T-gate Patents (Class 438/182)
  • Patent number: 9627506
    Abstract: A semiconductor device includes a semiconductor layer formed on a substrate, an electrode contact window that includes a recess formed on a surface of the semiconductor layer, an inner wall having a slope, and a source electrode, a drain electrode, and a gate electrode formed on the semiconductor layer, in which the drain electrode is in contact with the slope of the inner wall.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: April 18, 2017
    Assignee: Sumitomo Electric Device Innovations, Inc.
    Inventor: Masahiro Nishi
  • Patent number: 9437783
    Abstract: A light emitting device includes an active layer configured to provide light emission due to carrier recombination therein, a surface on the active layer, and an electrically conductive contact structure on the surface. The contact structure includes at least one plated contact layer. The contact structure may include a sublayer that conforms to the surface roughness of the underlying surface, and the plated contact layer may be substantially free of the surface roughness of the underlying surface. The surface of the plated contact layer may be substantially planar and/or otherwise configured to reflect the light emission from the active layer. Related fabrication methods are also discussed.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: September 6, 2016
    Assignee: Cree, Inc.
    Inventors: Pritish Kar, David Beardsley Slater, Jr., Matthew Donofrio, Brad Williams
  • Patent number: 9349902
    Abstract: System and method for processing a semiconductor device surface to reduce dark current and white pixel anomalies. An embodiment comprises a method applied to a semiconductor or photodiode device surface adjacent to a photosensitive region, and opposite a side having circuit structures for the device. A doped layer may optionally be created at a depth of less than about 10 nanometers below the surface of the substrate and may be doped with a boron concentration between about 1E13 and 1E16. An oxide may be created on the substrate using a temperature sufficient to reduce the surface roughness below a predetermined roughness threshold, and optionally at a temperature between about 300° C. and 500° C. and a thickness between about 1 nanometer and about 10 nanometers. A dielectric may then be created on the oxide, the dielectric having a refractive index greater than a predetermined refractive threshold, optionally at least about 2.0.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: May 24, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shiu-Ko JangJian, Kei-Wei Chen, Chi-Cherng Jeng, Min Hao Hong
  • Patent number: 9281204
    Abstract: A semiconductor device is provided which includes a GaN-on-SiC substrate (50-51) and a multi-layer passivation stack (52-54) in which patterned step openings (76) are defined and filled with gate metal layers using a lift-off gate metal process to form a T-gate electrode (74) as a stepped gate electrode having sidewall extensions and a contact base portion with one or more gate ledges.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: March 8, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Karen E. Moore, Bruce M. Green
  • Patent number: 9257514
    Abstract: A semiconductor device includes: a first electrode; a second electrode; an interlayer insulating film made of a porous insulating material and formed above the first electrode and the second electrode; and connection parts electrically connected to the first electrode and the second electrode respectively, wherein a cavity is formed between the interlayer insulating film and a surface of the first electrode, a surface of the second electrode, and parts of surfaces of the connection parts.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: February 9, 2016
    Assignee: FUJITSU LIMITED
    Inventors: Shirou Ozaki, Naoya Okamoto, Kozo Makiyama, Toshihiro Ohki
  • Patent number: 9240474
    Abstract: An enhanced GaN transistor is provided. The structure comprises a substrate, a heterostructure, a p-element epitaxy growth layer, a drain ohmic contact and a source ohmic contact disposed on the heterostructure and on two sides of the p-element epitaxy growth layer, a gate structure disposed on the p-element epitaxy growth layer, and is separated from the drain ohmic contact and the source ohmic contact, a surface passivation layer covered the drain ohmic contact, source ohmic contact, and p-element epitaxy growth layer, and covered portion of the gate structure.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: January 19, 2016
    Assignee: National Chiao Tung University
    Inventors: Yi Chang, Yueh-Chin Lin, Huan-Chung Wang
  • Patent number: 9224830
    Abstract: A field effect transistor is provided. The transistor may include a source electrode and a drain electrode provided spaced apart from each other on a substrate and a ‘+’-shaped gate electrode provided on a portion of the substrate located between the source and drain electrodes.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: December 29, 2015
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Seong-Il Kim, Jong-Won Lim, Dong Min Kang, Sang-Heung Lee, Hyung Sup Yoon, Chull Won Ju, Byoung-Gue Min, Jongmin Lee, Jae Kyoung Mun, Eun Soo Nam
  • Patent number: 9171920
