Having Field Effect Structure Patents (Class 438/135)
  • Publication number: 20150004757
    Abstract: A silicon carbide substrate includes: an n type drift layer having a first surface and a second surface opposite to each other; a p type body region provided in the first surface of the n type drift layer; and an n type emitter region provided on the p type body region and separated from the n type drift layer by the p type body region. A gate insulating film is provided on the p type body region so as to connect the n type drift layer and the n type emitter region to each other. A p type Si collector layer is directly provided on the silicon carbide substrate to face the second surface of the n type drift layer.
    Type: Application
    Filed: September 18, 2014
    Publication date: January 1, 2015
    Inventors: Keiji Wada, Toru Hiyoshi
  • Patent number: 8921888
    Abstract: A method for fabricating a semiconductor device includes the following steps. First, a semiconductor substrate is provided, and a first region, a second region and a third region are defined thereon. Then, a first well having a first conductive type is formed in the semiconductor substrate of the first region and the second region, respectively. A semiconductor layer partially overlapping the first well of the second region is formed. Furthermore, a second well having a second conductive type is formed in the semiconductor substrate of the third region and the first well of the second region respectively, where the second well of the second region is disposed underneath the semiconductor layer.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: December 30, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Yuan-Hsiang Chang, Sung-Bin Lin
  • Publication number: 20140374793
    Abstract: A p+ collector layer is provided in a rear surface of a semiconductor substrate which will be an n? drift layer and an n+ field stop layer is provided in a region which is deeper than the p+ collector layer formed on the rear surface side. A front surface element structure is formed on the front surface of the semiconductor substrate and then protons are radiated to the rear surface of the semiconductor substrate at an acceleration voltage corresponding to the depth at which the n+ field stop layer is formed. A first annealing process is performed at an annealing temperature corresponding to the proton irradiation to change the protons into donors, thereby forming a field stop layer. Then, annealing is performed using annealing conditions suitable for the conditions of a plurality of proton irradiation processes to recover each crystal defect formed by each proton irradiation process.
    Type: Application
    Filed: March 29, 2013
    Publication date: December 25, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Masayuki Miyazaki, Takashi Yoshimura, Hiroshi Takishita, Hidenao Kuribayashi
  • Publication number: 20140370665
    Abstract: A method for manufacturing a power semiconductor device is disclosed which can include: providing a wafer of a first conductivity type; and applying on a second main side of the wafer at least one of a dopant of the first conductivity type for forming a layer of the first conductivity type and a dopant of a second conductivity type for forming a layer of the second conductivity type. A Titanium layer with a metal having a melting point above 1300° C. is then deposited on the second main side. The Titanium deposition layer is annealed so that simultaneously an intermetal compound layer is formed at the interface between the Titanium deposition layer and the wafer and the dopant is diffused into the wafer. A first metal electrode layer is created on the second main side.
    Type: Application
    Filed: September 4, 2014
    Publication date: December 18, 2014
    Applicant: ABB Technology AG
    Inventors: Munaf RAHIMO, Chiara Corvasce, Jan Vobecky, Yoichi Otani
  • Publication number: 20140363931
    Abstract: An insulated gate bipolar transistor (IGBT) includes a first conductivity type substrate and a second conductivity type drift layer on the substrate. The second conductivity type is opposite the first conductivity type. The IGBT further includes a current suppressing layer on the drift layer. The current suppressing layer has the second conductivity type and has a doping concentration that is larger than a doping concentration of the drift layer. A first conductivity type well region is in the current suppressing layer. The well region has a junction depth that is less than a thickness of the current suppressing layer, and the current suppressing layer extends laterally beneath the well region. A second conductivity type emitter region is in the well region.
    Type: Application
    Filed: August 22, 2014
    Publication date: December 11, 2014
    Inventor: QINGCHUN ZHANG
  • Patent number: 8906751
    Abstract: Silicon controlled rectifiers (SCR), methods of manufacture and design structures are disclosed herein. The method includes forming a common P-well on a buried insulator layer of a silicon on insulator (SOI) wafer. The method further includes forming a plurality of silicon controlled rectifiers (SCR) in the P-well such that N+ diffusion cathodes of each of the plurality of SCRs are coupled together by the common P-well.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: December 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Michel J. Abou-Khalil, Kiran V. Chatty, Robert J. Gauthier, Jr., Junjun Li
  • Publication number: 20140357026
    Abstract: A method for producing a semiconductor device includes an implantation step of performing proton implantation from a rear surface of a semiconductor substrate of a first conductivity type and a formation step of performing an annealing process for the semiconductor substrate in an annealing furnace to form a first semiconductor region of the first conductivity type which has a higher impurity concentration than the semiconductor substrate after the implantation step. In the formation step, the furnace is in a hydrogen atmosphere and the volume concentration of hydrogen is in the range of 6% to 30%. Therefore, it is possible to reduce crystal defects in the generation of donors by proton implantation. In addition, it is possible to improve the rate of change into a donor.
