, and which has excellent operability. In a sample analysis device 1 in which a sample is to be held in a porous sheet 13, supporting films 11 and 12 are stuck on front and rear faces of the porous sheet 13, respectively, and a sample supply hole 14 is formed in a part of the supporting films.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: January 11, 2011
    Assignee: ARKRAY, Inc.
    Inventors: Konomu Hirao, Yasuhito Murata
  • Patent number: 7867783
    Abstract: An apparatus and method for real time, label-free imaging and quantitation of binding events at an array of positions are provided. Total internal reflection from a planar side wall of a well of a multiwell plate is used to create an evanescent field in the plane of a pattern of ligands immobilized on the wall. Embodiments include imaging and multiple analyte detection and quantitation of a single wall of a single well as well as the simultaneous imaging and multiple analyte detection and quantitation of a number of wells.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: January 11, 2011
    Assignee: Maven Technologies, LLC
    Inventors: Shane C. Dultz, Jeffrey C. Travis, David Ralin
  • Patent number: 7867784
    Abstract: The present invention relates to a chromatography ligand defined by the following formula (I) R1—R2—N(R3)—R4—R5 wherein R1 is a substituted or non-substituted phenyl group; R2 is a hydrocarbon chain comprising 0-4 carbon atoms; R3 is a hydrocarbon chain comprising 1-3 carbon atoms; R4 is a hydrocarbon chain comprising 1-5 carbon atoms; and R5 is OH or H. The invention also comprises a separation matrix, comprising the described ligands coupled to a porous support, such as particles or a membrane. The ligand and matrix according to the invention is useful for purification of biomolecules or organic compounds, such as proteins, polypeptides, DNA etc. An advantageous use according to the invention is the purification of antibodies.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: January 11, 2011
    Assignee: GE Healthcare Bio-Science AB
    Inventors: Carina Engstrand, Annika Forss, Gunnar Glad, Bo-Lennart Johansson, Hans J. Johansson, Jean-Luc Maloisel
  • Patent number: 7863052
    Abstract: A grating-based sensor is disclosed that has a grating structure constructed and designed for both evanescent resonance (ER) fluorescence detection and label-free detection applications. Some embodiments are disclosed which are optimized for ER detection in an air mode, in which the sample is dry. Other embodiments are optimized for ER detection in liquid mode, in which the sample is suspended in liquid medium such as water. One and two-dimensional gratings are also disclosed, including gratings characterized by unit cells with central posts, central holes, and two-level, two-dimensional gratings. A readout system for such sensors is also disclosed. One embodiment includes a first light source optimized for collecting label-free detection data, a second light source optimized for collecting ER fluorescence amplification data, and at least one detector. In one embodiment, the detector is an imaging system and includes a CCD camera for collecting both ER and label-free data.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: January 4, 2011
    Assignee: SRU Biosystems, Inc.
    Inventors: Stephen C. Schulz, Brian T. Cunningham, Lance G. Laing, Peter Y. Li, Brant Binder, Gangadhar Jogikalmath, Alex Borsody
  • Patent number: 7863057
    Abstract: Embodiments described herein include methods and assays for detecting an analyte in a sample using a plurality of control zone capture agents. Some embodiments include detection of multiple analytes in a sample utilizing a plurality of analyte binders and a control zone containing multiple control zone capture agents. In some embodiments, the multiple control zone capture agents capture a plurality of binders within one control zone. Test results are determined by comparison of the control zone signal to a test zone signal.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: January 4, 2011
    Assignee: Charm Sciences, Inc.
