Stacked Array (e.g., Rectifier, Etc.) Patents (Class 438/109)
  • Patent number: 9006736
    Abstract: To give favorable electrical characteristics to a semiconductor device. The semiconductor device includes an insulating layer, a semiconductor layer over the insulating layer, a pair of electrodes over the semiconductor layer and each electrically connected to the semiconductor layer, a gate electrode over the semiconductor layer, and a gate insulating layer between the semiconductor layer and the gate electrode. The insulating layer includes an island-shaped projecting portion. A top surface of the projecting portion of the insulating layer is in contact with a bottom surface of the semiconductor layer, and is positioned on an inner side of the semiconductor layer when seen from above. The pair of electrodes covers part of a top surface and part of side surfaces of the semiconductor layer. Furthermore, the gate electrode and the gate insulating layer cover side surfaces of the projecting portion of the insulating layer.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: April 14, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shinya Sasagawa, Motomu Kurata
  • Patent number: 9006033
    Abstract: A method of forming a package on package structure includes bonding a semiconductor die and an interposer frame to a substrate, and the interposer frame surrounds the semiconductor die. The semiconductor die is disposed in an opening of the interposer frame, and the interposer frame has a plurality of TSHs. The plurality of TSHs is aligned with a plurality of bumps on the substrate. The method also includes positioning a packaged die over the semiconductor die and the interposer frame. The packaged die has a plurality of bumps aligned with the plurality of TSHs of the interposer. The method further includes performing a reflow process to allow solder of the plurality of bumps of the substrate and the solder of the plurality of bumps of the packaged die to fill the plurality of TSHs.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: April 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jiun Yi Wu
  • Patent number: 9006032
    Abstract: A method of forming a semiconductor device package includes removing a portion of a first connector and a molding compound surrounding the first connector to form an opening, wherein the first connector is part of a first package, and removing the portion of the first connector comprises forming a surface on the first connector which is at an angle with respect to a top surface of the molding compound. The method further includes placing a second connector in the opening, wherein the second connector is part of a second package having a semiconductor die. The method further includes bonding the second connector to a remaining portion of the first connector.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: April 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung Wei Cheng, Tsung-Ding Wang, Chien-Hsun Lee, Chun-Chih Chuang
  • Patent number: 8999810
    Abstract: A method of making a stacked microelectronic package by forming a microelectronic assembly by stacking a first subassembly including a plurality of microelectronic elements onto a second subassembly including a plurality of microelectronic elements, at least some of the plurality of microelectronic elements of said first subassembly and said second subassembly having traces that extend to respective edges of the microelectronic elements, then forming notches in the microelectronic assembly so as to expose the traces of at least some of the plurality of microelectronic elements, then forming leads at the side walls of the notches, the leads being in electrical communication with at least some of the traces and dicing the assembly into packages. Additional embodiments include methods for creating stacked packages using substrates and having additional traces that extend to both the top and bottom of the package.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: April 7, 2015
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Vage Oganesian
  • Patent number: 8999754
    Abstract: An integrated circuit package system includes a base substrate, attaching a base die over the base substrate, attaching an integrated interposer having interposer circuit devices, over the base die, and forming a package system encapsulant having an encapsulant cavity over the integrated interposer.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: April 7, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Seng Guan Chow, Il Kwon Shim, Byung Joon Han
  • Patent number: 9000599
    Abstract: Embodiments of the present disclosure are directed to integrated circuit (IC) package assemblies with three-dimensional (3D) integration of multiple dies, as well as corresponding fabrication methods and systems incorporating such 3D IC package assemblies. A bumpless build-up layer (BBUL) package substrate may be formed on a first die, such as a microprocessor die. Laser radiation may be used to form an opening in a die backside film to expose TSV pads on the back side of the first die. A second die, such as a memory die stack, may be coupled to the first die by die interconnects formed between corresponding TSVs of the first and second dies. Underfill material may be applied to fill some or all of any remaining gap between the first and second dies, and/or an encapsulant may be applied over the second die and/or package substrate. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: April 7, 2015
    Assignee: Intel Corporation
    Inventors: Digvijay A. Raorane, Yonggang Li, Rahul N. Manepalli, Javier Soto Gonzalez
  • Publication number: 20150091179