    Type: Application
    Filed: March 18, 2013
    Publication date: December 4, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Yusuke Kobayashi, Takashi Yoshimura
  • Publication number: 20140354347
    Abstract: The present invention provides a bipolar transistor, a method for forming the bipolar transistor, a method for turning on the bipolar transistor, and a band-gap reference circuit, virtual ground reference circuit and double band-gap reference circuit with the bipolar transistor. The bipolar transistor includes: a Silicon-On-Insulator wafer; a base area, an emitter area and a collector area; a base area gate dielectric layer on a top silicon layer and atop the base area; a base area control-gate on the base area gate dielectric layer; an emitter electrode connected to the emitter area via a first contact; a collector electrode connected to the collector area via a second contact; and a base area control-gate electrode connected to the base area control-gate via a third contact.
    Type: Application
    Filed: August 19, 2014
    Publication date: December 4, 2014
    Inventors: MIN-HWA CHI, LIHYING CHING, DEYUAN XIAO
  • Patent number: 8895370
    Abstract: A vertical conduction power device includes respective gate, source and drain areas formed in an epitaxial layer on a semiconductor substrate. The respective gate, source and drain metallizations are formed by a first metallization level. The gate, source and drain terminals are formed by a second metallization level. The device is configured as a set of modular areas extending parallel to each other. Each modular area has a rectangular elongate source area perimetrically surrounded by a gate area, and a drain area defined by first and second regions. The first regions of the drain extend parallel to one another and separate adjacent modular areas. The second regions of the drain area extend parallel to one another and contact ends of the first regions of the drain area.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: November 25, 2014
    Assignee: STMicroelectronics S.R.L.
    Inventors: Ferruccio Frisina, Giuseppe Ferla, Angelo Magri′
  • Publication number: 20140339601
    Abstract: Dual-tub junction-isolated voltage clamp devices and methods of forming the same are provided herein. The voltage clamp device can provide junction-isolated protection to low voltage circuitry connected between first and second high voltage interface pins. In certain implementations, a voltage clamp device includes a PNPN protection structure disposed in a p-well, a PN diode protection structure disposed in an n-well positioned adjacent the p-well, a p-type tub surrounding the p-well and the n-well, and an n-type tub surrounding the p-type tub. The p-type tub and the n-type tub provide junction isolation, the p-type tub can be electrically floating, and the n-type tub can be electrically connected to the second pin. The first and second pins can operate at a voltage difference below the junction isolation breakdown, and the second pin can operate with higher voltage than the first pin.
    Type: Application
    Filed: May 16, 2013
    Publication date: November 20, 2014
    Applicant: Analog Devices Technology
    Inventors: Javier Alejandro Salcedo, David J. Clarke, Jonathan Glen Pfeifer
  • Publication number: 20140342511
    Abstract: A semiconductor structure and a method for forming the same are provided. The semiconductor structure comprises a first doped region, a second doped region, a doped strip and a top doped region. The first doped region has a first type conductivity. The second doped region is formed in the first doped region and has a second type conductivity opposite to the first type conductivity. The doped strip is formed in the first doped region and has the second type conductivity. The top doped region is formed in the doped strip and has the first type conductivity. The top doped region has a first sidewall and a second sidewall opposite to the first sidewall. The doped strip is extended beyond the first sidewall or the second sidewall.
    Type: Application
    Filed: August 1, 2014
    Publication date: November 20, 2014
    Inventors: Ching-Lin Chan, Chen-Yuan Lin, Cheng-Chi Lin, Shih-Chin Lien
  • Patent number: 8890240
    Abstract: A MOS transistor comprises a substrate, a first region formed over the substrate, a second region grown from the first region, a third region of formed in the second region, a first drain/source region formed in the third region, a first gate electrode formed in a first trench, a second drain/source region formed in the second region and on an opposite side of the first trench from the first drain/source region and a second trench coupled between the second drain/source region and the second region, wherein the second trench is of a same depth as the first trench.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: November 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wai Ng, Hsueh-Liang Chou, Po-Chih Su, Ruey-Hsin Liu
  • Publication number: 20140332847
    Abstract: A composite one-piece IGBT power device is disclosed to solve a problem that existing devices' turning-on/off speed is not high enough. The composite one-piece IGBT device of the present invention comprises at least two IGBT devices. Drift regions of the at least two IGBT devices connect with each other and electrodes of the at least two IGBT devices are led out separately from each other. The composite one-piece IGBT device may also consist of four IGBT devices. The drift regions of the four IGBT devices connect with each other. The composite IGBT device may also be embodied as two IGBT devices connected with each other. One of the two IGBT devices acts as a primary switching device for switching a large current, and the other acts as an auxiliary device for accelerating the switching action of the primary switching device. The composite IGBT device of the present invention is formed through a producing method which adds a few steps such as forming grooves to the conventional IGBT manufacturing process.
