Having Gate Surrounded By Dielectric (i.e., Floating Gate) Patents (Class 438/211)
  • Patent number: 7700426
    Abstract: Provided is a nonvolatile memory device and a method of forming the nonvolatile memory device. The nonvolatile memory device includes a floating gate formed on a first active region doped with a first-conductivity-type dopant. The floating gate is doped with the first-conductivity-type dopant. Therefore, the thickness of a tunnel insulation layer can be kept thin, and the threshold voltage of a nonvolatile memory cell including the floating gate can be increased. As a result, the endurance of the tunnel insulation layer and the data retention characteristics of the nonvolatile memory cell is improved.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: April 20, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Kyung Kim, Sung-Nam Chang, Dong-Seog Eun
  • Patent number: 7700428
    Abstract: Methods for fabricating a device structure for use as a memory cell in a non-volatile random access memory. The method includes forming first and second semiconductor bodies on the insulating layer that have a separated, juxtaposed relationship, doping the first semiconductor body to form a source and a drain, and partially removing the second semiconductor body to define a floating gate electrode adjacent to the channel of the first semiconductor body. The method further includes forming a first dielectric layer between the channel of the first semiconductor body and the floating gate electrode, forming a second dielectric layer on a top surface of the floating gate electrode, and forming a control gate electrode on the second dielectric layer that cooperates with the floating gate electrode to control carrier flow in the channel in the first semiconductor body.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: April 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, Jed H. Rankin, Yun Shi, William R. Tonti
  • Patent number: 7696035
    Abstract: A method for fabricating a non-volatile memory having boost structures. Boost structures are provided for individual NAND strings and can be individually controlled to assist in programming, verifying and reading processes. The boost structures can be commonly boosted and individually discharged, in part, based on a target programming state or verify level. The boost structures assists in programming so that the programming and pass voltage on a word line can be reduced, thereby reducing side effects such as program disturb. During verifying, all storage elements on a word line can be verified concurrently. The boost structure can also assist during reading. In one approach, the NAND string has dual source-side select gates between which the boost structure contacts the substrate at a source/drain region, and a boost voltage is provided to the boost structure via a source-side of the NAND string.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: April 13, 2010
    Assignee: Sandisk Corporation
    Inventor: Nima Mokhlesi
  • Patent number: 7691706
    Abstract: Embodiments relate to a method for fabricating a semiconductor device. In embodiments, the method may include forming a gate dielectric layer on an active region of a semiconductor substrate defined by an isolation region to form a gate conductive layer pattern, etching the isolation region of the semiconductor substrate where the gate conductive layer pattern is formed, to form an isolation trench, forming a polyoxide layer on the gate conductive layer pattern and a sidewall oxide layer in the trench by carrying out an oxidation process, forming a spacer nitride layer on the polyoxide layer and a liner nitride layer on the sidewall oxide layer by carrying out a nitride layer forming process, and then forming a dielectric layer on an entire surface of the resultant structure to fill the trench.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: April 6, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Bong Jun Kim
  • Patent number: 7687341
    Abstract: A method for fabricating a semiconductor device includes forming at least one gate pattern over a substrate, forming a first insulation layer over the gate patterns and the substrate, etching the first insulation layer in a peripheral region to form at least one gate pattern spacer in the peripheral region, forming a second insulation layer over the substrate structure, etching the second insulation layer in a cell region to a given thickness, forming an insulation structure over the substrate structure, and etching the insulation structure, the etched first insulation layer and second insulation layer in the cell region to form a contact hole.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: March 30, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Min-Suk Lee
  • Patent number: 7687345
    Abstract: Disclosed are a flash memory device having a silicon-oxide-nitride-oxide-silicon (SONOS) structure and a method of manufacturing the same. The flash memory device includes source and drain diffusion regions separated from each other on opposite sides of a trench in an active region of a semiconductor substrate, a control gate inside the trench and protruding upward from the substrate, a charge storage layer between the control gate and an inner wall of the trench, and a pair of insulating spacers formed on opposite sidewalls of the control gate with the charge storage layer therebetween. Here, the charge storage layer has an oxide-nitride-oxide (ONO) structure. Further, the depth of the trench from the surface of the substrate is greater than that of each of the source and drain diffusion regions.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: March 30, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Sang Bum Lee
  • Patent number: 7682900