    Abstract: A semiconductor device comprising a second surface of a logic die and a second surface of a via bar coupled to a first surface of a substrate, a second surface of a memory die coupled to a first surface of the via bar, a portion of the second surface of the memory die extending over the first surface of the logic die, such that the logic die and the memory die are vertically staggered, and the memory die electrically coupled to the logic die through the via bar. The via bar can be formed from glass, and include through-glass vias (TGVs) and embedded passives such as resistors, capacitors, and inductors. The semiconductor device can be formed as a single package or a package-on-package structure with the via bar and the memory die encapsulated in a package and the substrate and logic die in another package.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Ravindra Vaman SHENOY, Kwan-yu LAI, Jon Bradley LASITER, Philip Jason STEPHANOU, Donald William KIDWELL, JR., Evgeni GOUSEV
  • Publication number: 20150091150
    Abstract: A method for fabricating a POP structure is disclosed. First, a first package is provided, which has: a dielectric layer; a stacked circuit layer embedded in the dielectric layer and exposed from upper and lower surfaces of the dielectric layer; a plurality of conductive posts and a semiconductor chip disposed on the upper surface of the dielectric layer and electrically connected to the stacked circuit layer; and an encapsulant formed on upper surface of the dielectric layer for encapsulating the semiconductor chip and the conductive posts and having a plurality of openings for exposing top ends of the conductive posts. Then, a second package is disposed on the encapsulant and electrically connected to the conductive posts. The formation of the conductive posts facilitates to reduce the depth of the openings of the encapsulant, thereby reducing the fabrication time and increasing the production efficiency and yield.
    Type: Application
    Filed: May 29, 2014
    Publication date: April 2, 2015
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Pang-Chun Lin, Wei-Ping Wang, Chun-Yuan Li, Shao-tzu Tang, Ying-Chou Tsai
  • Publication number: 20150091187
    Abstract: A method for 3D device packaging utilizes through-hole metal post techniques to mechanically and electrically bond two or more dice. The first die includes a set of through-holes extending from a first surface of the first die to a second surface of the first die. The second die includes a third surface and a set of metal posts. The first die and the second die are stacked such that the third surface of the second die faces the second surface of the first die, and each metal post extends through a corresponding through-hole to a point beyond the first surface of the first die, electrically coupling the first die and the second die.
    Type: Application
    Filed: June 12, 2014
    Publication date: April 2, 2015
    Inventors: Douglas M. Reber, Mehul D. Shroff, Edward O. Travis
  • Publication number: 20150091178
    Abstract: A method for 3D device packaging utilizes through-substrate pillars to mechanically and electrically bond two or more dice. The first die includes a set of access holes extending from a surface of the first die to a set of pads at a metal layer of the first die. The second die includes a set of metal pillars. The first die and the second die are stacked such that each metal pillar extends from a surface of the second die to a corresponding pad via a corresponding access hole. The first die and second die are mechanically and electrically bonded via solder joints formed between the metal pillars and the corresponding pads.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Douglas M. Reber, Mehul D. Shroff, Edward O. Travis
  • Publication number: 20150091131
    Abstract: A method including a printed circuit board electrically coupled to a bottom of a laminate substrate, the laminate substrate having an opening extending through the entire thickness of the laminate substrate, a main die electrically coupled to a top of the laminate substrate, a die stack electrically coupled to a bottom of the main die, the die stack including one or more chips stacked vertically and electrically coupled to one another, the die stack extending into the opening of the laminate substrate, and an interposer positioned between and electrically coupled to a topmost chip and the printed circuit board, the interposer providing an electrical path from the printed circuit board to the topmost chip of the die stack.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 2, 2015
    Applicant: International Business Machines Corporation
    Inventors: Mark C. Lamorey, Janak G. Patel, Peter Slota, JR., David B. Stone
  • Patent number: 8994162
    Abstract: A single metal layer tape substrate includes a patterned metal layer affixed to a patterned dielectric layer. The dielectric layer is patterned to provide openings exposing lands and bond sites on bond fingers on the land side of the metal layer. The metal layer is patterned to provide circuit traces as appropriate for interconnection with the die (on the die attach side) and with other elements (such as other packages in a multi-package module). Interconnection with a die is made by wire bonding to exposed traces on a die attach side of the metal layer, and bond fingers and lands for access to testing the package are provided on the opposite (land) side of the metal layer.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: March 31, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventor: Marcos Karnezos
  • Patent number: 8994191
    Abstract: The present invention relates to die-die stacking structure and the method for making the same. The die-die stacking structure comprises a top die having a bottom surface, a first insulation layer covering the bottom surface of the top die, a bottom die having a top surface, a second insulation layer covering the top surface of the bottom die, a plurality of connection members between the top die and the bottom die and a protection material between the first insulation layer and the second insulation layer. The plurality of connection members communicates the top die with the bottom die. The protection material bridges the plurality of connection members to form a mesh layout between the first insulation layer and the second insulation layer.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: March 31, 2015
    Assignee: Advanced Micro Devices (Shanghai) Co. Ltd.