    Type: Application
    Filed: July 17, 2013
    Publication date: November 13, 2014
    Inventors: Liren Yan, Daoguang Liu, Zhihong Liu, Wei Zhang, Wei Zhou, Jie Cui
  • Publication number: 20140327118
    Abstract: A method of fabricating a power semiconductor device includes the following steps. Firstly, a substrate is provided. A first epitaxial layer is formed over the substrate. A first trench is formed in the first epitaxial layer. A second epitaxial layer is refilled into the first trench. The first epitaxial layer and the second epitaxial layer are collaboratively defined as a first semiconductor layer. A third epitaxial layer is formed over the substrate, and a second trench is formed in the third epitaxial layer. A first doping region is formed in a sidewall of the second trench. An insulation layer is refilled into the second trench. The insulation layer, the first doping region and the third epitaxial layer are collaboratively defined as a second semiconductor layer. The power semiconductor device fabricated by the fabricating method can withstand high voltage and has low on-resistance.
    Type: Application
    Filed: August 14, 2013
    Publication date: November 6, 2014
    Applicant: MOSEL VITELIC INC.
    Inventors: Chien-Ping Chang, Chien-Chung Chu
  • Publication number: 20140327038
    Abstract: A power semiconductor includes a semiconductor substrate, a metal oxide semiconductor layer, a N-type buffer layer and a P-type injection layer. The semiconductor substrate has a first surface and a second surface. The metal oxide semiconductor layer is formed on the first surface for defining a N-type drift layer of the semiconductor substrate. The N-type buffer layer is formed on the second surface through ion implanting, and the P-type injection layer is formed on the N-type buffer layer through ion implanting. By utilizing the semiconductor substrate having drift layer and forming the N-type buffer layer and the P-type injection layer on the second surface of the semiconductor substrate through ion implanting, the ion concentration is adjustable. As a result, the electron hole injection efficiency and the width of depletion region are easily adjusted, the fabricating processes are simplified, and the fabricating time and cost are reduced.
    Type: Application
    Filed: August 23, 2013
    Publication date: November 6, 2014
    Applicant: Mosel Vitalec Inc.
    Inventors: Chien-Ping Chang, Chien-Chung Chu, I-Hsien Tang, Chon-Shin Jou, Mao-Song Tseng, Shin-Chi Lai
  • Publication number: 20140322871
    Abstract: Some embodiments of the present disclosure relate to a method to increase breakdown voltage of a power device. A power device is formed on a silicon-on-insulator (SOI) wafer made up of a device wafer, a handle wafer, and an intermediate oxide layer. A recess is formed in a lower surface of the handle wafer to define a recessed region of the handle wafer. The recessed region of the handle wafer has a first handle wafer thickness, which is greater than zero. An un-recessed region of the handle wafer has a second handle wafer thickness, which is greater than the first handle wafer thickness. The first handle wafer thickness of the recessed region provides a breakdown voltage improvement for the power device.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Inventors: Long-Shih Lin, Fu-Hsiung Yang, Kun-Ming Huang, Ming-Yi Lin, Paul Chu
  • Patent number: 8872222
    Abstract: A semiconductor structure and a method for forming the same are provided. The semiconductor structure comprises a first doped region, a second doped region, a doped strip and a top doped region. The first doped region has a first type conductivity. The second doped region is formed in the first doped region and has a second type conductivity opposite to the first type conductivity. The doped strip is formed in the first doped region and has the second type conductivity. The top doped region is formed in the doped strip and has the first type conductivity. The top doped region has a first sidewall and a second sidewall opposite to the first sidewall. The doped strip is extended beyond the first sidewall or the second sidewall.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: October 28, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Ching-Lin Chan, Chen-Yuan Lin, Cheng-Chi Lin, Shih-Chin Lien
  • Patent number: 8871548
    Abstract: A diode has a first contact of a material having a first conductivity type, a second contact of a material having a second conductivity type arranged co-planarly with the first contact, a channel arranged co-planarly between the first and second contacts, a gate arranged adjacent the channel, and a voltage source electrically connected to the gate. A diode has a layer of material arranged on a substrate, a first region of material doped to have a first conductivity type, a second region of material doped to have a second conductivity type, a channel between the first and second regions formed of an undoped region, a gate arranged adjacent the channel, and a voltage source electrically connected to the gate.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: October 28, 2014
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Jengping Lu, Raj B. Apte
  • Publication number: 20140306267
    Abstract: A semiconductor device including a semiconductor substrate in which a diode region and an IGBT region are formed is provided. In the semiconductor device, the diode region includes a second conductivity type cathode layer. An impurity concentration of second conductivity type impurities of the cathode layer is distributed in a curve pattern having at least two peaks, and the impurity concentration of the second conductivity type impurities is higher than that of first conductivity type impurities at all depths of the cathode layer.
