Including Adhesive Bonding Step Patents (Class 438/118)
  • Patent number: 8741692
    Abstract: A method for forming semiconductor devices with wafer-level packaging (WLP) includes providing a silicon-on-insulator (SOI) substrate, forming a mask on a silicon layer of the SOI substrate, etching the silicon layer through openings in the mask to form elements initially bonded to but later released from an insulator layer of the SOI substrate, bonding a support substrate to the silicon layer, depositing metal over through holes in the support substrate to contact the silicon layer, and singulating the semiconductor devices from the bonded SOI substrate and the support substrate. The support substrate defines depressions opposite the elements so the elements are not bonded to the support substrate. Each semiconductor device includes a hermetically sealed package having a portion of the SOI substrate and a portion of the support substrate.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: June 3, 2014
    Assignee: Advanced NuMicro Systems, Inc.
    Inventor: Yee-Chung Fu
  • Patent number: 8742568
    Abstract: A circuit board (1) exhibits an average coefficient of thermal expansion (A) of the first insulating layer (21) in the direction along the substrate surface in a temperature range from 25 degrees C. to its glass transition point of equal to or higher than 3 ppm/degrees C. and equal to or lower than 30 ppm/degrees C. Further, an average coefficient of thermal expansion (B) of the second insulating layer (23) in the direction along the substrate surface in a temperature range from 25 degrees C. to its glass transition point is equivalent to an average coefficient of thermal expansion (C) of the third insulating layer (25) in the direction along the substrate surface in a temperature range from 25 degrees C. to its glass transition point. (B) and (C) are larger than (A), and a difference between (A) and (B) and a difference between (A) and (C) are equal to or higher than 5 ppm/degrees C. and equal to or lower than 35 ppm/degrees C.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: June 3, 2014
    Assignee: Sumitomo Bakelite Company, Ltd.
    Inventors: Masayoshi Kondo, Natsuki Makino, Daisuke Fujiwara, Yuka Ito
  • Publication number: 20140145319
    Abstract: In accordance with an embodiment of the present invention, a semiconductor device includes a semiconductor chip having a first side and an opposite second side, and a chip contact pad disposed on the first side of the semiconductor chip. A dielectric liner is disposed over the semiconductor chip. The dielectric liner includes a plurality of openings over the chip contact pad. A interconnect contacts the semiconductor chip through the plurality of openings at the chip contact pad.
    Type: Application
    Filed: November 26, 2012
    Publication date: May 29, 2014
    Applicant: INFINEON TECHNOLOGIES DRESDEN GMBH
    Inventors: Dirk Meinhold, Frank Daeche, Thorsten Scharf
  • Patent number: 8735221
    Abstract: Provided are a stacked package, method of fabricating a stacked package, and method of mounting a stacked package. A method includes providing an upper semiconductor package including an upper package substrate, upper semiconductor chips formed on a top surface of the upper package substrate, and first solders formed on a bottom surface of the upper package substrate and having a first melting temperature, providing a lower semiconductor package including a lower package substrate, lower semiconductor chips formed on a top surface of the lower package substrate, and solder paste nodes formed on the top surface of the lower package substrate and having a second melting temperature lower than the first melting temperature, and forming inter-package bonding units by attaching respective first solders and solder paste nodes to each other by performing annealing at a temperature higher than the second melting temperature and lower than the first melting temperature.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 27, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Wook Yoo, Sun-Kyoung Seo
  • Patent number: 8736078
    Abstract: A chip package includes a PCB, a connecting pad fixed on a surface of the PCB and a chip fixed on the connecting pad. The connecting pad includes a first metal film on its surface facing away from the PCB. The chip includes a second metal film formed on its surface opposite to the PCB. The first and the second metal are connected to each other via a eutectic manner.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: May 27, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Kai-Wen Wu
  • Patent number: 8735218
    Abstract: A method of producing an electronic module with at least one electronic component and one carrier. A structure is provided on the carrier so that the electronic component can take a desired target position relative to the structure. The structure is coated with a liquid meniscus suitable for receiving the electronic component. Multiple electronic components are provided at a delivery point for the electronic components. The carrier, with the structure, is moved nearby and opposite to the delivery point, where the delivery point delivers one of the electronic components without contact, while the structure on the carrier is moving near the delivery point, so that after a phase of free movement the electronic component at least partly touches the material, and the carrier, with the structure, is moved to a downstream processing point, while the electronic component aligns itself to the structure on the liquid meniscus.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: May 27, 2014
    Assignee: Muehlbauer AG
    Inventors: Michael Max Mueller, Helfried Zabel, Hans-Peter Monser
  • Patent number: 8728910
    Abstract: To provide an olefinic expandable substrate and a dicing film that exhibits less contamination characteristics, high expandability without necking, which cannot be achieved by conventional olefinic expandable substrates. In order to achieve the object, an expandable film comprises a 1-butene-?-olefin copolymer (A) having a tensile modulus at 23° C. of 100 to 500 MPa and a propylenic elastomer composition (B) comprising a propylene-?-olefin copolymer (b1) and having a tensile modulus at 23° C. of 10 to 50 MPa, wherein the amount of the component (B) is 30 to 70 weight parts relative to 100 weight parts in total of components (A) and (B).