    Abstract: The present invention discloses a gate structure, which is applied for an electronic component comprising a substrate and an active region defined thereon, and such the gate structure is disposed in the active region and is a T-shaped gate having a stem with a height of 250 nm. Preferably, the gate structure has a gate length of 60 nm.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: October 27, 2015
    Assignee: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Yi Chang, Chien-I Kuo, Heng-Tung Hsu
  • Patent number: 9166011
    Abstract: Disclosed are a semiconductor device having a stable gate structure, and a manufacturing method thereof, in which a gate structure is stabilized by additionally including a plurality of gate feet under a gate head in a width direction of the gate head so as to serve as supporters in a gate structure including a fine gate foot having a length of 0.2 ?m or smaller, and the gate head having a predetermined size. Accordingly, it is possible to prevent the gate electrode of the semiconductor device from collapsing, and improve reliability of the semiconductor device during or after the process of the semiconductor device.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: October 20, 2015
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Seong Il Kim, Dong Min Kang, Sang Heung Lee, Ho Kyun Ahn, Hyung Sup Yoon, Byoung Gue Min, Jong Won Lim
  • Patent number: 8951901
    Abstract: In sophisticated semiconductor devices, the encapsulation of sensitive gate materials, such as a high-k dielectric material and a metal-containing electrode material, which are provided in an early manufacturing stage may be achieved by forming an undercut gate configuration. To this end, a wet chemical etch sequence is applied after the basic patterning of the gate layer stack, wherein at least ozone-based and hydrofluoric acid-based process steps are performed in an alternating manner, thereby achieving a substantially self-limiting removal behavior.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: February 10, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Sven Beyer, Berthold Reimer, Falk Graetsch
  • Patent number: 8912612
    Abstract: A FinFET structure which includes: silicon fins on a semiconductor substrate, each silicon fin having two sides and a horizontal surface; a gate wrapping around at least one of the silicon fins, the gate having a first surface and an opposing second surface facing the at least one of the silicon fins; a hard mask on a top surface of the gate; a silicon nitride layer formed in each of the first and second surfaces so as to be below and in direct contact with the hard mask on the top surface of the gate; spacers on the gate and in contact with the silicon nitride layer; and epitaxially deposited silicon on the at least one of the silicon fins so as to form a raised source/drain.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: December 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Sanjay Mehta, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 8906759
    Abstract: A method of forming a FinFET structure which includes forming fins on a semiconductor substrate; forming a gate wrapping around at least one of the fins, the gate having a first surface and an opposing second surface facing the fins; depositing a hard mask on a top of the gate; angle implanting nitrogen into the first and second surfaces of the gate so as to form a nitrogen-containing layer in the gate that is below and in direct contact with the hard mask on top of the gate; forming spacers on the gate and in contact with the nitrogen-containing layer; and epitaxially depositing silicon on the at least one fin so as to form a raised source/drain. Also disclosed is a FinFET structure.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: December 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Sanjay Mehta, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 8847226
    Abstract: A transistor includes a substrate. A first electrically conductive material layer is positioned on the substrate. A second electrically conductive material layer is in contact with and positioned on the first electrically conductive material layer. The second electrically conductive material layer includes a reentrant profile. The second electrically conductive material layer also overhangs the first electrically conductive material layer.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: September 30, 2014
    Assignee: Eastman Kodak Company
    Inventors: Lee W. Tutt, Shelby F. Nelson
  • Patent number: 8729608
    Abstract: A semiconductor device (100) includes a substrate (1) having a semiconductor layer (102); a trench (12) in the semiconductor layer (102); a gate insulating film (11) covering a periphery and an inner surface of the trench (12); a gate electrode (8) including a portion filling the trench (12) and a portion around the trench (12), and provided on the gate insulating film (11); an interlayer insulating film (13) on the gate electrode (8); and a hollow (50) above and around the trench (12), and between the gate electrode (8) and the gate insulating film (11). Above the trench (12), the hollow (50) protrudes inside the trench (12) from a plane extending from an upper surface of the gate insulating film (11) at a portion covering the side surface of the trench (12) with a flat shape.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: May 20, 2014
    Assignee: Panasonic Corporation
    Inventor: Chiaki Kudou
  • Patent number: 8722474