    Inventors: Steven J. Saul, Robert J. Markovsky, David W. Douglas
  • Patent number: 7863037
    Abstract: Multiwell plates commonly used for immunoassay are increased in capacity and adapted for ease and speed of testing by forming a plurality of solid posts in each well of a plate. The posts and plate material and the dimensions of the posts are chosen to allow the immobilization of ligand patterns on an exterior wall of a post in a well and to permit a collimated beam of light directed to the post in a direction to achieve total internal reflection from a wall to generate an evanescent field in the plane of the ligands immobilized on the exterior wall of the post. The reflected light carries an image of localized intensity variations due to binding events between the ligand patterns and analytes in a sample introduced into a well. A cover plate seals the wells and provides for through holes for introducing sample material to the wells.
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: January 4, 2011
    Assignee: Maven Technologies, LLC
    Inventor: Shane C. Dultz
  • Patent number: 7863056
    Abstract: A coated metal surface on a solid support, wherein the coating consists of a protein layer firmly attached to the metal surface, and said protein layer is coupled to linker molecules that are bound to low molecular weight antigens, wherein the linker molecules are coupled to the protein layer and are bound to the antigen via functional end groups and contain between the functional end groups an aliphatic hydrocarbon of 1, 2 or 3 carbon atoms, and wherein the antigens are optionally reversibly bound to antibodies specific for the antigens, is described. The coated metal surface on a solid support may be used in a method of detecting analyte antigens as part of an analysis device, such as a Piezoelectric Crystal Microbalance device or a Surface Plasmon Resonance biosensor, for detection in an aqueous solution of an analyte antigen with higher affinity to an antibody than the antigen of the coating by monitoring the displacement of the antibody from the coating.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: January 4, 2011
    Assignee: Biosensor Applications Sweden AB
    Inventors: Per Månsson, Ann-Sofie Johansson, Björn Sandén, Shahin Loniakan
  • Patent number: 7858398
    Abstract: The present invention relates to an optical biosensor comprising a porous matrix. In the specific case, reference is made to anodized porous alumina, on the surface of which the biological component specific for the analyte in question is immobilized, and to an optical-signal detector connected to said matrix. The present patent further relates to a biosensor having the porous matrix and the optical detector integrated in a single structure, in particular to biosensors with porous matrix other than porous alumina, for example porous silicon.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: December 28, 2010
    Assignee: CRF Societa Consortile per Azioni
    Inventors: Valentina Grasso, Federica Valerio, Vito Guido Lambertini, Marco Pizzi, Piero Perlo
  • Patent number: 7858397
    Abstract: The present invention relates to a method for making a test device for detecting or quantifying an analyte in a sample. This method involves contacting a membrane with a mixture including derivatized, marker-loaded liposomes, and substantially dehydrating the mixture on the membrane under vacuum pressure at a temperature of from about 4° C. to about 80° C., wherein said mixture further includes one or more sugars in an amount sufficient to promote the stability of the liposomes during dehydration and rehydration. The present invention also relates to a test device and method for detecting or quantifying an analyte in a sample. The test device includes a membrane which includes an immobilized liposome zone, wherein the immobilized liposome zone has bound thereto dehydrated, derivatized, marker-loaded liposomes dehydrated under vacuum pressure at a temperature of from about 4° C. to about 80° C.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: December 28, 2010
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Richard A. Durst, Daniel Martorell-Pena, Sui Ti Atienza Siebert
  • Patent number: 7858386
    Abstract: A method of controllably changing an intrinsic property of a quantum dot by using a biological entity, either attached or in close proximity to the quantum dot, and changing the state of biological entity with a controllable mechanism. The change in state of the biological entity controllably changes the intrinsic property of the quantum dot. The photoluminescence emission of quantum dots can be controlled by the present method. The methods disclosed include controlling the magnitude of QD photoluminescence as well as turning the photoluminescence on/off. The methods disclosed include using the same biological control architecture to control other intrinsic QD properties such as charge state, magnetic or other property.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: December 28, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Igor L Medintz, Hedi M Mattoussi, Moungi G Bawendi, J Matthew Mauro, George P Anderson, Thomas Pons
  • Patent number: 7850917
    Abstract: An apparatus and a related method for performing particle agglutination reactions in a single, disposable probe tip are disclosed. The probe tip includes a sample cavity for sample acquisition, at least one flanking cavity for the capture of particles by centrifugation or other means, a transition zone for the mixing of the sample with reagents for agglutination and a detection zone for the optical detection of particle agglutination. A mechanism may be attached to the probe tip for the controlled movement of fluids through the internal volume of the probe tip. The probe tip is particularly useful for the automation of high-throughput agglutination-type assays.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: December 14, 2010
    Assignee: Ortho-Clinical Diagnostics, Inc.