    Type: Application
    Filed: November 9, 2011
    Publication date: October 16, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Satoru Kameyama
  • Publication number: 20140299913
    Abstract: An integrated circuit includes at least one transistor over a substrate, and a first guard ring disposed around the at least one transistor. The integrated circuit further includes a second guard ring disposed around the first guard ring. The integrated circuit further includes a first doped region disposed adjacent to the first guard ring, the first doped region having a first dopant type. The integrated circuit further includes a second doped region disposed adjacent to the second guard ring, the second doped region having a second dopant type.
    Type: Application
    Filed: June 24, 2014
    Publication date: October 9, 2014
    Inventors: Ming-Song SHEU, Jian-Hsing LEE, Yu-Chang JONG, Chun-Chien TSAI
  • Patent number: 8853009
    Abstract: In a method of manufacturing a reverse-blocking semiconductor element, a tapered groove is formed and ions are implanted into a rear surface and the tapered groove. Then, a furnace annealing process and a laser annealing process are performed to form a rear collector layer and a separation layer on the side surface of the tapered groove. In this way, it is possible to ensure a reverse breakdown voltage and reduce a leakage current when a reverse bias applied, even in a manufacturing method including a process of manufacturing a diffusion layer formed by forming a tapered groove and performing ion implantation and an annealing process for the side surface of the tapered groove as the separation layer for bending the termination of a reverse breakdown voltage pn junction to extend to the surface.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: October 7, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Haruo Nakazawa
  • Patent number: 8853008
    Abstract: FinFETs and methods for making FinFETs are disclosed. A fin is formed on a substrate, wherein the fin has a height greater than 2 to 6 times of its width, a length defining a channel between source and drain ends, and the fin comprises a lightly doped semiconductor. A conformally doped region of counter-doped semiconductor is formed on the fin using methods such as monolayer doping, sacrificial oxide doping, or low energy plasma doping. Halo-doped regions are formed by angled ion implantation. The halo-doped regions are disposed in the lower portion of the source and drain and adjacent to the fin. Energy band barrier regions can be formed at the edges of the halo-doped regions by angled ion implantation.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: October 7, 2014
    Assignee: Intermolecular, Inc.
    Inventor: Mankoo Lee
  • Patent number: 8847278
    Abstract: A semiconductor device includes an active section for a main current flow and a breakdown withstanding section for breakdown voltage. An external peripheral portion surrounds the active section on one major surface of an n-type semiconductor substrate. The breakdown withstanding section has a ring-shaped semiconductor protrusion, with a rectangular planar pattern including a curved section in each of four corners thereof, as a guard ring. The ring-shaped semiconductor protrusion has a p-type region therein, is sandwiched between a plurality of concavities deeper than the p-type region, and has an electrically conductive film across an insulator film on the surface thereof. Because of this, it is possible to manufacture at low cost a breakdown withstanding structure with which a high breakdown voltage is obtained in a narrow width, wherein there is little drop in breakdown voltage, even when there are variations in a patterning process of a field oxide film.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: September 30, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Manabu Takei, Yusuke Kobayashi
  • Patent number: 8846482
    Abstract: A method of forming a doped region in a III-nitride substrate includes providing the III-nitride substrate and forming a masking layer having a predetermined pattern and coupled to a portion of the III-nitride substrate. The III-nitride substrate is characterized by a first conductivity type and the predetermined pattern defines exposed regions of the III-nitride substrate. The method also includes heating the III-nitride substrate to a predetermined temperature and placing a dual-precursor gas adjacent the exposed regions of the III-nitride substrate. The dual-precursor gas includes a nitrogen source and a dopant source. The method further includes maintaining the predetermined temperature for a predetermined time period, forming p-type III-nitride regions adjacent the exposed regions of the III-nitride substrate, and removing the masking layer.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: September 30, 2014
    Assignee: Avogy, Inc.
    Inventors: David P. Bour, Richard J. Brown, Isik C. Kizilyalli, Thomas R. Prunty, Linda Romano, Andrew P. Edwards, Hui Nie, Mahdan Raj
  • Publication number: 20140264435
    Abstract: According to one embodiment, a semiconductor module includes: a first circuit component: a second circuit component; and a third circuit component. The first circuit component includes: an insulating first substrate; a first conductive layer; a first switching element; and a first diode. The second circuit component includes: an insulating second substrate; a second conductive layer; a second switching element; and a second diode. The second circuit component is disposed between the first circuit component and the third circuit component. The third circuit component includes: an insulating third substrate; a third conductive layer provided on the third substrate and including a third element mounting unit; a third switching element provided on the third element mounting unit; and a third diode provided on the third element mounting unit. A direction from the third switching element toward the third diode is an opposite direction to the first direction.