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: May 20, 2014
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Eiji Hayashishita, Katsutoshi Ozaki, Mitsuru Sakai, Setsuko Oike
  • Patent number: 8728868
    Abstract: Provided is a method for manufacturing a semiconductor device, which prevents waste generation from being caused peeling of films and prevents failure of peeling from being caused by waste due to peeling of films. A first semiconductor substrate is used which has a structure in which a peeling layer is not formed in a section subjected to a first dividing treatment, so that the peeling layer is not exposed at the end surface of a second semiconductor substrate when the second semiconductor substrate is cut out of the first semiconductor substrate. In addition, a supporting material is provided on a layer to be peeled of the second semiconductor substrate before the second semiconductor substrate is subjected to a second dividing treatment.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: May 20, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihiro Chida, Yoshiaki Oikawa, Chiho Kawanabe
  • Patent number: 8728867
    Abstract: A manufacturing of a semiconductor device includes forming one of a layer with a first metal and the layer with a second metal on one of a semiconductor chip mounting area of a support plate and a back surface of the semiconductor chip; forming the other of the layer with the first metal and the layer with the second metal on an area corresponding to a part of the area, in which one of the layer with the first metal and the layer with the second metal, of the other one of the semiconductor chip mounting area and the back surface of the semiconductor chip; and forming a layer which includes an alloy with the first metal and the second metal after positioning the semiconductor chip in the semiconductor chip mounting area to bond the semiconductor chip with the semiconductor chip mounting area.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: May 20, 2014
    Assignee: Fujitsu Limited
    Inventors: Kozo Shimizu, Keishiro Okamoto, Nobuhiro Imaizumi, Tadahiro Imada, Keiji Watanabe
  • Publication number: 20140134800
    Abstract: Methods for temporary wafer molding for chip-on-wafer assembly may include bonding one or more semiconductor die to an interposer wafer, applying a temporary mold material to encapsulate the bonded die, and backside processing the interposer, which may be singulated to generate assemblies comprising the bonded die, the interposer die, which may be bonded to packaging substrates. The temporary mold material may be removed and the bonded die may be tested. Additional die may be bonded to the assemblies based on the electrical testing. The interposer may be singulated utilizing one or more of: a laser cutting process, reactive ion etching, a sawing technique, and a plasma etching process. The backside processing may comprise thinning the interposer wafer to expose through-silicon-vias (TSVs) and placing metal contacts on the exposed TSVs. The die may be bonded to the interposer utilizing a mass reflow or thermal compression process.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 15, 2014
    Inventors: Michael G. Kelly, David Jon Hiner, Ronald Patrick Huemoeller
  • Publication number: 20140134803
    Abstract: Methods for a semiconductor device package with a die-to-die first bond are disclosed and may include bonding one or more semiconductor die comprising electronic devices to an interposer die. An underfill material may be applied between the semiconductor die and the interposer die, and a mold material may be applied to encapsulate the semiconductor die. The interposer die may be thinned to expose through-silicon-vias (TSVs). The bonding of the semiconductor die may comprise adhering the semiconductor die to an adhesive layer, and bonding the semiconductor die to the interposer die. The semiconductor die may comprise micro-bumps for coupling to the interposer die, wherein the bonding comprises: positioning the micro-bumps in respective wells in a layer disposed on the interposer die; and bonding the micro-bumps to the interposer die. The semiconductor die may be bonded to the interposer die utilizing a mass reflow process or a thermal compression process.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 15, 2014
    Inventors: Michael G. Kelly, Ronald Patrick Huemoeller, Won Chul Do
  • Publication number: 20140134804
    Abstract: Methods and systems for a semiconductor device package with a die-to-packing substrate first bond are disclosed and may include bonding a first semiconductor die to a packaging substrate, applying an underfill material between the first semiconductor die and the packaging substrate, and bonding one or more additional die to the first semiconductor die. The additional die may comprise electronic devices. The first semiconductor die may comprise an interposer die or may comprise electronic devices. The first semiconductor die may be bonded to the packaging substrate utilizing a mass reflow process or a thermal compression process. The additional die may be bonded to the first die utilizing a mass reflow process or a thermal compression process. The bonded die may be encapsulated in a mold material, which may comprise a polymer. The one or more additional die may comprise micro-bumps for coupling to the first semiconductor die.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 15, 2014
    Inventors: Michael G. Kelly, Ronald Patrick Huemoeller, Won Chul Do, David Jon Hiner
  • Publication number: 20140131897
    Abstract: A flexible substrate may be provided having a first side and a second side. A device may be electrically coupled to the first side of the flexible substrate through one or more electrical connections. A warpage control device may be attached to the second side flexible substrate. The warpage control device may include an adhesive layer and a rigid layer. The warpage control device may be formed in an area of the second side of the flexible substrate that may be opposite the one or more electrical connections on the first side of the flexible substrate.