    Inventors: I-Tseng Lee, Yi Hsiu Liu
  • Patent number: 8993377
    Abstract: A semiconductor wafer has first and second opposing surfaces. A plurality of conductive vias is formed partially through the first surface of the semiconductor wafer. The semiconductor wafer is singulated into a plurality of first semiconductor die. The first semiconductor die are mounted to a carrier. A second semiconductor die is mounted to the first semiconductor die. A footprint of the second semiconductor die is larger than a footprint of the first semiconductor die. An encapsulant is deposited over the first and second semiconductor die and carrier. The carrier is removed. A portion of the second surface is removed to expose the conductive vias. An interconnect structure is formed over a surface of the first semiconductor die opposite the second semiconductor die. Alternatively, a first encapsulant is deposited over the first semiconductor die and carrier, and a second encapsulant is deposited over the second semiconductor die.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: March 31, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Jun Mo Koo, Pandi C. Marimuthu, Seung Wook Yoon, Il Kwon Shim
  • Publication number: 20150084205
    Abstract: A semiconductor device comprises a plurality of conductors for connecting another semiconductor device. Each conductor connects to a chip select pad within the semiconductor device through an upper vertical connection formed through an insulation layer formed on a substrate or connected to a straight vertical connection formed through the substrate and the insulation layer. The semiconductor device further comprises a plurality of lower vertical connections formed through the substrate and correspondingly connecting to the chip select pads and a chip select terminal. The chip select terminal electrically connects to the die circuit of the semiconductor device while the chip select pads are electrically isolated from the die circuit. The lower vertical connections and the straight vertical connection can be arranged in two dimensions.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 26, 2015
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventor: PO CHUN LIN
  • Patent number: 8987875
    Abstract: An assembly for packaging one or more electronic devices in die form. The assembly includes substrates on opposite sides of the assembly, with lead frames between the electronic devices and the substrates. The substrates, lead frames, and electronic devices are sintered together using silver-based sintering paste between each layer. The material and thicknesses of the substrates and lead frames are selected so stress experienced by the electronic devices caused by changes in temperature of the assembly are balanced from the center of the assembly, thereby eliminating the need for balancing stresses at a substrate level by applying substantially matching metal layers to both sides of the substrates.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: March 24, 2015
    Assignee: Delphi Technologies, Inc.
    Inventors: Carl W. Berlin, Gary L. Eesley
  • Patent number: 8987056
    Abstract: A method of manufacture of a semiconductor package system includes: attaching an internal stacking module die to a surface of an internal stacking module substrate having an internal stacking module bonding pad along an edge of an opposite surface thereof; and attaching a support carrier to support the internal stacking module substrate by two edges thereof with the internal stacking module bonding pad exposed.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: March 24, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Jong-Woo Ha, Sung Yoon Lee, Taeg Ki Lim
  • Patent number: 8987833
    Abstract: In one implementation, a stacked composite device comprises a group IV lateral transistor and a group III-V transistor stacked over the group IV lateral transistor. A drain of the group IV lateral transistor is in contact with a source of the group III-V transistor, a source of the group IV lateral transistor is coupled to a gate of the group III-V transistor to provide a composite source on a top side of the stacked composite device, and a drain of the group III-V transistor provides a composite drain on the top side of the stacked composite device. A gate of the group IV lateral transistor provides a composite gate on the top side of the stacked composite device, and a substrate of the group IV lateral transistor is on a bottom side of the stacked composite device.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: March 24, 2015
    Assignee: International Rectifier Corporation
    Inventors: Tim McDonald, Michael A. Briere
  • Patent number: 8987868
    Abstract: Method and apparatus for programmable heterogeneous integration of stacked semiconductor die are described. In some examples, a semiconductor device includes a first integrated circuit (IC) die including through-die vias (TDVs); a second IC die vertically stacked with the first IC die, the second IC die including inter-die contacts electrically coupled to the TDVs; the first IC die including heterogeneous power supplies and a mask-programmable interconnect, the mask-programmable interconnect mask-programmed to electrically couple a plurality of the heterogeneous power supplies to the TDVs; and the second IC die including active circuitry, coupled to the inter-die contacts, configured to operate using the plurality of heterogeneous power supplies provided by the TDVs.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: March 24, 2015
    Assignee: Xilinx, Inc.