    Type: Application
    Filed: September 16, 2013
    Publication date: September 18, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomohiro IGUCHI, Masayuki Uchida, Daisuke Hiratsuka, Masako Fukumitsu
  • Patent number: 8816696
    Abstract: A continuity testing device is provided which can reliably detect incomplete-fitting of the retainer of the connector. The continuity testing device includes a connector guide block into which the connector is inserted in a transverse direction and which is fixed above an opening formed on a cover plate of a case of the continuity testing device, a detection plate provided to the connector guide block and arranged above the connector so as to contact with the incompletely-fitted retainer of the connector when moved downward, a detection pin arranged at the detection plate, a continuity testing part arranged to move in the vertical direction toward the connector, a drive mechanism that operates the detection plate to move in the vertical direction in conjunction with the continuity testing part, and a switch that is activated by the detection pin when the detection pin is completely moved down to the switch.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: August 26, 2014
    Assignee: Yazaki Corporation
    Inventor: Kozo Kogasumi
  • Publication number: 20140231866
    Abstract: An IGBT has an emitter region, a top body region that is formed below the emitter region, a floating region that is formed below the top body region, a bottom body region that is formed below the floating region, a trench, a gate insulating film that covers an inner face of the trench, and a gate electrode that is arranged inside the trench. When a distribution of a concentration of p-type impurities in the top body region and the floating region, which are located below the emitter region, is viewed along a thickness direction of a semiconductor substrate, the concentration of the p-type impurities decreases as a downward distance increases from an upper end of the top body region that is located below the emitter region, and assumes a local minimum value at a predetermined depth in the floating region.
    Type: Application
    Filed: September 28, 2011
    Publication date: August 21, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masaru Senoo, Kyosuke Miyagi, Tsuyoshi Nishiwaki, Jun Saito
  • Publication number: 20140235020
    Abstract: Techniques capable of improving the yield of IGBTs capable of reducing steady loss, turn-off time, and turn-off loss are provided. Upon formation of openings in an interlayer insulting film formed on a main surface of a substrate, etching of a laminated insulating film of a PSG film and an SOG film and a silicon oxide film is once stopped at a silicon nitride film. Then, the silicon nitride film and the silicon oxide film are sequentially etched to form the openings. As a result, the openings are prevented from penetrating through an n-type source layer and a p+-type emitter layer having a thickness of 20 to 100 nm and reaching the substrate.
    Type: Application
    Filed: April 25, 2014
    Publication date: August 21, 2014
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Daisuke ARAI, Yoshito NAKAZAWA, Ikuo HARA, Tsuyoshi KACHI, Yoshinori HOSHINO, Tsuyoshi TABATA
  • Patent number: 8809130
    Abstract: A reverse block-type insulated gate bipolar transistor (IGBT) manufacturing method that, when manufacturing a reverse block-type IGBT having a separation layer formed along tapered surfaces of a V-shaped groove formed using anisotropic etching, can secure a highly reliable reverse pressure resistance, and suppress a leakage current when reverse biasing. When irradiating with a flash lamp for flash lamp annealing after implantation of ions into a second conductivity type separation layer and second conductivity type collector layer to form the second conductivity type collector layer and second conductivity type separation layer, the strongest portion of radiation energy is focused on a depth position from the upper portion to the central portion of a tapered side edge surface.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: August 19, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Haruo Nakazawa, Motoyoshi Kubouchi, Hideaki Teranishi, Hideo Shimizu
  • Publication number: 20140225126
    Abstract: The present invention is directed to a semiconductor device including a semiconductor chip formed with an SiC-IGBT including an SiC semiconductor layer, a first conductive-type collector region formed such that the collector region is exposed on a second surface of the SiC semiconductor layer, a second conductive-type base region formed such that the base region is in contact with the collector region, a first conductive-type channel region formed such that the channel region is in contact with the base region, a second conductive-type emitter region formed such that the emitter region is in contact with the channel region to define a portion of a first surface of the SiC semiconductor layer, a collector electrode connected to the collector region, and an emitter electrode connected to the emitter region, and a MOSFET including a second conductive-type source region electrically connected to the emitter electrode and a second conductive-type drain region electrically connected to the collector electrode, the
    Type: Application
    Filed: July 30, 2012
    Publication date: August 14, 2014
    Applicant: ROHM CO., LTD.