    Abstract: The invention relates to a method of fabricating a flash memory device. According to the method, select transistors and memory cells are formed on, and junctions are formed in a semiconductor substrate. The semiconductor substrate between a select transistor and an adjacent memory cell are over etched using a hard mask pattern. Accordingly, migration of electrons can be prohibited and program disturbance characteristics can be improved. Further, a void is formed between the memory cells. Accordingly, an interference phenomenon between the memory cells can be reduced and, therefore, the reliability of a flash memory device can be improved.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: March 23, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Eun Soo Kim, Whee Won Cho, Seung Hee Hong
  • Patent number: 7682907
    Abstract: A nonvolatile memory integrated circuit arrayed in rows and columns is disclosed. Parallel lines of implant N-type regions are formed in a P-well of a semiconductor substrate, with lines of oxide material isolating each pair of the lines. Columns of memory cells straddle respective pairs of the implant region lines, with one line of the pair forming the source region and one line of the pair forming the drain region of each memory cell of the column. Each memory cell has a floating polysilicon storage gate. One of plural wordlines overlies each row of the memory cells. The portion of the wordline overlying each memory cells forms the control gate of the memory cell. Programming and erase operations occur by Fowler-Nordheim tunneling of electrons through a tunnel oxide layer between the floating gate and the source of the cell.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: March 23, 2010
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Sorin S. Georgescu
  • Patent number: 7678674
    Abstract: A method of forming implants for a memory cell includes forming an oxide-nitride-oxide (ONO) stack over a substrate and implanting first impurities in the substrate adjacent each side of the ONO stack using a first implantation energy and a first tilt angle to produce first pocket implants. The method further includes implanting second impurities in the substrate adjacent each side of the ONO stack using a second implantation energy and a second tilt angle to produce second pocket implants, where the second implantation energy is substantially larger than the first implantation energy and where the second tilt angle is substantially larger than the first tilt angle.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: March 16, 2010
    Assignee: Spansion LLC
    Inventors: Shankar Sinha, Ashot Melik-Martirosian, Ihsan Djomehri
  • Patent number: 7679125
    Abstract: A method of making a semiconductor device includes providing a first wafer and providing a second wafer having a first side and a second side, the second wafer including a semiconductor substrate, a storage layer, and a layer of gate material. The storage layer may be located between the semiconductor structure and the layer of the gate material and the storage layer may be located closer to the first side of the second wafer than the semiconductor structure. The method further includes boding the first side of the second wafer to the first wafer. The method further includes removing a first portion of the semiconductor structure to leave a layer of the semiconductor structure after the bonding. The method further includes forming a transistor having a channel region, wherein at least a portion of the channel region is formed from the layer of the semiconductor structure.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: March 16, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Craig T. Swift, Gowrishankar L. Chindalore, Thuy B. Dao, Michael A. Sadd
  • Patent number: 7670906
    Abstract: Embodiments relate to a flash memory device and to method of fabricating a flash memory device is disclosed. According to embodiments, a method may include forming a device isolation layer on a semiconductor substrate to define active regions, forming floating gate patterns on the active regions, forming the photoresist patterns on the device isolation layer such that the photoresist patterns have side walls higher than the floating gate patterns, forming spacer patterns at the side walls of the photoresist patterns such that the spacer patterns partially cover the floating gate patterns, and etching the floating gate patterns by a predetermined depth using the spacer patterns as an etching mask.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: March 2, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Tae-Woong Jeong
  • Patent number: 7659158
    Abstract: Embodiments of the invention provide memory devices and methods for forming memory devices. In one embodiment, a memory device is provided which includes a floating gate polysilicon layer disposed over source/drain regions of a substrate, a silicon oxynitride layer disposed over the floating gate polysilicon layer, a first aluminum oxide layer disposed over the silicon oxynitride layer, a hafnium silicon oxynitride layer disposed over the first aluminum oxide layer, a second aluminum oxide layer disposed over the hafnium silicon oxynitride layer, and a control gate polysilicon layer disposed over the second aluminum oxide layer. In another embodiment, a memory device is provided which includes a control gate polysilicon layer disposed over an inter-poly dielectric stack disposed over a silicon oxide layer disposed over the floating gate polysilicon layer. The inter-poly dielectric stack contains two silicon oxynitride layers separated by a silicon nitride layer.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: February 9, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Yi Ma, Shreyas S. Kher, Khaled Ahmed, Tejal Goyani, Maitreyee Mahajani, Jallepally Ravi, Yi-Chiau Huang
  • Patent number: 7651912