    Inventors: Zhong Ding, Amy M. Wilson-Colley
  • Patent number: 7842515
    Abstract: This invention involves the nano-structured support used for separation or/and analysis, especially the chip substrate, ELISA plate substrate, planar chromatography strip and chromatography gel. Besides, it involves the functionalized nano-structured support of high sensibility for separation or/and analysis, especially the analysis-chip, ELISA plate, planar chromatography reagent strip and chromatography gel. In addition, this invention also involves the nano-structured marking system for analysis. Moreover, it concerns the test kit; especially the chip kit, ELISA kit, and planar chromatography kit. What's more, this invention involves the preparing methods and the applications of all those mentioned above, especially the chip analysis, analyses with ELISA plate, planar chromatography strip and chromatography separation.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: November 30, 2010
    Assignees: Chengdu Kuachang Medical Industrial Limited, Chengdu Kuachang Science & Technology Co., Ltd.
    Inventors: Fanglin Zou, Chunsheng Chen, Ning Chen, Jianxia Wang
  • Patent number: 7842475
    Abstract: Reagents are disclosed for use in assays for analytes. The reagents are dry assay reagents that may be readily reconstituted for use in the assays. The dry assay reagents comprise a solid support and one or more molecules of a receptor immobilized on the solid support. The receptor comprises one or more binding sites for a ligand. A portion of a total number of the binding sites is bound to a conjugate comprising the ligand linked to a specific binding pair member and a portion of the total number of the binding sites is free. In use in an assay, a combination is provided in an aqueous medium comprising the sample and reagents for detecting the analyte wherein at least one of the reagents comprises the dry assay reagent mentioned above. The combination is incubated under conditions for binding of the analyte to one or more of the reagents.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: November 30, 2010
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Yi Feng Zheng, Tie Q. Wei
  • Patent number: 7842505
    Abstract: A fluorescent labeling reagent of the present invention includes an inorganic fluorescent particle and a material (A) having a material (B) of biological origin adsorbed or bound thereto. The inorganic fluorescent particle is integrated with the material (A) so as to form the reagent of the present invention. The inorganic fluorescent particle used in the present invention is capable of emitting light with a wavelength of 650 nm to 1600 nm in the infrared region or the near-infrared region which can be detected by means of Si—CCD or InGaAs—PD and can penetrate an H2O rich sample when excited by light with a wavelength of 650 nm or longer which has the shortest transparent wavelength of AlInGaP-LD including oxygen adsorption type hemoglobin used for DVDs etc.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: November 30, 2010
    Assignee: Keio University
    Inventors: Kunihiro Noda, Ryo Asakura, Daisuke Saito, Tetsuhiko Isobe, Tomohiro Takagi, Hideki Aizawa, Michio Ohkubo
  • Patent number: 7838285
    Abstract: Apparatus and method employing gel electrophoresis and optical imaging techniques to measure the amount of biomaterial that attaches to specified locations on a detector slide and to determine the molecular weight of the molecules at those locations.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: November 23, 2010
    Assignee: Maven Biotechnologies LLC
    Inventors: Shane Dultz, David Ralin, William Rassman
  • Publication number: 20100291711
    Abstract: An integrated microsystem for detecting biomolecules is made up of a micropump for delivering a sample, a microsensor for detecting the presence of a target biomolecule in the sample, a microheater for maintaining the temperature of operation, a microcontroller for regulating the sample delivery and a signal processor for analyzing the sensor signal. A single wall carbon nanotube based biological sensor can be used as the microsensor. The single wall carbon nanotube based sensor can either have a chance in conductance based on the presence and/or quantity of the target biomolecule or quantify the mass uptake of the sensor matrix.