    Abstract: Disclosed are a semiconductor device including a stepped gate electrode and a method of fabricating the semiconductor device. The semiconductor device according to an exemplary embodiment of the present disclosure includes: a semiconductor substrate having a structure including a plurality of epitaxial layers and including an under-cut region formed in a part of a Schottky layer in an upper most part thereof; a cap layer, a first nitride layer and a second nitride layer sequentially formed on the semiconductor substrate to form a stepped gate insulating layer pattern; and a stepped gate electrode formed by depositing a heat-resistant metal through the gate insulating layer pattern, wherein the under-cut region includes an air-cavity formed between the gate electrode and the Schottky layer.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: May 13, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyung Sup Yoon, Byoung-Gue Min, Jong Min Lee, Seong-Il Kim, Dong Min Kang, Ho Kyun Ahn, Jong-Won Lim, Jae Kyoung Mun, Eun Soo Nam
  • Patent number: 8685817
    Abstract: A method of forming a field effect transistor (FET) device includes forming a gate structure over a substrate, the gate structure including a wide bottom portion and a narrow portion formed on top of the bottom portion; the wide bottom portion comprising a metal material and having a first width that corresponds substantially to a transistor channel length, and the narrow portion also including a metal material having a second width smaller than the first width.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: April 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Chengwen Pei, Robert R. Robison, Ping-Chuan Wang
  • Patent number: 8669603
    Abstract: Some embodiments include DRAM having transistor gates extending partially over SOI, and methods of forming such DRAM. Unit cells of the DRAM may be within active region pedestals, and in some embodiments the unit cells may comprise capacitors having storage nodes in direct contact with sidewalls of the active region pedestals. Some embodiments include 0C1T memory having transistor gates entirely over SOI, and methods of forming such 0C1T memory.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: March 11, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Kunal R. Parekh
  • Patent number: 8597992
    Abstract: A transistor is manufactured by a method including: forming a first wiring layer; forming a first insulating film to cover the first wiring layer; forming a semiconductor layer over the first insulating film; forming a conductive film over the semiconductor layer; and performing at least two steps of etching on the conductive film to form second wiring layers which are apart from each other, wherein the two steps of etching include at least a first etching process performed under the condition that the etching rate for the conductive film is higher than the etching rate for the semiconductor layer, and a second etching process performed under the condition that the etching rates for the conductive film and the semiconductor layer are higher than those of the first etching process.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: December 3, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shinya Sasagawa, Masashi Tsubuku, Hitoshi Nakayama, Daigo Shimada
  • Patent number: 8557645
    Abstract: A method of manufacturing a semiconductor device includes forming an insulating layer over a semiconductor region; forming a multilayer resist composite including a plurality of resist layers over the insulating layer; forming an opening in the resist layers of the multilayer resist composite except in the lowermost resist layer adjacent to the insulating layer; forming a reflow opening in the lowermost resist layer; reflowing part of the lowermost resist layer exposed in the reflow opening by heating to form a slope at the surface of the lowermost resist layer; forming a first gate opening in the lowermost resist layer so as to extend from the slope; and forming a gate electrode having a shape depending on the shapes of the opening in the multilayer resist composite, the slope and the first gate opening.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: October 15, 2013
    Assignee: Fujitsu Limited
    Inventors: Naoko Kurahashi, Kozo Makiyama
  • Patent number: 8541296
    Abstract: The present invention provides a method of manufacturing a dummy gate in a gate last process, which comprises the steps of forming a dummy gate material layer and a hard mask material layer sequentially on a substrate; etching the hard mask material layer to form a top-wide-bottom-narrow hard mask pattern; dry etching the dummy gate material layer using the hard mask pattern as a mask to form a top-wide-bottom-narrow dummy gate. According to the dummy gate manufacturing method of the present invention, instead of vertical dummy gates used conventionally, top-wide-bottom-narrow trapezoidal dummy gates are formed, and after removing the dummy gates, trapezoidal trenches can be formed. It facilitates the subsequent filling of the high-k or metal gate material and enlarges the window for the filling process; as a result, the device reliability will be improved.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: September 24, 2013
    Assignee: The Institute Of Microelectronics Chinese Academy of Science
    Inventors: Tao Yang, Chao Zhao, Jiang Yan, Junfeng Li, Yihong Lu, Dapeng Chen
  • Patent number: 8530288