    Abstract: A semiconductor device includes a semiconductor substrate having a plurality of element regions and a plurality of element isolation regions in a first direction, a plurality of floating gate electrodes formed via a gate insulating film on the respective element regions, an intergate insulating film formed on the floating gate electrodes, a plurality of control gate electrodes formed on the intergate insulating film so as to extend over the adjacent floating gate electrodes, and an element isolation insulating film formed in the element isolation region and having an upper end located higher than the upper surface of the gate insulating film, the element isolation insulating film including a part formed between the control gate electrodes so that the central sidewall of the element isolation insulating film is located lower than the end of the sidewall of the element isolation insulating film.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: January 26, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Shoichi Miyazaki
  • Patent number: 7651904
    Abstract: Non-volatile memory devices can be fabricated by forming a tunnel dielectric layer on a semiconductor substrate, subjecting the semiconductor substrate having the tunnel dielectric layer to an atomic layer deposition (ALD) process to form nanocrystals on the tunnel dielectric layer, removing the semiconductor substrate having the nanocrystals from an atomic layer deposition chamber, forming a control gate dielectric layer on the semiconductor substrate having the nanocrystal, and forming a control gate electrode on the semiconductor substrate having the control gate dielectric layer.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: January 26, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyong-Hee Joo, Jin-Ho Park, In-Seok Yeo, Seung-Hyun Lim
  • Patent number: 7642616
    Abstract: A method used during semiconductor device fabrication comprises forming at least two types of transistors. A first transistor type may comprise a CMOS transistor comprising gate oxide and having a wide active area and/or a long channel, and the second transistor type may comprise a NAND comprising tunnel oxide and having a narrow active area and/or short gate length. The transistors are exposed to a nitridation ambient which, due to their differences in sizing, results in nitridizing the tunnel oxide in its entirely but only partially nitridizing the gate oxide. Various process embodiments and completed structures are disclosed.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: January 5, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Akira Goda
  • Patent number: 7638384
    Abstract: Embodiments relate to a method of fabricating a semiconductor device. In embodiments, a gate pattern may be formed on a semiconductor substrate, and sidewalls having a lower height than a height of the gate pattern may be formed at both sides of the gate pattern using a photoresist pattern. A silicide layer may be formed on exposed upper surface and side surfaces of the gate pattern and a portion of the semiconductor substrate at both sides of the sidewalls. Therefore, the silicide layer formed on a gate may be enlarged, and may reduce gate resistance.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: December 29, 2009
    Assignee: Dongbu HiTek Co. Ltd.
    Inventor: Jung Hak Myung
  • Patent number: 7632743
    Abstract: A method of manufacturing a flash memory device includes forming a first polysilicon layer over a semiconductor substrate to form a floating gate. A tunnel dielectric layer is formed over the first polysilicon layer. A second polysilicon layer and a tungsten silicide layer are formed over the tunnel dielectric film to firm a control gate, the tungsten silicide layer having excess silicon. An upper portion of the tungsten silicide layer is oxidized to move the excess silicon away from an interface between the second polysilicon layer and the tungsten silicide.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: December 15, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventor: Min Sik Jang
  • Patent number: 7629213
    Abstract: A method of manufacturing a flash memory device includes the steps of forming gate patterns for cells and gate patterns for select transistors over a semiconductor substrate, forming a buffer insulating layer on the resulting surface including the gate patterns, forming an insulating layer to form void in spaces between the gate patterns for cells, forming a nitride layer on the insulating layer, and forming a spacer on one side of each of the gate patterns for select transistors by a spacer etch process.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: December 8, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Whee Won Cho, Jung Geun Kim, Seong Hwan Myung, Cheol Mo Jeong
  • Patent number: 7622343
    Abstract: A laser doping process comprising: irradiating a laser beam operated in a pulsed mode to a single crystal semiconductor substrate of a first conductive type in an atmosphere of an impurity gas which imparts the semiconductor substrate a conductive type opposite to said first conductive type and incorporating the impurity contained in said impurity gas into the surface of said semiconductor substrate, thereby modifying the type and/or the intensity of the conductive type thereof. Provides devices having a channel length of 0.5 ?m or less and impurity regions 0.1 ?m or less in depth.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: November 24, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuhiko Takemura
  • Publication number: 20090280607
    Abstract: Methods for fabricating a device structure for use as a memory cell in a non-volatile random access memory. The method includes forming first and second semiconductor bodies on the insulating layer that have a separated, juxtaposed relationship, doping the first semiconductor body to form a source and a drain, and partially removing the second semiconductor body to define a floating gate electrode adjacent to the channel of the first semiconductor body. The method further includes forming a first dielectric layer between the channel of the first semiconductor body and the floating gate electrode, forming a second dielectric layer on a top surface of the floating gate electrode, and forming a control gate electrode on the second dielectric layer that cooperates with the floating gate electrode to control carrier flow in the channel in the first semiconductor body.