    Type: Application
    Filed: March 1, 2013
    Publication date: May 15, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
  • Patent number: 8723317
    Abstract: A trench MOSFET with embedded schottky rectifier having at least one anti-punch through implant region using reduced masks process is disclosed for avalanche capability enhancement and cost reduction. The source regions have a higher doping concentration and a greater junction depth along sidewalls of the trenched source-body contacts than along adjacent channel regions near the gate trenches.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 13, 2014
    Assignee: Force Mos Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Patent number: 8722513
    Abstract: The present invention relates to a semiconductor chip stack package and a manufacturing method thereof, and more particularly, to a semiconductor chip stack package and a manufacturing method thereof in which a plurality of chips can be rapidly arranged and bonded without a precise device or operation so as to improve productivity.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: May 13, 2014
    Assignee: Korea Institute of Machinery & Materials
    Inventors: Jae-Hak Lee, Chang-Woo Lee, Joon-Yub Song, Tae-Ho Ha
  • Patent number: 8722467
    Abstract: A die attach method for a semiconductor chip with a back metal layer located at the back surface of the semiconductor chip comprises the steps of forming a bonding ball array including a plurality of bonding balls with a same height on a die attach area at a top surface of a die paddle; depositing a die attach material in the bonding ball array area with a thickness of the die attach material equal or slightly larger than the height of the bonding ball; attaching the semiconductor chip to the die attach area at the top surface of the die paddle by the die attach material, wherein the bonding ball array controls the bond line thickness of the die attach material between the back metal layer and the top surface of the die paddle and prevents the semiconductor chip from rotating on the die attach material when it is melted.
    Type: Grant
    Filed: June 30, 2012
    Date of Patent: May 13, 2014
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Lei Shi, Aihua Lu, Yan Xun Xue
  • Patent number: 8723336
    Abstract: According to an embodiment, a semiconductor light emitting device includes a light emitting body including a semiconductor light emitting layer, a support substrate supporting the light emitting body, and a bonding layer provided between the light emitting body and the support substrate, the bonding layer bonding the light emitting body and the support substrate together. The device also includes a first barrier metal layer provided between the light emitting body and the bonding layer, and an electrode provided between the light emitting body and the first barrier metal layer. The first barrier layer includes a first layer made of nickel and a second layer made of a metal having a smaller linear expansion coefficient than nickel, and the first layer and the second layer are alternately disposed in a multiple-layer structure. The electrode is electrically connected to the light emitting body.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: May 13, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yasuharu Sugawara
  • Publication number: 20140124939
    Abstract: A method of making an electronic device having a discrete device mounted on a surface of an electronic die with both the discrete device and the die connected by heat cured conductive ink and covered with cured encapsulant including placing the discrete device on the die; and keeping the temperature of each of the discrete device and the die below about 200° C. Also disclosed is a method of electrically attaching a discrete device to a substrate that includes placing the device on the substrate, applying conductive ink that connects at least one terminal on the device to at least one contact on the substrate and curing the conductive ink. Also disclosed is an IC package with a discrete electrical device having electrical terminals; an electrical substrate having contact pads on a surface thereof; and cured conductive ink connecting at least one of the electrical terminals with at least one of the contact pads.