    Abstract: Some embodiments include DRAM having transistor gates extending partially over SOI, and methods of forming such DRAM. Unit cells of the DRAM may be within active region pedestals, and in some embodiments the unit cells may comprise capacitors having storage nodes in direct contact with sidewalls of the active region pedestals. Some embodiments include 0C1T memory having transistor gates entirely over SOI, and methods of forming such 0C1T memory.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: September 10, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Kunal R. Parekh
  • Patent number: 8518794
    Abstract: Provided is a semiconductor device. The semiconductor device includes: a substrate; an active layer on the substrate; a capping layer on the active layer; source/drain electrodes on the capping layer; a gate electrode on the active layer; and a first void region on a first sidewall of the gate electrode and a second void region on a second sidewall facing the first sidewall.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: August 27, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hokyun Ahn, Jong-Won Lim, Hyung Sup Yoon, Woojin Chang, Hae Cheon Kim
  • Patent number: 8476125
    Abstract: Fabrication methods of a high frequency (sub-micron gate length) operation of AlInGaN/InGaN/GaN MOS-DHFET, and the HFET device resulting from the fabrication methods, are generally disclosed. The method of forming the HFET device generally includes a novel double-recess etching and a pulsed deposition of an ultra-thin, high-quality silicon dioxide layer as the active gate-insulator. The methods of the present invention can be utilized to form any suitable field effect transistor (FET), and are particular suited for forming high electron mobility transistors (HEMT).
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: July 2, 2013
    Assignee: University of South Carolina
    Inventors: M. Asif Khan, Vinod Adivarahan
  • Patent number: 8455312
    Abstract: In high frequency circuits, the switching speed of devices is often limited by the series resistance and capacitance across the input terminals. To reduce the resistance and capacitance, the cross-section of input electrodes is made into a T-shape or inverted L-shape through lithography. The prior art method for the formation of cavities for T-gate or inverted L-gate is achieved through several steps using multiple photomasks. Often, two or even three different photoresists with different sensitivity are required. In one embodiment of the present invention, an optical lithography method for the formation of T-gate or inverted L-gate structures using only one photomask is disclosed. In another embodiment, the structure for the T-gate or inverted L-gate is formed using the same type of photoresist material.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: June 4, 2013
    Inventors: Cindy X. Qiu, Ishiang Shih, Chunong Qiu, Yi-Chi Shih, Julia Qiu
  • Patent number: 8338241
    Abstract: Provided are a method of manufacturing a normally-off mode high frequency device structure and a method of simultaneously manufacturing a normally-on mode high frequency device structure and a normally-off mode high frequency device structure on a single substrate.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: December 25, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyung Sup Yoon, Byoung-Gue Min, Hokyun Ahn, Sang-Heung Lee, Hae Cheon Kim
  • Patent number: 8283221
    Abstract: The present invention provides methods for fabricating devices with low resistance structures involving a lift-off process. A radiation blocking layer is introduced between two resist layers in order to prevent intermixing of the photoresists. Cavities suitable for the formation of low resistance T-gates or L-gates can be obtained by a first exposure, developing, selective etching of blocking layer and a second exposure and developing. In another embodiment, a low resistance gate structure with pillars to enhance mechanical stability or strength is provided.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: October 9, 2012
    Inventors: Ishiang Shih, Chunong Qiu, Cindy X. Qiu, Yi-Chi Shih
  • Patent number: 8253169
    Abstract: There is provided a semiconductor device including: a SiC substrate; an AlGaN layer formed on the SiC substrate; a source electrode and a drain electrode formed on the AlGaN layer so as to be spaced from each other; a first insulation film formed between the source electrode and the drain electrode and having a band-like opening parallel to the drain electrode and the source electrode; a gate electrode formed at the opening in the first insulation film; a second insulation film formed on the first insulation film in such a manner as to cover a surface of the gate electrode; and a source field plate electrode which is formed on the second insulation film and the source electrode and an end portion of which on the drain electrode side is spaced from the second insulation film, thereby suppressing degradation in device performance.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: August 28, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hisao Kawasaki
  • Patent number: 8211760
    Abstract: A method of fabricating a semiconductor device is disclosed. The method comprises patterning a photoresist over a compound semiconductor substrate; reducing a width of the photoresist; forming a hardmask over the substrate and not over the photoresist; removing the photoresist; etching to form and opening down to the substrate; forming a gate in the opening; and removing the hardmask except beneath the gate.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: July 3, 2012
    Assignee: Avago Technologies Wireless IP (Singapore) Pte. Ltd.