    Inventor: Arifur Rahman
  • Patent number: 8987053
    Abstract: A semiconductor package including a plurality of stacked semiconductor die, and methods of forming the semiconductor package, are disclosed. In order to ease wirebonding requirements on the controller die, the controller die may be mounted directly to the substrate in a flip chip arrangement requiring no wire bonds or footprint outside of the controller die. Thereafter, a spacer layer may be affixed to the substrate around the controller die to provide a level surface on which to mount one or more flash memory die. The spacer layer may be provided in a variety of different configurations.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: March 24, 2015
    Assignee: SanDisk Technologies Inc.
    Inventors: Suresh Upadhyayula, Hem Takiar
  • Publication number: 20150079733
    Abstract: A microelectronic assembly can include first, second and third stacked substantially planar elements, e.g., of dielectric or semiconductor material, and which may have a CTE of less than 10 ppm/° C. The assembly may be a microelectronic package and may incorporate active semiconductor devices in one, two or more of the first, second or third elements to function cooperatively as a system-in-a-package. In one example, an electrically conductive element having at least a portion having a thickness less than 10 microns, may be formed by plating, and may electrically connect two or more of the first, second or third elements. The conductive element may entirely underlie a surface of another one of the substantially planar elements.
    Type: Application
    Filed: September 22, 2014
    Publication date: March 19, 2015
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Piyush Savalia, Craig Mitchell
  • Patent number: 8980695
    Abstract: The present invention provides a method for manufacturing a semiconductor package structure, including (i) providing a carrier plate; (ii) disposing a die on the carrier plate; (iii) forming a plurality of bonding wires having a first end and a second end; (iv) forming an encapsulant covering the die and the bonding wires and exposing a portion of each of the bonding wires from a first surface thereof; (v) removing the carrier plate; (vi) forming a patterned conductive layer on a second surface of the encapsulant opposite to the first surface; (vii) electrically connecting the second ends of the bonding wires to the active surface of the die via the patterned conductive layer; and (viii) forming a plurality of first external connection terminals on the first surface of the encapsulant respectively covering the portions of the bonding wires exposed from the encapsulant.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: March 17, 2015
    Assignee: Chipmos Technologies Inc.
    Inventor: Tsung Jen Liao
  • Patent number: 8980687
    Abstract: A method of manufacturing a semiconductor device includes providing a transfer foil. A plurality of semiconductor chips is placed on and adhered to the transfer foil. The plurality of semiconductor chips adhered to the transfer foil is placed over a multi-device carrier. Heat is applied to laminate the transfer foil over the multi-device carrier, thereby accommodating the plurality of semiconductor chips between the laminated transfer foil and the multi-device carrier.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: March 17, 2015
    Assignee: Infineon Technologies AG
    Inventors: Ivan Nikitin, Stefan Landau, Joachim Mahler, Alexander Heinrich, Ralf Wombacher
  • Patent number: 8980693
    Abstract: A microelectronic assembly includes a first microelectronic package having a substrate with first and second opposed surfaces and substrate contacts thereon. The first package further includes first and second microelectronic elements, each having element contacts electrically connected with the substrate contacts and being spaced apart from one another on the first surface so as to provide an interconnect area of the first surface between the first and second microelectronic elements. A plurality of package terminals at the second surface are electrically interconnected with the substrate contacts for connecting the package with a component external thereto. A plurality of stack terminals are exposed at the first surface in the interconnect area for connecting the package with a component overlying the first surface of the substrate.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: March 17, 2015
    Assignee: Invensas Corporation
    Inventors: Belgacem Haba, Kyong-Mo Bang
  • Patent number: 8981577
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing an interposer having an interposer first side and an interposer second side opposing the interposer first side; mounting an integrated circuit to the interposer first side, the integrated circuit having a non-active side and an active side with the non-active side facing the interposer; connecting first interconnects between the active side and the interposer first side, the first interconnects having a first density on the interposer first side; mounting the interposer over a package carrier with the interposer first side facing the package carrier; connecting second interconnects between the package carrier and the interposer second side, the second interconnects having a second density on the interposer second side, the second density that is approximately the same as the first density; and forming an encapsulation over the package carrier covering the interposer and the second interconnects.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: March 17, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventor: Mukul Joshi
  • Publication number: 20150069635
    Abstract: Provided are semiconductor packages and methods of fabricating the same. The method may include mounting a first semiconductor chip including chip and heat-transfer regions and a lower heat-transfer pattern disposed on the heat-transfer region, on a substrate, mounting a second semiconductor chip on the chip region of the first semiconductor chip, forming a mold layer on the substrate to enclose the first and second semiconductor chips, forming an opening in the mold layer to expose at least a portion of the lower heat-transfer pattern, forming a heat-pathway pattern in the opening, and forming a heat-dissipating part on the second semiconductor chip and the mold layer to be connected to the heat-pathway pattern.