    Type: Application
    Filed: October 23, 2006
    Publication date: November 18, 2010
    Applicant: WESTERN MICHIGAN UNIVERSITY RESEARCH FOUNDATION
    Inventors: Massood Zandi Atashbar, Bruce Evan Bejcek
  • Patent number: 7829349
    Abstract: An element to be used for detecting a target substance by using a capturing body for target substance and using surface plasmon resonance has a structure in which the metal structure having a particular pattern is located on a spherical support. Thus configured element for detecting the target substance can detect the target substance at sufficient detection sensitivity in a short period of time by using the surface plasmon resonance. A method for detecting the target substance by using the element and a detection device therefor is provided.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: November 9, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tetsunori Ojima, Norihiko Utsunomiya
  • Patent number: 7829327
    Abstract: An optical waveguide type antibody chip includes a transparent substrate, an incident-side optical element and an emitting-side optical element placed at a distance from each other on a primary face of the substrate, a water repellent resin film formed on the primary face of the substrate including an optical waveguide layer formed between the optical elements, the water repellent resin film includes a reaction hole having exposed the optical waveguide layer on its bottom and a frame-shaped trench surrounding the reaction hole, a rectangular frame-shaped cell wall which is fixed in the trench of the water repellent resin film and which forms a cell capable of infusion and discharge of a specimen solution together with the reaction hole, and an antibody immobilization layer formed on the bottom of the reaction hole, the surface of the antibody immobilization layer being masked with at least a buffer agent and a salt.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: November 9, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ikuo Uematsu, Masatoshi Sakai, Shingo Kasai
  • Patent number: 7829326
    Abstract: An encoded carrier includes a code region having a code, and a reaction region separate from the coded region, the reaction region having a variation in its refractive index or dielectric constant in a direction generally parallel to the surface of the reaction region.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: November 9, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Carl Edward Norman
  • Patent number: 7824925
    Abstract: Materials and methods are provided for producing patterned multi-array, multi-specific surfaces for use in diagnostics. The invention provides for electrochemiluminescence methods for detecting or measuring an analyte of interest. It also provides for novel electrodes for ECL assays. Materials and methods are provided for the chemical and/or physical control of conducting domains and reagent deposition for use multiply specific testing procedures.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: November 2, 2010
    Assignee: Meso Scale Technology LLP
    Inventors: Jacob N. Wohlstadter, James Wilbur, George Sigal, Mark Martin, Liang-Hong Guo, Alan Fischer, Jon Leland, Mark A. Billadeau, Larry R. Helms, Ramin Darvari
  • Patent number: 7824927
    Abstract: Analytes using an active assay may be detected by introducing an analyte solution containing a plurality of analytes to a lacquered membrane. The lacquered membrane may be a membrane having at least one surface treated with a layer of polymers. The lacquered membrane may be semi-permeable to nonanalytes. The layer of polymers may include cross-linked polymers. A plurality of probe molecules may be arrayed and immobilized on the lacquered membrane. An external force may be applied to the analyte solution to move the analytes towards the lacquered membrane. Movement may cause some or all of the analytes to bind to the lacquered membrane. In cases where probe molecules are presented, some or all of the analytes may bind to probe molecules. The direction of the external force may be reversed to remove unbound or weakly bound analytes. Bound analytes may be detected using known detection types.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: November 2, 2010
    Assignee: George Mason Intellectual Properties, Inc.