    Inventors: Nathan Ray Perkins, Timothy Arthur Valade, Albert William Wang
  • Patent number: 8105889
    Abstract: Methods of forming Group III-nitride transistor device include forming a protective layer on a Group III-nitride semiconductor layer, forming a via hole through the protective layer to expose a portion of the Group III-nitride semiconductor layer, and forming a masking gate on the protective layer. The masking gate includes an upper portion having a width that is larger than a width of the via hole and having a lower portion extending into the via hole. The methods further include implanting source/drain regions in the Group III-nitride semiconductor layer using the masking gate as an implant mask.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: January 31, 2012
    Assignee: Cree, Inc.
    Inventors: R. Peter Smith, Scott T. Sheppard
  • Patent number: 8043906
    Abstract: A III-nitride device includes a recessed electrode to produce a nominally off, or an enhancement mode, device. By providing a recessed electrode, a conduction channel formed at the interface of two III-nitride materials is interrupted when the electrode contact is inactive to prevent current flow in the device. The electrode can be a schottky contact or an insulated metal contact. Two ohmic contacts can be provided to form a rectifier device with nominally off characteristics. The recesses formed with the electrode can have sloped sides. The electrode can be formed in a number of geometries in conjunction with current carrying electrodes of the device. A nominally on device, or pinch resistor, is formed when the electrode is not recessed. A diode is also formed by providing non-recessed ohmic and schottky contacts through an insulator to an AlGaN layer.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: October 25, 2011
    Assignee: International Rectifier Corporation
    Inventor: Robert Beach
  • Patent number: 8013376
    Abstract: Some embodiments include DRAM having transistor gates extending partially over SOI, and methods of forming such DRAM. Unit cells of the DRAM may be within active region pedestals, and in some embodiments the unit cells may comprise capacitors having storage nodes in direct contact with sidewalls of the active region pedestals. Some embodiments include 0C1T memory having transistor gates entirely over SOI, and methods of forming such 0C1T memory.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: September 6, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Kunal R. Parekh
  • Patent number: 8004022
    Abstract: A field effect transistor includes a GaN epitaxial substrate, a gate electrode formed on an electron channel layer of the substrate, and source and drain electrodes arranged spaced apart by a prescribed distance on opposite sides of the gate electrode. The source and drain electrodes are in ohmic contact with the substrate. At an upper portion of the gate electrode, a field plate is formed protruding like a visor to the side of drain electrode. Between the electron channel layer of the epitaxial substrate and the field plate, a dielectric film is formed. The dielectric film is partially removed at a region immediately below the field plate, to be flush with a terminal end surface of the field plate. The dielectric film extends from a lower end of the removed portion to the drain electrode, to be overlapped on the drain electrode.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: August 23, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Norimasa Yafune, John Kevin Twynam
  • Patent number: 7947542
    Abstract: A method for making a thin film transistor, the method comprising the steps of: (a) providing a carbon nanotube array and an insulating substrate; (b) pulling out a carbon nanotube film from the carbon nanotube array by using a tool; (c) placing at least one carbon nanotube film on a surface of the insulating substrate, to form a carbon nanotube layer thereon; (d) forming a source electrode and a drain electrode; wherein the source electrode and the drain electrode being spaced therebetween, and electrically connected to the carbon nanotube layer; and (e) covering the carbon nanotube layer with an insulating layer, and a gate electrode being located on the insulating layer.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: May 24, 2011
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai Liu, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 7947545
    Abstract: A method of fabricating a semiconductor device, the method comprises forming a mask layer over a compound semiconductor substrate; and patterning a photoresist over the mask layer. The method comprises etching a portion of the mask layer beneath the photoresist; forming a hardmask over the substrate and not over the mask layer; removing the mask layer; etching to form and opening down to the substrate; and forming a gate in the opening.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 24, 2011
    Assignee: Avago Technologies Wireless IP (Singapore) Pte. Ltd.