    Type: Application
    Filed: August 19, 2014
    Publication date: March 12, 2015
    Inventors: Wonkeun KIM, In-Young LEE, Chang-Seong JEON, Taeje CHO
  • Publication number: 20150069624
    Abstract: Recessed semiconductor die stacks. In some embodiments, a semiconductor device includes a first die including an active side and a back side, the back side including a non-recessed portion thicker than a recessed portion, the recessed portion including one or more through-die vias on a recessed surface; and a second die located in the recessed portion, the second die including an active side facing the recessed surface of the first die and coupled thereto through the one or more through-die vias. In another embodiment, a method includes creating a recess on a first die having a first thickness, the recess having a depth smaller than the first thickness; coupling a second die having a second thickness greater than the depth to the recess; and reducing the thickness of the second die by an amount equal to or greater than a difference between the second thickness and the depth.
    Type: Application
    Filed: September 12, 2013
    Publication date: March 12, 2015
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Tim V. Pham, Fonzell D. Martin, Derek S. Swanson
  • Publication number: 20150061110
    Abstract: A stacked chip layout includes a central processing chip has a first area and a first active circuit block over the central processing chip, the first active circuit block has a second area. The stacked chip layout further includes a second active circuit block over the first active circuit block, the second active circuit block has a third area, the second active circuit block partially overlaps the first active circuit block and exposes a portion of the first active circuit block. The stacked chip layout further includes a third active circuit block over the second active circuit block, the third active circuit block has a fourth area, the third active circuit block partially overlaps at least one of the first active circuit block or the second active circuit block, and the third active circuit block exposes a portion of the first active circuit block and the second active circuit block.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 5, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Ying-Yu HSU
  • Publication number: 20150064845
    Abstract: A method of fabricating an integrated circuit package assembly comprises forming solder bumps over a first surface of a first integrated circuit package. The method also comprises forming at least one first support structure over the first surface of the first integrated circuit package or over a second surface of a second integrated circuit package. The method further comprises mounting the first integrated circuit package over a second integrated circuit package. The first integrated circuit package is mounted over the second integrated circuit package with the first surface facing the second surface, and the at least one first support structure is electrically isolated.
    Type: Application
    Filed: November 6, 2014
    Publication date: March 5, 2015
    Inventor: Hsien-Wei CHEN
  • Publication number: 20150064846
    Abstract: A number of semiconductor chips each include a first main face and a second main face opposite to the first main face. A first encapsulation layer is applied over the second main faces of the semiconductor chips. An electrical wiring layer is applied over the first main faces of the first semiconductor chips. A second encapsulation layer is applied over the electrical wiring layer. The thickness of the first encapsulation layer and the thicknesses of the first semiconductor chips is reduced. The structure can be singulated to obtain a plurality of semiconductor devices.