    Inventors: Masatoshi Aketa, Yuki Nakano
  • Publication number: 20140225156
    Abstract: An electrostatic discharge (ESD) protection device includes a semiconductor substrate, a base region in the semiconductor substrate and having a first conductivity type, an emitter region in the base region and having a second conductivity type, a collector region in the semiconductor substrate, spaced from the base region, and having the second conductivity type, a breakdown trigger region having the second conductivity type, disposed laterally between the base region and the collector region to define a junction across which breakdown occurs to trigger the ESD protection device to shunt ESD discharge current, and a gate structure supported by the semiconductor substrate over the breakdown trigger region and electrically tied to the base region and the emitter region. The lateral width of the breakdown trigger region is configured to establish a voltage level at which the breakdown occurs.
    Type: Application
    Filed: February 11, 2013
    Publication date: August 14, 2014
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Rouying Zhan, Chai Ean Gill, William G. Cowden, Changsoo Hong
  • Patent number: 8803119
    Abstract: A technique capable of improving performances of a semiconductor memory device provided with a recording film having a super lattice structure is provided. The semiconductor memory device records information by changing an electric resistance of a recording film by use of a change in an atomic arrangement of the recording film. Moreover, the recording film is provided with a stacked layer portion in which a first crystal layer and a second crystal layer made of chalcogen compounds having respectively different compositions are stacked, an orientation layer that enhances an orientation of the stacked layer portion, and an adhesive layer that improves the flatness of the orientation layer.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: August 12, 2014
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Takahiro Morikawa, Toshimichi Shintani
  • Publication number: 20140220746
    Abstract: A method includes growing an epitaxy semiconductor layer over a semiconductor substrate. The epitaxy semiconductor layer is of a first conductivity type. A Lateral Insulated Gate Bipolar Transistor (LIGBT) is formed at a front surface of the epitaxy semiconductor layer. After the LIGBT is formed, a backside thinning is performed to remove the semiconductor substrate. An implantation is performed from a backside of the epitaxy semiconductor layer to form a heavily doped semiconductor layer. The heavily doped semiconductor layer is of a second conductivity type opposite the first conductivity type.
    Type: Application
    Filed: April 14, 2014
    Publication date: August 7, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jhy-Jyi Sze, Biay-Cheng Hseih, Shou-Gwo Wuu
  • Patent number: 8791476
    Abstract: The present invention provides an active matrix substrate and a display device that have sufficient resistance to a surge current without formation of a short ring and that enable narrowing of a picture-frame region. The present invention is an active matrix substrate on which a plurality of pixels are formed in a matrix shape. The active matrix substrate includes, on one principal surface side of the substrate: a terminal; a semiconductor element; wiring that is formed in a picture-frame region of the substrate and that connects the terminal and the semiconductor element; and an annular conductive portion formed through an insulation layer on at least one of an upper layer side and a lower layer side of the wiring. The wiring comprises a meander structure including a meander-shaped portion. A portion of the conductive portion is disposed along the meander-shaped portion.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: July 29, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Yoshimitsu Tajima
  • Patent number: 8785968
    Abstract: Some aspects relate to a semiconductor device disposed on a semiconductor substrate. The device includes an STI region that laterally surrounds a base portion of a semiconductor fin. An anode region, which has a first conductivity type, and a cathode region, which has a second conductivity type, are arranged in an upper portion of the semiconductor fin. A first doped base region, which has the second conductivity type, is arranged in the base of the fin underneath the anode region. A second doped base region, which has the first conductivity type, is arranged in the base of the fin underneath the cathode region. A current control unit is arranged between the anode region and the cathode region. The current control unit is arranged to selectively enable and disable current flow in the upper portion of the fin based on a trigger signal. Other devices and methods are also disclosed.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: July 22, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Mayank Shrivastava, Harald Gossner
  • Publication number: 20140197876
    Abstract: A semiconductor device includes an IGBT cell including a second-type doped drift zone, and a desaturation semiconductor structure for desaturating a charge carrier concentration in the IGBT cell. The desaturation structure includes a first-type doped region forming a pn-junction with the drift zone, and two portions of a trench or two trenches arranged in the first-type doped region and beside the IGBT cell in a lateral direction. Each of the two trench portions or each of the two trenches has a wide part below a narrow part. The wide parts confine a first-type doped desaturation channel region of the first-type doped region at least in the lateral direction. The narrow parts confine a first-type doped mesa region of the first-type doped region at least in the lateral direction. The desaturation channel region has a width smaller than the mesa region in the lateral direction, and adjoins the mesa region.