    Type: Application
    Filed: November 5, 2012
    Publication date: May 8, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Matthew David Romig, Lance Cole Wright, Leslie Edward Stark, Frank Stepniak, Sreenivasan K. Koduri
  • Patent number: 8716068
    Abstract: In fabricating a semiconductor device first layers are formed of sintered bondable and solderable metal on a carrier strip. The first layers are patterned into first pads and second pads. A set of first pads is surrounding each second pad. The first pads are spaced from the second pad by gaps. The patterned layers are formed of agglomerate metal vertically on the first layers of sintered bondable and solderable metal of the first pads and of the second pad. The second layers are formed of sintered bondable and solderable metal vertically on the layers of agglomerate metal of the first pads.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: May 6, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Darvin R. Edwards, Siva P. Gurrum, Masood Murtuza, Matthew D. Romig, Kazunori Hayata
  • Patent number: 8716867
    Abstract: A method of forming a device includes printing conductive patterns on a dielectric sheet to form a pre-ink-printed sheet, and bonding the pre-ink-printed sheet onto a side of a substrate. The conductive feature includes a through-substrate via extending from a first major side of the substrate to a second major side of the substrate opposite the first major side. A conductive paste is then applied to electrically couple conductive patterns to a conductive feature in the substrate.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: May 6, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Francis Ko, Chi-Chun Hsieh, Shang-Yun Hou, Wen-Chih Chiou, Shin-Puu Jeng, Chen-Hua Yu
  • Patent number: 8716108
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a circuit substrate having an active side opposite to an inactive portion; attaching a nonconductive cover to the active side; forming a separation-gap partially cutting into the nonconductive cover and the circuit substrate to a kerf depth; attaching a back-grinding tape to the nonconductive cover; removing a portion of the inactive portion; and exposing the nonconductive cover by removing the back-grinding tape.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: May 6, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: Hun Teak Lee, DaeWook Yang, Yeongbeom Ko
  • Publication number: 20140120663
    Abstract: A semiconductor package component (3) is mounted on a substrate (1) in such a manner that an electrode (2) of the substrate (1) and an electrode of the semiconductor package component (3) are brought into contact with each other through a joining material (4). A reinforcing adhesive (5c) is applied between the substrate (1) and the outer surface of the semiconductor package component (3). Then, reflow is performed to melt the joining metal (4) with the reinforcing adhesive (5c) uncured. After the reinforcing adhesive (5c) is cured, the joining metal (4) is solidified.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 1, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Naomichi OHASHI, Atsushi YAMAGUCHI, Arata KISHI, Masato UDAKA, Seiji TOKII
  • Patent number: 8710649
    Abstract: A method of forming an electronic component package includes coupling a first surface of an electronic component to a first surface of a first dielectric strip, the electronic component comprising bond pads on the first surface; forming first via apertures through the first dielectric strip to expose the bond pads; and filling the first via apertures with an electrically conductive material to form first vias electrically coupled to the bond pads. The bond pads are directly connected to the corresponding first vias without the use of a solder and without the need to form a solder wetting layer on the bond pads.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: April 29, 2014
    Inventors: Ronald Patrick Huemoeller, Sukianto Rusli, David Razu
  • Patent number: 8709197
    Abstract: A bonding material is placed on an electronic component. a heat conductive member is superposed on the surface of the bonding material so that a thermosetting adhesive is interposed between the heat conductive member and a substrate. The thermosetting adhesive is then cured at a temperature lower than the melting point of the bonding material. The bonding material melts after the thermosetting adhesive has cured. While a distance is maintained between the heat conductive member and the substrate, the thermosetting adhesive is cured. The heat conductive member is thus reliably prevented from a downward movement regardless of the melting of the bonding material. A space is maintained between the heat conductive member and the electronic component. The cured bonding material is reliably prevented from suffering from a reduction in the thickness.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: April 29, 2014
    Assignee: Fujitsu Limited
    Inventor: Tsuyoshi So
  • Patent number: 8710859
    Abstract: Disclosed is a method for testing multi-chip stacked packages. Initially, one or more substrate-less chip cubes are provided, each consisting of a plurality of chips such as chips stacked together having vertically connected with TSV's where there is a stacked gap between two adjacent chips. Next, the substrate-less chip cubes are adhered onto an adhesive tape where the adhesive tape is attached inside an opening of a tape carrier. Then, a filling encapsulant is formed on the adhesive tape to completely fill the chip stacked gaps. Next, the tape carrier is fixed on a wafer testing carrier in a manner to allow the substrate-less chip cubes to be loaded into a wafer tester without releasing from the adhesive tape. Accordingly, the probers of the wafer tester can be utilized to probe testing electrodes of the substrate-less chip cubes so that it is easy to integrate this testing method in TSV fabrication processes.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 29, 2014
    Assignee: Powertech Technology Inc.