    Inventors: Nathan Ray Perkins, Timothy Arthur Valade, Albert William Wang
  • Patent number: 7915106
    Abstract: A method of fabricating a T-gate is provided. The method includes the steps of: forming a photoresist layer on a substrate; patterning the photoresist layer formed on the substrate and forming a first opening; forming a first insulating layer on the photoresist layer and the substrate; removing the first insulating layer and forming a second opening to expose the substrate; forming a second insulating layer on the first insulating layer; removing the second insulating layer and forming a third opening to expose the substrate; forming a metal layer on the second insulating layer on which the photoresist layer and the third opening are formed; and removing the metal layer formed on the photoresist layer. Accordingly, a uniform and elaborate opening defining the length of a gate may be formed by deposition of the insulating layer and a blanket dry etching process, and thus a more elaborate micro T-gate electrode may be fabricated.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: March 29, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jae Yeob Shim, Hyung Sup Yoon, Dong Min Kang, Ju Yeon Hong, Kyung Ho Lee
  • Patent number: 7897446
    Abstract: A semiconductor device is fabricated to include source and drain contacts including an ohmic metal sunken into the barrier layer and a portion of the channel layer; a protective dielectric layer disposed between the source and drain contacts on the barrier layer; a metallization layer disposed in drain and source ohmic vias between the source contact and the protective dielectric layer and between the protective dielectric layer and the drain contact; and a metal T-gate disposed above the barrier layer including a field mitigating plate disposed on a side portion of a stem of the metal T-gate.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: March 1, 2011
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Ioulia Smorchkova, Robert Coffie, Ben Heying, Carol Namba, Po-Hsin Liu, Boris Hikin
  • Patent number: 7892903
    Abstract: A method of producing a T-gate in a single stage exposure process using electromagnetic radiation is disclosed.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: February 22, 2011
    Assignee: ASML Netherlands B.V.
    Inventor: Rudy Jan Maria Pellens
  • Patent number: 7888193
    Abstract: A semiconductor device has: a semiconductor substrate having a pair of current input/output regions via which current flows; an insulating film formed on the semiconductor substrate and having a gate electrode opening; and a mushroom gate electrode structure formed on the semiconductor substrate via the gate electrode opening, the mushroom gate electrode structure having a stem and a head formed on the stem, the stem having a limited size on the semiconductor substrate along a current direction and having a forward taper shape upwardly and monotonically increasing the size along the current direction, the head having a size expanded stepwise along the current direction, and the stem contacting the semiconductor substrate in the gate electrode opening and riding the insulating film near at a position of at least one of opposite ends of the stem along the current direction.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: February 15, 2011
    Assignees: Fujitsu Limited, Fujitsu Quantum Devices Limited
    Inventors: Kozo Makiyama, Naoya Ikechi, Takahiro Tan
  • Patent number: 7842591
    Abstract: A method of fabricating short-gate-length electrodes for integrated III-V compound semiconductor devices, particularly for integrated HBT/HEMT devices on a common substrate is disclosed. The method is based on dual-resist processes, wherein a first thin photo-resist layer is utilized for defining the gate dimension, while a second thicker photo-resist layer is used to obtain a better coverage on the surface for facilitating gate metal lift-off. The dual-resist method not only reduces the final gate length, but also mitigates the gate recess undercuts, as compared with those fabricated by the conventional single-resist processes. Furthermore, the dual-resist method of the present invention is also beneficial for the fabrication of multi-gate device with good gate-length uniformity.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: November 30, 2010
    Assignee: WIN Semiconductors Corp.