    Type: Application
    Filed: January 17, 2013
    Publication date: July 17, 2014
    Inventors: Johannes Georg Laven, Hans-Joachim Schulze
  • Publication number: 20140197452
    Abstract: A device includes an epitaxial region extending into a front surface of a chip. A portion of the chip adjacent the epitaxial region defines a collector. A gate is provided in a trench extending into the epitaxial region from the front surface. An emitter includes a body extending into the epitaxial region at a first side of the trench and a source extending into the body region from the front surface at the trench. A dummy emitter extends into the epitaxial region from the front surface at a second side of the trench opposite said first side. The dummy emitter lacks the source. The gate extends along a first wall of the trench facing the emitter region. A dummy gate is formed in the trench in a manner electrically isolated from the gate and extending along a second wall of the trench opposite said first wall.
    Type: Application
    Filed: January 8, 2014
    Publication date: July 17, 2014
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Leonardo Fragapane, Antonino Alessandria
  • Patent number: 8778743
    Abstract: An approach for providing a latch-up robust PNP-triggered SCR-based device is disclosed. Embodiments include providing a silicon control rectifier (SCR) region; providing a PNP region having a first n-well region proximate the SCR region, a first N+ region and a first P+ region in the first n-well region, and a second P+ region between the SCR region and the first n-well region; coupling the first N+ region and the first P+ region to a power rail; and coupling the second P+ region to a ground rail.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: July 15, 2014
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Da-Wei Lai, Mahadeva Iyer Natarajan
  • Patent number: 8779516
    Abstract: A second conduction-type MIS transistor in which a source is coupled to a second power source over the surface of a first conduction-type well and a drain is coupled to the open-drain signal terminal is provided. A second conduction-type first region is provided at both sides of the MIS transistor in parallel with a direction where the electric current of the MIS transistor flows and coupled to the open-drain signal terminal. The whole these components are surrounded by a first conduction-type guard ring coupled to the second power source and the outside surrounded by the first conduction-type guard ring is further surrounded by a second conduction-type guard ring coupled to a first power source. Thereby, the semiconductor device is capable of achieving ESD protection of an open-drain signal terminal having a small area and not providing a protection element between power source terminals.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: July 15, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Toshikatsu Kawachi
  • Patent number: 8766325
    Abstract: A semiconductor device includes: an n?-type base layer; a p-type base layer formed in a part of a front surface portion of the n?-type base layer; an n+-type source layer formed in a part of a front surface portion of the p-type base layer; a gate insulating film formed on the front surface of the p-type base layer between the n+-type source layer and the n?-type base layer; a gate electrode that faces the p-type base layer through the gate insulating film; a p-type column layer formed continuously from the p-type base layer in the n?-type base layer; a p+-type collector layer formed in a part of a rear surface portion of the n?-type base layer; a source electrode electrically connected to the n+-type source layer; and a drain electrode electrically connected to the n?-type base layer and to the p+-type collector layer.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: July 1, 2014
    Assignee: Rohm Co., Ltd.
    Inventors: Toshio Nakajima, Syoji Higashida
  • Publication number: 20140167116
    Abstract: The present disclosure is directed to a method that includes exposing a surface of a silicon substrate in a first region between first and second isolation trenches, etching the silicon substrate in the first region to form a recess between the first and second isolation trenches,=; and forming a base of a heterojunction bipolar transistor by selective epitaxial growth of a film comprising SiGe in the recess.
    Type: Application
    Filed: December 12, 2013
    Publication date: June 19, 2014
    Applicant: STMicroelectronics S.A.
    Inventors: Pascal Chevalier, Didier Celi, Jean-Pierre Blanc, Alain Chantre
  • Publication number: 20140167104
    Abstract: Protection circuit architectures with integrated supply clamps and methods of forming the same are provided herein. In certain implementation, an integrated circuit interface protection device includes a first diode protection structure and a first thyristor protection structure electrically connected in parallel between a signal pin a power high supply. Additionally, the protection device includes a second diode protection structure and a second thyristor protection structure electrically connected in parallel between the signal pin and a power low supply. Furthermore, the protection device includes a third diode protection structure and a third thyristor protection structure electrically connected in parallel between the power high supply and the power low supply.
    Type: Application
    Filed: January 30, 2013
    Publication date: June 19, 2014
    Applicant: ANALOG DEVICES, INC.
    Inventor: Javier Alejandro Salcedo
  • Publication number: 20140167105
    Abstract: Apparatus and methods for monolithic data conversion interface protection are provided herein. In certain implementations, a protection device includes a first silicon controlled rectifier (SCR) and a first diode for providing protection between a signal node and a power high supply node, a second SCR and a second diode for providing protection between the signal node and a power low supply node, and a third SCR and a third diode for providing protection between the power high supply node and the power low supply node. The SCR and diode structures are integrated in a common circuit layout, such that certain wells and active regions are shared between structures. Configuring the protection device in this manner enables in-suit input/output interface protection using a single cell. The protection device is suitable for monolithic data conversion interface protection in sub 3V operation.