    Inventor: Kai-Jun Chang
  • Patent number: 8709874
    Abstract: A conductive carrier having a first surface and a second surface is provided. The conductive trace layer is formed on the second surface of the conductive carrier. A conductive stud layer is formed on the conductive trace layer. A dielectric layer is formed on the conductive layer to encapsulate the conductive trace layer and the conductive stud layer. The conductive stud layer is exposed. A plating conductive layer is formed to envelop the conductive carrier, the dielectric layer and the exposed end of the conductive stud layer. A cavity is formed on the conductive carrier, wherein the conductive trace layer and the dielectric layer are exposed in the cavity. A surface finishing is formed on at least an exposed portion of the conductive stud layer. The plating conductive layer is removed.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: April 29, 2014
    Assignee: Advanpack Solutions Pte Ltd.
    Inventors: Hwee-Seng Jimmy Chew, Kian-Hock Lim, Oviso Dominador Jr Fortaleza, Shoa-Siong Raymond Lim
  • Patent number: 8709866
    Abstract: Some embodiments include methods of assembling integrated circuit packages in which at least two different conductive layers are formed over a bond pad region of a semiconductor die, and in which a conductive projection associated with an interposer is bonded through a gold ball to an outermost of the at least two conductive layers. The conductive layers may comprise one or more of silver, gold, copper, chromium, nickel, palladium, platinum, tantalum, titanium, vanadium and tungsten. In some embodiments, the bond pad region may comprise aluminum, an inner of the conductive layers may comprise nickel, an outer of the conductive layers may comprise gold, the conductive projection associated with the interposer may comprise gold; and the thermosonic bonding may comprise gold-to-gold bonding of the interposer projection to a gold ball, and gold-to-gold bonding of the outer conductive layer to the gold ball. Some embodiments include integrated circuit packages.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: April 29, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Setho Sing Fee, Lim Thiam Chye, Tongbi Jiang
  • Patent number: 8709878
    Abstract: A method of packaging imager devices and optics modules is disclosed which includes positioning an imager device and an optics module in each of a plurality of openings in a carrier body, introducing an encapsulant material into each of the openings in the carrier body and cutting the carrier body to singulate the plurality of imager devices and optics modules into individual units, each of which comprise an imager device and an optics module. A device is also disclosed which includes an imager device comprising a plurality of photosensitive elements and an optics module coupled to the imager device, the optics module comprising at least one lens that, when the optics module is coupled to the imager device, is positioned a fixed, non-adjustable distance from the plurality of photosensitive elements.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: April 29, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Todd Bolken, Scott Willmorth, Bradley Bitz
  • Patent number: 8709868
    Abstract: A method (90) entails placing (124) sensor elements (122) in an array (126) arranged to correspond with locations of controller dies (24) in a controller wafer (94) and encapsulating (128) the array (126) in a mold material (74) to form a panel (130) of the sensor elements (122). The sensor elements (122) include bond pads (42) that are concealed by a material section (116, 118) of the sensor elements (122). The controller wafer (94) is bonded (134) to the panel (130) to form a stacked wafer structure (136). After bonding, methodology (90) entails forming (140) conductive elements (60) on the controller wafer (95), removing material sections (100) from the controller wafer (94) and removing the material sections (116, 118) from the sensor elements (122) to expose the bond pads (42), forming (148) electrical interconnects (56), applying (152) packaging material (64), and singulating to produce sensor packages (20, 76).
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: April 29, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Philip H. Bowles
  • Publication number: 20140110859
    Abstract: Systems and methods are provided for the embedding of thin chips. A well region is generated in a substrate that includes a conductive material disposed on a flexible polymer. The standoff well region can be generated by pattern the conductive material, where the thin chip is embedded in the standoff well region. A cavity can be generated in the polymer layer to form a polymer well region, where the thin chip is embedded in the polymer well region.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 24, 2014
    Applicant: MC10, Inc.