    Inventors: Victor Morozov, Charles L. Bailey, Melissa R. Evanskey
  • Patent number: 7824873
    Abstract: A blood crossmatching apparatus, kit and methods for testing the compatibility of mammals for blood transfusion. Particulate layers in the apparatus allow nonagglutinated red blood cells to permeate through, while agglutinated red blood cells cannot. The apparatus also has a density solution. The density solution separates white blood cells from red blood cells in the whole blood when centrifuged, without lysing the red blood cells. Thus, the apparatus can be used to test whole blood.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: November 2, 2010
    Inventor: Anne S. Hale
  • Patent number: 7816149
    Abstract: A nanobioprocessor for protein and cell therapy comprises a selectively coated quantum dot having selected band gap energies, characteristic absorption, emission spectra and outer coatings for therapy and diagnostic purposes in biophotonics and nanomedicine, and an electromagnetic radiation and detector source configured to remotely heat and/or selectively excite the quantum dot to associate with target specific misfolded or anomalous proteins, diseased cells and tissue.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: October 19, 2010
    Assignee: Applied Photonics Worldwide, Inc.
    Inventors: Reinhard Bruch, Jutta Gietl
  • Patent number: 7811831
    Abstract: Acoustic wave devices coated with a biolayer are described for the detection target bio-molecules. The acoustic wave device is connected in an oscillator circuit, and the frequency shift ?f resulting from a biomolecular event is recorded. Further described are the use of Rayleigh wave surface acoustic wave devices for vapor phase detection as well as quartz crystal microbalance devices for liquid phase measurements. A biofilm on the surface of the acoustic wave device comprises of a layer of antibodies raised against a specific target molecule or antigen. Signatures for detection events are presented in the form of frequency shifts ?f(t).
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: October 12, 2010
    Assignee: Georgia Tech Research Corporation
    Inventor: William D. Hunt
  • Patent number: 7811830
    Abstract: A photosensitizer that is excitable via infrared radiation and is adapted to be used to treat a selected biological target. The photosensitizer comprises a core nanoparticle adapted to convert infrared radiation into a visible light emission, and a coating disposed about the core nanoparticle. The coating contains a light excitable agent that is adapted to be excited by the visible light emission from the core nanoparticle. The photosensitizer can be surface modified with an antibody to make the photosensitizer specific to the biological target that is to be treated. Such surface modified photosensitizer is introduced to the target site and irradiated with infrared radiation.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: October 12, 2010
    Assignee: New Mexico Technical Research Foundation
    Inventor: Peng Zhang
  • Patent number: 7803568
    Abstract: The present invention is directed to methods and products related to carbodithioate ligands bonded to surfaces. The invention is further directed to molecular and biomolecular sensing methods based on analyte recognition by carbodithioate ligands bonded to surfaces.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: September 28, 2010
    Assignee: Purdue Research Foundation
    Inventors: Alexander Wei, Yan Zhao
  • Patent number: 7799556
    Abstract: The present invention provides a system and method for detecting antigens captured on an antibody array. The method comprises the following steps of providing the antibody array having at least two antibodies, contacting the antibody array with a sample containing at least one antigen that may be captured by the antibodies disposed on the antibody array, and detecting the at least one antigen captured by the antibody array with a detecting agent that specifically binds to the antigen-bound antibodies on the antibody array, thereby the at least one antigen captured by the antibody array can be detected independent of the structures of the antigens. In a preferred embodiment, Clq is used as the detecting agent to detect antigen-bound antibodies.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: September 21, 2010
    Inventor: George Dacai Liu
  • Patent number: 7790406