    Type: Application
    Filed: October 31, 2013
    Publication date: June 19, 2014
    Applicant: Analog Devices, Inc.
    Inventors: Javier Alejandro Salcedo, Srivatsan Parthasarathy
  • Patent number: 8754443
    Abstract: Memory devices and methods of making memory devices are shown. Methods and configurations as shown provide folded and vertical memory devices for increased memory density. Methods provided allow trace wiring in a memory array to be formed on or near a surface of a memory device.
    Type: Grant
    Filed: September 15, 2012
    Date of Patent: June 17, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Suraj J. Mathew, Chandra Mouli
  • Publication number: 20140162413
    Abstract: A method includes forming on a first main surface of a semiconductor wafer of a first conduction type, a gate electrode of a semiconductor element, an edge termination region for forming a breakdown voltage of the semiconductor element, and a first semiconductor region of a second conduction type which surrounds the semiconductor element and the edge termination region. A groove may be formed to reach the first semiconductor region from a second main surface of the semiconductor wafer. The groove is formed so that a portion of the semiconductor wafer, that forms an outer circumferential end of the semiconductor wafer, remains and the groove is further towards a center of the semiconductor wafer than the outer circumferential end. A third semiconductor region of the second conduction type is on a side wall of the groove and electrically connects the first semiconductor region and a second semiconductor region.
    Type: Application
    Filed: July 15, 2011
    Publication date: June 12, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Hiroki Wakimoto, Masaaki Ogino
  • Publication number: 20140159108
    Abstract: In one embodiment, an ESD device is configured to include a trigger device that assists in forming a trigger of the ESD device. The trigger device is configured to enable a transistor or a transistor of an SCR responsively to an input voltage having a value that is no less than the trigger value of the ESD device.
    Type: Application
    Filed: October 9, 2013
    Publication date: June 12, 2014
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: David D. Marreiro, Yupeng Chen, Ralph Wall, Umesh Sharma, Harry Yue Gee
  • Patent number: 8748936
    Abstract: A semiconductor device includes a first well region of a first conductivity type, a second well region of a second conductive type within the first well region. A first region of the first conductivity type and a second region of the second conductivity type are disposed within the second well region. A third region of the first conductivity type and a fourth region of the second conductivity type are disposed within the first well region, wherein the third region and the fourth region are separated by the second well region. The semiconductor device also includes a switch device coupled to the third region.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: June 10, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Shih-Yu Wang, Chia-Ling Lu, Yan-Yu Chen, Yu-Lien Liu, Tao-Cheng Lu
  • Patent number: 8741699
    Abstract: Techniques capable of improving the yield of IGBTs capable of reducing steady loss, turn-off time, and turn-off loss are provided. Upon formation of openings in an interlayer insulting film formed on a main surface of a substrate, etching of a laminated insulating film of a PSG film and an SOG film and a silicon oxide film is once stopped at a silicon nitride film. Then, the silicon nitride film and the silicon oxide film are sequentially etched to form the openings. As a result, the openings are prevented from penetrating through an n-type source layer and a p+-type emitter layer having a thickness of 20 to 100 nm and reaching the substrate.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: June 3, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Daisuke Arai, Yoshito Nakazawa, Ikuo Hara, Tsuyoshi Kachi, Yoshinori Hoshino, Tsuyoshi Tabata
  • Patent number: 8741686
    Abstract: A semiconductor device has an active layer, a first semiconductor layer of first conductive type, an overflow prevention layer disposed between the active layer and the first semiconductor layer, which is doped with impurities of first conductive type and which prevents overflow of electrons or holes, a second semiconductor layer of first conductive type disposed at least one of between the active layer and the overflow prevention layer and between the overflow prevention layer and the first semiconductor layer, and an impurity diffusion prevention layer disposed between the first semiconductor layer and the active layer, which has a band gap smaller than those of the overflow prevention layer, the first semiconductor layer and the second semiconductor layer and which prevents diffusion of impurities of first conductive type.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 3, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koichi Tachibana, Chie Hongo, Hajime Nago, Shinya Nunoue
  • Patent number: 8728877
    Abstract: On a single-crystal substrate, a drift layer is formed. The drift layer has a first surface facing the single-crystal substrate, and a second surface opposite to the first surface, is made of silicon carbide, and has first conductivity type. On the second surface of the drift layer, a collector layer made of silicon carbide and having second conductivity type is formed. By removing the single-crystal substrate, the first surface of the drift layer is exposed. A body region and an emitter region are formed. The body region is disposed in the first surface of the drift layer, and has the second conductivity type different from the first conductivity type. The emitter region is disposed on the body region, is separated from the drift layer by the body region, and has first conductivity type.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: May 20, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Wada, Takeyoshi Masuda