    Inventor: MC10, Inc.
  • Publication number: 20140113413
    Abstract: A resin sealing sheet is cut into an adhesive sheet piece having an outer shape smaller than that of a wafer. The adhesive sheet piece is joined to a supporting adhesive tape together with a ring frame. The adhesive tape between the ring frame and the adhesive sheet piece is sandwiched by upper and lower housings to form a chamber. The wafer with a support board placed on a wafer holding table within the chamber faces to the adhesive sheet piece closely. The chamber is divided into two spaces by the adhesive tape. Differential pressure generated within the two spaces causes the adhesive tape and the adhesive sheet piece to cave and bend toward the wafer, whereby the adhesive sheet piece is joined to the wafer.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 24, 2014
    Applicant: NITTO DENKO CORPORATION
    Inventors: Masayuki Yamamoto, Yasuji Kaneshima, Naoki Ishii
  • Publication number: 20140110866
    Abstract: A system and method for chip package fabrication is disclosed. The chip package includes a base re-distribution layer having an opening formed therein, an adhesive layer having a window formed therein free of adhesive material, and a die affixed to the base re-distribution layer by way of the adhesive layer, the die being aligned with the window such that only a perimeter of the die contacts the adhesive layer. A shield element is positioned between the base re-distribution layer and adhesive layer that is generally aligned with the opening formed in the base re-distribution layer and the window of the adhesive layer such that only a perimeter of the shield element is attached to the adhesive layer. The shield element is separated from the die by an air gap and is configured to be selectively removable from the adhesive layer so as to expose the front surface of the die.
    Type: Application
    Filed: December 23, 2013
    Publication date: April 24, 2014
    Applicant: General Electric Company
    Inventors: Paul Alan McConnelee, Kevin Matthew Durocher, Scott Smith, Laura A. Principe
  • Patent number: 8703584
    Abstract: The present invention provides a dicing tape-integrated film for semiconductor back surface, which includes: a dicing tape including a base material and a pressure-sensitive adhesive layer provided on the base material; and a film for flip chip type semiconductor back surface provided on the pressure-sensitive adhesive layer, in which the film for flip chip type semiconductor back surface has a multilayered structure including a wafer adhesion layer and a laser mark layer, the wafer adhesion layer is formed of a resin composition containing a thermosetting resin component and, as an optional component, a thermoplastic resin component in an amount of less than 30% by weight relative to the whole amount of resin components, and the laser mark layer is formed of a resin composition containing a thermoplastic resin component in an amount of 30% by weight or more relative to the whole amount of resin components and, as an optional component, a thermosetting resin component.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: April 22, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Sadahito Misumi, Naohide Takamoto
  • Patent number: 8703537
    Abstract: The method of the preferred embodiments includes the steps of providing a base having a frame portion and a center portion; building a preliminary structure coupled to the base; removing a portion of the preliminary structure to define a series of devices and a plurality of bridges; removing the center portion of the base such that the frame portion defines an open region, wherein the plurality of bridges suspend the series of devices in the open region defined by the frame; and encapsulating the series of devices. The method is preferably designed for the manufacture of semiconductor devices, and more specifically for the manufacture of encapsulated implantable electrodes. The method, however, may be alternatively used in any suitable environment and for any suitable reason.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: April 22, 2014
    Assignee: NeuroNexus Technologies, Inc.