    Inventors: Cheng-Kuo Lin, Chia-Liang Chao, Ming-Chang Tu, Tsung-Chi Tsai, Yu-Chi Wang
  • Patent number: 7736956
    Abstract: Embodiments of the invention provide a device with a metal gate, a high-k gate dielectric layer, source/drain extensions a distance beneath the metal gate, and lateral undercuts in the sides of the metal gate.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: June 15, 2010
    Assignee: Intel Corporation
    Inventors: Suman Datta, Justin K. Brask, Jack Kavalieros, Brian S. Doyle, Gilbert Dewey, Mark L. Doczy, Robert S. Chau
  • Patent number: 7723761
    Abstract: In one embodiment, a tiered gate structure is provided having a substrate including a source, a drain and a gate thereon. The gate includes an elongated gate foot having a first deposition gate material extending from the substrate, the elongated gate foot having a top portion distal from the substrate. The gate head has a second deposition gate material and includes an elongated portion extending downward from the gate head to connect to the top portion of the elongated gate foot.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: May 25, 2010
    Assignee: HRL Laboratories, LLC
    Inventors: Ivan Milosavljevic, Adele Schmitz, Michael Delaney, Michael Antcliffe
  • Patent number: 7709310
    Abstract: A semiconductor device has: a semiconductor substrate having a pair of current input/output regions via which current flows; an insulating film formed on the semiconductor substrate and having a gate electrode opening; and a mushroom gate electrode structure formed on the semiconductor substrate via the gate electrode opening, the mushroom gate electrode structure having a stem and a head formed on the stem, the stem having a limited size on the semiconductor substrate along a current direction and having a forward taper shape upwardly and monotonically increasing the size along the current direction, the head having a size expanded stepwise along the current direction, and the stem contacting the semiconductor substrate in the gate electrode opening and riding the insulating film near at a position of at least one of opposite ends of the stem along the current direction.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: May 4, 2010
    Assignees: Fujitsu Limited, Fujitsu Quantum Devices Limited
    Inventors: Kozo Markiyama, Naoya Ikechi, Takahiro Tan
  • Patent number: 7687860
    Abstract: There are provided a memory transistor having a select transistor with asymmetric gate electrode structure and an inverted T-shaped floating gates and a method for forming the same. A gate electrode of the select transistor adjacent to a memory transistor has substantially an inverted T-shaped figure, whereas the gate electrode of the select transistor opposite to the memory transistor has nearly a box-shaped figure. In order to form the floating gate of the memory transistor in shape of the inverted T, a region for the select transistor is closed when opening a region for the memory transistor.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: March 30, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woon-Kyung Lee, Jeong-Hyuk Choi, Dong-Jun Lee, Jai-Hyuk Song
  • Patent number: 7655514
    Abstract: A silicon carbide metal semiconductor field-effect transistor includes a bi-layer silicon carbide buffer for improving electron confinement in the channel region and/or a layer disposed over at least the channel region of the transistor for suppressing surface effects caused by dangling bonds and interface states. Also, a sloped MESA fabrication method which utilizes a dielectric etch mask that protects the MESA top surface during MESA processing and enables formation of sloped MESA sidewalls.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: February 2, 2010
    Assignee: Lockheed Martin Corporation
    Inventors: An-Ping Zhang, Larry B. Rowland, James W. Kretchmer, Jesse Tucker, Edmund B. Kaminsky
  • Patent number: 7642143
    Abstract: Provided are a method of fabricating a multilayered thin film transistor using a plastic substrate and an active matrix display device including the thin film transistor fabricated by the method. The method includes: preparing a substrate formed of plastic; forming a buffer insulating layer on the plastic substrate; forming a silicon layer on the buffer insulating layer; patterning the silicon layer to form an active layer; forming a gate insulating layer on the active layer; stacking a plurality of gate metal layers on the gate insulating layer; patterning the plurality of gate metal layers; and etching a corner region of the lowest gate metal layer formed on the gate insulating layer of the patterned gate metal layers. Accordingly, a gate metal is formed which includes a multilayered gate metal layer and has an etched corner region, thereby reducing an electric field of the corner to reduce a leakage current of the TFT.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: January 5, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yong Hae Kim, Choong Heui Chung, Jae Hyun Moon, Yoon Ho Song