    Type: Application
    Filed: November 7, 2014
    Publication date: March 5, 2015
    Inventors: Thomas Kilger, Ulrich Wachter, Dominic Maier, Gottfried Beer
  • Patent number: 8970045
    Abstract: Methods of fabricating semiconductor devices that include interposers include the formation of conductive vias through a material layer on a recoverable substrate. A carrier substrate is bonded over the material layer, and the recoverable substrate is then separated from the material layer to recover the recoverable substrate. A detachable interface may be provided between the material layer and the recoverable substrate to facilitate the separation. Electrical contacts that communicate electrically with the conductive vias may be formed over the material layer on a side thereof opposite the carrier substrate. Semiconductor structures and devices are formed using such methods.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: March 3, 2015
    Assignee: Soitec
    Inventor: Mariam Sadaka
  • Patent number: 8970023
    Abstract: A semiconductor device includes a first die having a first active surface and a first backside surface opposite the first active surface, a second die having a second active surface and a second backside surface opposite the second active surface, and an interposer, the first active surface of the first die being electrically coupled to a first side of the interposer, the second active surface of the second die being electrically coupled to a second side of the interposer. The semiconductor device also includes a first connector over the interposer, a first encapsulating material surrounding the second die, the first encapsulating material having a first surface over the interposer, and a via electrically coupling the first connector and the interposer. A first end of the via is substantially coplanar with the first surface of the first encapsulating material.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: March 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bruce C. S. Chou, Chih-Hsien Lin, Hsiang-Tai Lu, Jung-Kuo Tu, Tung-Hung Hsieh, Chen-Hua Lin, Mingo Liu
  • Patent number: 8970025
    Abstract: Provided is a method of forming a package-on-package. An encapsulation is formed to cover a wafer using a wafer level molding process. The wafer includes a plurality of semiconductor chips and a plurality of through silicon vias (TSVs) passing through the semiconductor chips. The encapsulant may have openings aligned with the TSVs. The encapsulant and the semiconductor chips are divided to form a plurality of semiconductor packages. Another semiconductor package is stacked on one selected from the semiconductor packages. The other semiconductor package is electrically connected to the TSVs.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: March 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Hun Kim, Jin-Woo Park, Dae-Young Choi, Mi-Yeon Kim, Sun-Hye Lee
  • Patent number: 8970046
    Abstract: A semiconductor package may include a substrate including a substrate connection terminal, at least one semiconductor chip stacked on the substrate and having a chip connection terminal, a first insulating layer covering at least portions of the substrate and the at least one semiconductor chip, and/or an interconnection penetrating the first insulating layer to connect the substrate connection terminal to the chip connection terminal. A semiconductor package may include stacked semiconductor chips, edge portions of the semiconductor chips constituting a stepped structure, and each of the semiconductor chips including a chip connection terminal; at least one insulating layer covering at least the edge portions of the semiconductor chips; and/or an interconnection penetrating the at least one insulating layer to connect to the chip connection terminal of each of the semiconductor chips.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: March 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young Lyong Kim, Taehoon Kim, Jongho Lee, Chul-Yong Jang
  • Publication number: 20150054140
    Abstract: A stack of a first and second semiconductor structures is formed. Each semiconductor structure includes: a semiconductor bulk, an overlying insulating layer with metal interconnection levels, and a first surface including a conductive area. The first surfaces of semiconductor structures face each other. A first interconnection pillar extends from the first surface of the first semiconductor structure. A housing opens into the first surface of the second semiconductor structure. The housing is configured to receive the first interconnection pillar. A second interconnection pillar protrudes from a second surface of the second semiconductor structure which is opposite the first surface. The second interconnection pillar is in electric contact with the first interconnection pillar.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 26, 2015
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventor: Laurent-Luc Chapelon
  • Patent number: 8963309
    Abstract: A semiconductor device includes a first substrate. A first semiconductor die is mounted to the first substrate. A bond wire electrically connects the first semiconductor die to the first substrate. A first encapsulant is deposited over the first semiconductor die, bond wire, and first substrate. The first encapsulant includes a penetrable, thermally conductive material. In one embodiment, the first encapsulant includes a viscous gel. A second substrate is mounted over a first surface of the first substrate. A second semiconductor die is mounted to the second substrate. The second semiconductor die is electrically connected to the first substrate. The first substrate is electrically connected to the second substrate. A second encapsulant is deposited over the first semiconductor die and second semiconductor die. An interconnect structure is formed on a second surface of the first substrate, opposite the first surface of the first substrate.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: February 24, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Byung Tai Do, Seng Guan Chow, Heap Hoe Kuan, Linda Pei Ee Chua, Rui Huang
  • Patent number: 8964369
    Abstract: In an example, a solid-state data storage system comprises a housing forming an enclosure; a plurality of trays within the enclosure of the housing; a plurality of non-volatile, rewriteable solid-state memory chips mounted to flexible circuit substrates within each of the trays; and a controller configured to apply a power-sequencing scheme that supplies power to active flexible memory strands.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: February 24, 2015
    Assignee: Imation Corp.
    Inventor: Todd W. Abrahamson
  • Patent number: 8963312
    Abstract: A stacked chip package including a device substrate having an upper surface, a lower surface and a sidewall is provided. The device substrate includes a sensing region or device region, a signal pad region and a shallow recess structure extending from the upper surface toward the lower surface along the sidewall. A redistribution layer is electrically connected to the signal pad region and extends into the shallow recess structure. A wire has a first end disposed in the shallow recess structure and electrically connected to the redistribution layer, and a second end electrically connected to a first substrate and/or a second substrate disposed under the lower surface. A method for forming the stacked chip package is also provided.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: February 24, 2015
    Assignee: Xintec, Inc.