    Inventors: David S. Pellinen, Jamille Farraye Hetke, Daryl R. Kipke, Kc Kong, Rio J. Vetter, Mayurachat Ning Gulari
  • Patent number: 8704382
    Abstract: The present invention provides a film for flip chip type semiconductor back surface, which is to be formed on a back surface of a semiconductor element flip-chip connected on an adherend, the film including a wafer adhesion layer and a laser marking layer, in which the wafer adhesion layer has a light transmittance of 40% or more in terms of a light having a wavelength of 532 nm and the laser marking layer has a light transmittance of less than 40% in terms of a light having a wavelength of 532 nm.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: April 22, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Naohide Takamoto, Takeshi Matsumura, Goji Shiga
  • Patent number: 8703542
    Abstract: The embodiments of mechanisms of wafer-level packaging (WLP) described above utilize a planarization stop layer to determine an end-point of the removal of excess molding compound prior to formation of redistribution lines (RDLs). Such mechanisms of WLP are used to implement fan-out and multi-chip packaging. The mechanisms are also usable to manufacture a package including chips (or dies) with different types of external connections. For example, a die with pre-formed bumps can be packaged with a die without pre-formed bumps.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: April 22, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Jui-Pin Hung
  • Patent number: 8692389
    Abstract: The present invention provides a dicing tape-integrated film for semiconductor back surface, which includes: a dicing tape including a base material and a pressure-sensitive adhesive layer provided on the base material; and a film for flip chip type semiconductor back surface provided on the pressure-sensitive adhesive layer, in which a peel force (temperature: 23° C., peeling angle: 180°, tensile rate: 300 mm/min) between the pressure-sensitive adhesive layer of the dicing tape and the film for flip chip type semiconductor back surface is from 0.05 N/20 mm to 1.5 N/20 mm.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: April 8, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Naohide Takamoto, Takeshi Matsumura, Goji Shiga
  • Patent number: 8692288
    Abstract: Semiconductor structures and methods of manufacture semiconductors are provided which relate to heterojunction bipolar transistors. The structure includes two devices connected by metal wires on a same wiring level. The metal wire of a first of the two devices is formed by selectively forming a metal cap layer on copper wiring structures.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: April 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: James S. Dunn, Alvin J. Joseph, Anthony K. Stamper
  • Publication number: 20140091473
    Abstract: A semiconductor package and a method of forming a semiconductor package with one or more dies over an interposer die are provided. By forming a first redistribution structure over the interposer die with TSVs, the die(s) bonded to the interposer die can have edge(s) beyond the boundary of the interposer die. In addition, a second redistribution structure may be formed on the opposite surface of the interposer die from the redistribution structure. The second redistribution structure enables reconfiguration and fan-out of bonding structures for external connectors of the interposer die.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jing-Cheng LEN, Shang-Yun HOU
  • Patent number: 8685796
    Abstract: The electronic device includes a first interconnect layer and a second interconnect layer. The second interconnect layer is provided on the lower surface of the first interconnect layer. The first interconnect layer includes a via plug (first conductive plug). An end face of the via plug on the side of the second interconnect layer is smaller in area than the opposite end face. The via plug is exposed on the surface of the first interconnect layer facing the second interconnect layer. An insulating resin forming the first interconnect layer is higher in thermal decomposition temperature than an insulating resin forming the second interconnect layer.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: April 1, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Yoichiro Kurita, Koji Soejima, Masaya Kawano
  • Patent number: 8687030
    Abstract: There is provided an exposing device which includes an elongated optical head in which a plurality of light emitting portions are arranged, and a supporting member to which the optical head is adhered. The optical head and the supporting member are adhered by a first adhesive, and a second adhesive of which a modulus of elasticity after curing is lower than that of the first adhesive. The second adhesive is applied in a second adhesive area which is located at a boundary between the optical head and the supporting member and which is longer, in a longitudinal direction of the optical head, than a first adhesive area which is located at the boundary and to which the first adhesive is applied.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: April 1, 2014
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventor: Taizo Matsuura
  • Patent number: 8685860
    Abstract: A semiconductor structure and a manufacturing method thereof are provided. The method includes the following steps. Firstly, a semiconductor substrate having an active surface and a back surface is provided. The active surface is opposite to the back surface, and the semiconductor substrate includes at least one grounding pad disposed on the active surface. Secondly, at least one through silicon via is formed through the semiconductor substrate from the back surface to the active surface thus exposing the grounding pad. Then, a conductive layer is formed on the back surface of the semiconductor substrate and filled into the through silicon via to electrically connect to the grounding pad and the semiconductor substrate.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: April 1, 2014
    Assignee: Ineffable Cellular Limited Liability Company
    Inventor: Wen-Hsiung Chang
  • Publication number: 20140084439
    Abstract: A semiconductor device includes a substrate, a semiconductor chip mounted on the substrate, a plate-like member that is fixed on the semiconductor chip and has a thermal expansion coefficient different from that of the substrate, and a first adhesive that is provided between the substrate and the plate-like member, the first adhesive being connected to the plate-like member and separated from the substrate, or being separated from the plate-like member and connected to the substrate.
    Type: Application
    Filed: August 21, 2013
    Publication date: March 27, 2014
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Takumi Ihara
  • Publication number: 20140087518
    Abstract: A method of manufacturing a semiconductor device includes: supplying a supercritical fluid mixed with an under-fill material to a stacked unit, which has a plurality of stacked semiconductor chips; and filling the under-fill material in the space between the plurality of the semiconductor chips, by heating the stacked unit placed in the inside of the high-pressure vessel and curing the under-fill material flowing in the space between the plurality of the semiconductor chips by a polymerization reaction, while the supercritical fluid is being supplied.