    Abstract: A grating-based sensor is disclosed that has a grating structure constructed and designed for both evanescent resonance (ER) fluorescence detection and label-free detection applications. One and two-dimensional gratings are also disclosed, including gratings characterized by unit cells with central posts, central holes, and two-level, two-dimensional gratings. A readout system for such sensors is also disclosed. Various applications for the biosensors are described, including cell-based assays for assessing the effect of drug compounds on cell function. A biosensor embodiment optimized for a luminescent response at two different wavelengths is also described. Such luminescent response could be produced by fluorescence (either native or from an attached fluorophore), phosphorescence, chemi-luminescence, or other luminescence technology. Two different luminescence technologies could be combined on the same biosensor chip.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: September 7, 2010
    Assignee: SRU Biosystems, Inc
    Inventors: Brian T. Cunningham, Peter Y. Li, Lance G. Laing, Gangadhar Jogikalmath
  • Patent number: 7785900
    Abstract: The present invention relates generally to glutathione derivatized beads which are adapted for use in conjunction with glutathione-S-transferase fusion proteins (generally, GST fusion proteins, which contain a fluorescent label such as fluorescent green protein) for use in flow cytometry. The present invention also relates to methods for detecting and/or quantifying interactions between a GST fusion protein and their binding partners, in particular, labeled binding partners such as fluorescently labeled binding partners. By creating glutathione beads with an appropriate high or increased site density, disadvantages often associated with low affinity systems and quick off-rates in solution may be resolved to provide a workable system and method. Methods of identifying potential agonists, antagonists and regulator compounds of proteins fused to GST from libraries of compounds represents another aspect of the present invention.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: August 31, 2010
    Assignees: STC.UNM, Sanford-Burnham Medical Research Institute
    Inventors: Peter C. Simons, Larry A. Sklar, Eric R. Prossnitz, Angela Wandinger-Ness, Mathewos Z. Tessema, John C. Reed, Dayong Zhai
  • Patent number: 7785901
    Abstract: The present invention is related to a method of attaching hydrophilic species to hydrophilic macromolecules and immobilizing the hydrophilic macromolecules on a hydrophobic surface, to a nano-assembly and to uses of the nano-assembly.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: August 31, 2010
    Assignee: Sony Deutschland GmbH
    Inventors: Oliver Harnack, William E. Ford, Jurina Wessels, Akio Yasuda
  • Publication number: 20100216256
    Abstract: A biosensor is provided which includes a substrate, a source electrode on the substrate, a drain electrode on the substrate, and at least one functionalized nanobelt on a surface of the substrate between the source electrode and the drain electrode. Methods for sensing a biological or chemical analyte using the sensor is also provided.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 26, 2010
    Applicant: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Yi Cheng, P. Bryant Chase, Nancy Meyer, Peng Xiong
  • Patent number: 7781227
    Abstract: Arrays of microparticle populations, each population labeled with a single fluorescent dye, are provided for use in multiplex assays. The populations form a virtual multidimensional array wherein each microparticle is identified by fluorescence intensity in two different fluorescence detection channels. The arrays are useful in a variety of assays, including multiplex, multi-analyte assays for the simultaneous detection of two or more analytes by, for example, flow cytometry, and a labeling reagents in, for example, microscopy. The use of singly-dyed microparticles to form multidimensional arrays greatly simplifies the creation of multiplex assays.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: August 24, 2010
    Assignee: Becton, Dickinson and Company
    Inventors: Majid Mehrpouyan, Diether J. Recktenwald, Rudolf Varro
  • Patent number: 7781226
    Abstract: Described herein is an analyte detection device and method related to a portable instrument suitable for point-of-care analyses. In some embodiments, a portable instrument may include a disposable cartridge, an optical detector, a sample collection device and/or sample reservoir, reagent delivery systems, fluid delivery systems, one or more channels, and/or waste reservoirs. Use of a portable instrument may reduce the hazard to an operator by reducing an operator's contact with a sample for analysis. The device is capable of obtaining diagnostic information using cellular- and/or particle-based analyses and may be used in conjunction with membrane- and/or particle-based analysis cartridges. Analytes, including proteins and cells and/or microbes may be detected using the membrane and/or particle based analysis system.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: August 24, 2010
    Assignee: The Board of Regents of the University of Texas System
    Inventors: John T. McDevitt, Nick Christodoulides, Pierre Floriano, Karri L. Ballard, Bruce Bernard, Glenn Simmons