    Inventors: Yen-Shih Ho, Tsang-Yu Liu, Shu-Ming Chang, Yu-Lung Huang, Chao-Yen Lin, Wei-Luen Suen, Chien-Hui Chen
  • Publication number: 20150048493
    Abstract: In one embodiment, a semiconductor package includes a circuit substrate, a plurality of semiconductor chips stacked on the circuit substrate, insulating adhesive patterns interposed between the semiconductor chips, a heat slug provided on an uppermost semiconductor chip and adhered to the uppermost semiconductor chip by a heat dissipative adhesive pattern, and a mold structure provided on the circuit substrate to cover sidewalls of the semiconductor chips, the insulating adhesive patterns, the heat dissipative adhesive pattern and the heat slug. A failure of the semiconductor package during a manufacturing process of the mold structure may be reduced. The semiconductor package may therefore have good operating characteristics and reliability.
    Type: Application
    Filed: June 28, 2014
    Publication date: February 19, 2015
    Inventors: Tae-Hong MIN, Young-Kun JEE, Tae-Je CHO
  • Publication number: 20150048500
    Abstract: A device comprises a first chip and a second chip stacked together to form a multi-chip structure, wherein the multi-chip structure is embedded in an encapsulation layer. The device further comprises a redistribution layer formed on a top surface of a first side of the encapsulation layer, wherein the redistribution layer is connected to active circuits of the first chip and the second chip and the redistribution layer extends beyond at least one edge of the first chip and the second chip.
    Type: Application
    Filed: February 11, 2014
    Publication date: February 19, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Der-Chyang Yeh
  • Patent number: 8957516
    Abstract: A low cost and high performance flip chip package is disclosed. By assembling the package using a substrate panel level process, a separate fabrication of a substrate is avoided, thus enabling the use of a coreless substrate. The coreless substrate may include multiple stacked layers of laminate dielectric films having conductive traces and vias. As a result, electrical connection routes may be provided directly from die contact pads to package contact pads without the use of conventional solder bumps, thus accommodating very high density semiconductor dies with small feature sizes. The disclosed flip chip package provides lower cost, higher electrical performance, and improved thermal dissipation compared to conventional fabricated substrates with solder bumped semiconductor dies.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: February 17, 2015
    Assignee: Broadcom Corporation
    Inventors: Mengzhi Pang, Ken Zhonghua Wu, Matthew Kaufmann
  • Patent number: 8956914
    Abstract: An integrated circuit package system comprising: forming a substrate having a solder mask with a support structure formed from the solder mask; mounting a first integrated circuit device over the support structure; connecting the substrate and the first integrated circuit device; and encapsulating the first integrated circuit device and the support structure.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: February 17, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Ja Eun Yun, Jong Wook Ju
  • Publication number: 20150044821
    Abstract: A multi-chip stack structure and a method for fabricating the same are provided.
    Type: Application
    Filed: October 27, 2014
    Publication date: February 12, 2015
    Inventors: Chung-Lun Liu, Jung-Pin Huang, Yi-Feng Chang, Chin-Huang Chang
  • Publication number: 20150041975
    Abstract: A semiconductor package includes a first package comprising a circuit board and a first semiconductor die mounded on the circuit board, and a second package comprising a mounting board. At least one second semiconductor die may be mounted on the mounting board, and one or more leads may be electrically connected to the mounting board and/or the second semiconductor die. An adhesion member may bond the first package to the second package, and an encapsulant may encapsulate the first package and the second package. the circuit board, the mounting board, and the one or more leads may be arranged to surround the first semiconductor die and the second semiconductor die, and the plurality of leads may be electrically connected to the circuit board and to a constant potential or ground, to reduce the effects of external electromagnetic interference upon the semiconductor package.