    Type: Application
    Filed: November 22, 2013
    Publication date: March 27, 2014
    Applicant: Elpida Memory, Inc.
    Inventors: Hiroyuki ODE, Hiroaki IKEDA
  • Publication number: 20140084429
    Abstract: Techniques for achieving extremely thin package structures are disclosed. In some embodiments, a device comprises an integrated circuit connected to a leadframe or substrate via connections and EMC (Epoxy Molding Compound) surrounding the integrated circuit except at a backside of the integrated circuit and connecting areas via which the integrated circuit is connected to the leadframe or substrate.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 27, 2014
    Inventors: Chia Chuan Chen, Lung-Pao Chin, I-Kuo Lin
  • Publication number: 20140084449
    Abstract: A semiconductor housing includes a fixing mechanism and at least one side having structurings. A method for producing a semiconductor device is provided in which a thermally conductive paste is applied on the at least one side of the semiconductor housing and/or of a heat sink. The semiconductor housing is fixed to the heat sink by means of the fixing mechanism. A pressure is exerted on the thermally conductive paste by means of the fixing mechanism and the thermally conductive paste is diverted by means of diversion channels depending on the pressure exerted.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 27, 2014
    Inventors: Ralf Otremba, Josef Hoeglauer, Xaver Schloegel, Juergen Schredl
  • Publication number: 20140084491
    Abstract: A method for manufacturing an electronic device, the method includes: applying an adhesive film on a package board; placing an electronic component on the package board with a bump therebetween; applying a first load to the electronic component while heating the electronic component to a first temperature higher than a reaction start temperature of the adhesive film and lower than a melting point of the bump; reducing the first load to a second load lower than the first load while maintaining the first temperature; and heating the electronic component to a second temperature higher than or equal to the melting point of the bump while maintaining the second load.
    Type: Application
    Filed: June 20, 2013
    Publication date: March 27, 2014
    Inventors: Tetsuya TAKAHASHI, Yasuo MORIYA, Kimio NAKAMURA
  • Publication number: 20140087522
    Abstract: A die includes a metal pad, a passivation layer, and a patterned buffer layer over the passivation layer. The patterned buffer layer includes a plurality of discrete portions separated from each other. An under-bump-metallurgy (UBM) is formed in an opening in the patterned buffer layer and an opening in the passivation layer. A metal bump is formed over and electrically coupled to the UBM.
    Type: Application
    Filed: December 2, 2013
    Publication date: March 27, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Jung Yang, Chang-Pin Huang, Tzuan-Horng Liu, Michael Shou-Ming Tong, Ying-Ju Chen, Tung-Liang Shao, Hsien-Wei Chen, Hao-Yi Tsai, Mirng-Ji Lii
  • Publication number: 20140084436
    Abstract: To enhance the reliability of connection between a semiconductor chip and a metal plate by ensuring sufficiently the thickness of a conductive material interposed between the semiconductor chip and the metal plate. A lead frame is arranged over a jig and a clip frame is arranged over protruding portions provided on the jig. In this state, a heating process (reflow) is performed. In this case, high melting point solders filling first spaces are melted in a state in which the first space is formed between a High-MOS chip and a High-MOS clip and the first space is formed between a Low-MOS chip and a Low-MOS clip. At this time, even when the high melting point solder is melted in the first space, the size (in particular, the height) of the first space does not change and the first space is maintained.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 27, 2014
    Applicant: Renesas Electronics Corporation
    Inventors: Katsuhiko Funatsu, Tomoaki Uno, Toru Ueguri, Yasushi Takahashi
  • Patent number: 8680669
    Abstract: An electronic component includes a unit including an electronic device; and an opposite member opposing the electronic device, wherein the unit and the opposite member are bonded together with an adhering member disposed between the unit and the opposite member and having light-cured resin and inorganic particles dispersed in the light-cured resin; and wherein in a particle-diameter distribution of the inorganic particles by volume, a particle diameter having a cumulative value of distribution of 50 is 0.5 ?m or more, and a particle diameter having a cumulative value of distribution of 90% is 5.0 ?m or less.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: March 25, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yasushi Kurihara, Koji Tsuduki, Hiroaki Kobayashi