  • Patent number: 7625789
    Abstract: A field effect transistor having a T-shaped gate electrode is formed on a GaAs substrate, and the T-shaped gate electrode of the field effect transistor is coated with a SiO2 film. A lower electrode of a MIM capacitor is formed on the GaAs substrate. The active portion of the field effect transistor is coated with a fluorine-containing polymer layer. A SiN film, which is a capacity insulating film of the MIM capacitor, is formed on the fluorine-containing polymer layer and the lower electrode. After removing the SiN film from the fluorine-containing polymer layer, the fluorine-containing polymer layer is selectively removed from the SiO2 film and the SiN film. An upper electrode of the MIM capacitor is formed opposite the lower electrode on the SiN film.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: December 1, 2009
    Assignee: Mitsubishi Electric Corporation
    Inventor: Yasuki Aihara
  • Patent number: 7622339
    Abstract: A semiconductor process and apparatus provide a T-shaped structure (96) formed from a polysilicon structure (10) and an epitaxially grown polysilicon layer (70) and having a narrower bottom critical dimension (e.g., at or below 40 nm) and a larger top critical dimension (e.g., at or above 40 nm) so that a silicide may be formed from a first material (such as CoSi2) in at least the upper region (90) of the T-shaped structure (96) without incurring the increased resistance caused by agglomeration and voiding that can occur with certain silicides at the smaller critical dimensions.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: November 24, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mark D. Hall, Dharmesh Jawarani, Mehul D. Shroff, Edward O. Travis
  • Patent number: 7622376
    Abstract: A method for manufacturing a semiconductor device using a polymer is provided, wherein a first insulating layer is formed on a substrate, and a first photoresist pattern is formed over the first insulating layer. A polymer is formed around the first photoresist pattern, the polymer having an opening exposing a portion of the first insulating layer, the opening having a predetermined width, the first insulating layer is etched using the polymer as a mask to expose a portion of the substrate, and the first photoresist pattern and the polymer are removed. A gate insulating layer is formed on the exposed portion of the substrate, and a polysilicon layer is formed on the gate insulating layer and the etched first insulating layer. The polysilicon layer is planarized until the first insulating layer is exposed, to form a gate, and the exposed first insulating layer is removed.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: November 24, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Sung Ho Kwak
  • Patent number: 7608497
    Abstract: A method for fabricating a tiered structure includes forming a gate on a semiconductor substrate. Formation of the gate includes depositing a gate foot using a gate foot mask having an opening through it to define the gate foot over the substrate. After forming the gate foot, the gate foot mask is stripped and a passivation layer is formed over the gate foot and the substrate. A gate head mask is formed over the gate foot with the gate head mask exposing a portion of the passivation layer on a top portion of the gate foot. The portion of the passivation layer on the top portion of the gate foot is removed to expose the top portion of the gate foot. A gate head is formed on the top portion of the gate foot using the gate head mask. A lift-off process is performed, removing the gate head mask.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: October 27, 2009
    Inventors: Ivan Milosavljevic, Adele Schmitz, Michael Antcliffe, Ming Hu, Lorna Hodgson
  • Patent number: 7592211
    Abstract: Transistors are fabricated by forming a protective layer having an opening extending therethrough on a substrate, and forming a gate electrode in the opening. A first portion of the gate electrode laterally extends on surface portions of the protective layer outside the opening, and a second portion of the gate electrode is spaced apart from the protective layer and laterally extends beyond the first portion. Related devices and fabrication methods are also discussed.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: September 22, 2009
    Assignee: Cree, Inc.
    Inventors: Scott T. Sheppard, Scott Allen