    Type: Application
    Filed: August 11, 2014
    Publication date: February 12, 2015
    Inventors: Ji Young Chung, Choon Heung Lee, Glenn Rinne, Byong Jin Kim
  • Publication number: 20150041976
    Abstract: A semiconductor device includes a first semiconductor chip having a pad electrode formed on an upper surface thereof; a resin section sealing the first semiconductor chip with the upper surface and a side surface of the first semiconductor chip being covered and a lower surface of die first semiconductor chip being exposed; a columnar electrode communicating between the upper surface and the lower surface of the resin section with the upper surface and the lower surface of the columnar electrode being exposed on the resin section and at least a part of the side surface of the columnar electrode being covered; and a bonding wire connecting the pad electrode and the columnar electrode with a part of the bonding wire being embedded in the columnar electrode as one end of the bonding wire being exposed on the lower surface of the columnar electrode and the remaining part of the bonding wire being covered with the resin section, and a method for manufacturing the same.
    Type: Application
    Filed: October 22, 2014
    Publication date: February 12, 2015
    Inventor: Kouichi MEGURO
  • Patent number: 8951840
    Abstract: A manufacturing method for Flip Chip on Chip (FCoC) package based on multi-row Quad Flat No-lead (QFN) package is provided wherein the lower surface of plate metallic base material are half-etched to form grooves. Insulation filling material is filled in the half-etched grooves. The upper surface of plate metallic base material is half-etched to form chip pad and multi-row of leads. Encapsulating first IC chip, second IC chip, solder bumps, underfill material, and metal wire to form an array of FCoC package based on the type of multi-row QFN package. Sawing and separating the FCoC package array, and forming FCoC package unit.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: February 10, 2015
    Assignee: Beijing University of Technology
    Inventors: Fei Qin, Guofeng Xia, Tong An, Chengyan Liu, Wei Wu, Wenhui Zhu
  • Patent number: 8951839
    Abstract: A semiconductor device has a semiconductor die mounted over the carrier. An encapsulant is deposited over the carrier and semiconductor die. The carrier is removed. A first interconnect structure is formed over the encapsulant and a first surface of the die. A second interconnect structure is formed over the encapsulant and a second surface of the die. A first protective layer is formed over the first interconnect structure and second protective layer is formed over the second interconnect structure prior to forming the vias. A plurality of vias is formed through the second interconnect structure, encapsulant, and first interconnect structure. A first conductive layer is formed in the vias to electrically connect the first interconnect structure and second interconnect structure. An insulating layer is formed over the first interconnect structure and second interconnect structure and into the vias. A discrete semiconductor component can be mounted to the first interconnect structure.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: February 10, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Pandi Chelvam Marimuthu
  • Patent number: 8945989
    Abstract: A stiffened semiconductor die package has a semiconductor die including an integrated circuit. The die has an active side with die bonding pads and an opposite inactive side. A conductive frame that acts as a ground plane surrounds all edges of the die and a mold compound covers the conductive frame and the edges of the die. A thermally conductive sheet is attached to the inactive side of the die. A dielectric support structure with external connector pads with solder deposits is attached to the active side of the die. The external connector pads are selectively electrically coupled to the die bonding pads.
    Type: Grant
    Filed: June 1, 2014
    Date of Patent: February 3, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kesvakumar V. C. Muniandy, Navas Khan Oratti Kalandar
  • Patent number: 8945986
    Abstract: One method of making an electronic assembly includes mounting one electrical substrate on another electrical substrate with a face surface on the one substrate oriented transversely of a face surface of the other substrate. The method also includes inkjet printing on the face surfaces a conductive trace that connects an electrical contact on the one substrate with an electrical connector on the other substrate. An electronic assembly may include a first substrate having a generally flat surface with a first plurality of electrical contacts thereon; a second substrate having a generally flat surface with a second plurality of electrical contacts thereon, the surface of the second substrate extending transversely of the surface of said first substrate; and at least one continuous conductive ink trace electrically connecting at least one of the first plurality of electrical contacts with at least one of the second plurality of electrical contacts.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: February 3, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Matthew David Romig, Lance Cole Wright, Leslie Edward Stark, Frank Stepniak, Sreenivasan K. Koduri
  • Patent number: 8945987
    Abstract: In a high volume method for manufacturing a microelectronic package, a spacer element and a first die, i.e., microelectronic element, can be attached face-down to a surface of a substrate, contacts on the first die facing a first through opening of the substrate. Then, a second die can be attached face-down atop the first die and the spacer element, contacts on the second die disposed beyond an edge of the first die and facing a second through opening in the substrate. Electrical connections can then be formed between each of the first and second dies and the substrate. The first and second dies can be transferred from positions of a single diced wafer which are selected to maximize compound speed bin yield of the microelectronic package.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 3, 2015
    Assignee: Invensas Corporation
    Inventors: Richard Dewitt Crisp, Wael Zohni, Belgacem Haba