    Type: Application
    Filed: May 9, 2008
    Publication date: November 12, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, JR., Jed H. Rankin, Yun Shi, William R. Tonti
  • Publication number: 20090278186
    Abstract: A double gate transistor on a semiconductor substrate (2) includes a first diffusion region (S2), a second diffusion region (S3), and a double gate (FG, CG). The first and second diffusion regions (S2, S3) are arranged in the substrate spaced by a channel region (CR). The double gate includes a first gate electrode (FG) and a second gate electrode (CG). The first gate electrode is separated from the second gate electrode by an interpoly dielectric layer (IPD). The first gate electrode is arranged above the channel region and is separated from the channel region by a gate oxide layer (G). The second gate electrode is shaped as a central body. The interpoly dielectric layer is arranged as a conduit-shaped layer surrounding an external surface (A1) of the body of the second gate electrode. The interpoly dielectric layer is surrounded by the first gate electrode.
    Type: Application
    Filed: June 6, 2007
    Publication date: November 12, 2009
    Applicant: NXP B.V.
    Inventors: Jan Sonsky, Michiel J. Van Duuren
  • Patent number: 7615436
    Abstract: There is provided a floating gate transistor, such as an EEPROM transistor, and method of making the transistor using two masking steps. The method of making a transistor includes patterning a floating gate layer using a first photoresist mask to form a floating gate rail and doping an active area using the floating gate rail as a mask to form source and drain regions in the active area. The method also includes patterning a control gate layer, a control gate dielectric layer, the floating gate rail, a tunnel dielectric layer and the active area using a second photoresist mask to form a control gate, a control gate dielectric, a floating gate, a tunnel dielectric and a channel island region.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: November 10, 2009
    Assignee: SanDisk 3D LLC
    Inventors: Igor G. Kouznetsov, Andrew J. Walker
  • Patent number: 7611941
    Abstract: In an embodiment of the invention, a method for manufacturing a memory cell arrangement includes forming a charge storing memory cell layer stack over a substrate; forming first and second select structures over, respectively, first and second sidewalls of the charge storing memory cell layer stack, wherein the first and second select structures in each case comprise a select gate configured as a spacer and laterally disposed from the respective sidewall of the charge storing memory cell layer stack; and removing a portion of the charge storing memory cell layer stack between the first and second select structures after formation of the first and second select structures, thereby forming first and second charge storing memory cell structures.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: November 3, 2009
    Assignee: Infineon Technologies AG
    Inventors: Danny Pak-Chum Shum, Robert Strenz
  • Patent number: 7612401
    Abstract: A semiconductor device comprises a semiconductor substrate, and a non-volatile memory cell provided on the semiconductor substrate, the non-volatile memory cell comprising a tunnel insulating film having a film thickness periodically and continuously changing in a channel width direction of the non-volatile memory cell, a floating gate electrode provided on the tunnel insulating film, a control gate electrode provided above the floating gate electrode, and an interelectrode insulating film provided between the control gate electrode and the floating gate electrode.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: November 3, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshio Ozawa, Shigehiko Saida, Yuji Takeuchi, Masanobu Saito
  • Patent number: 7608500
    Abstract: Provided is a method of forming a semiconductor device. A tunnel insulating layer is formed on a substrate having a cell region and a low voltage region. First and second charge storage gate patterns (e.g., floating gate patterns) are formed on the tunnel insulating layers of the cell and low voltage region, respectively. A blocking insulating layer and a control gate conductive layer are formed on the substrate in sequence. The control gate conductive layer, the blocking insulating layer, the second floating gate pattern and the tunnel insulating layer of the low voltage region are removed to expose the substrate of the low voltage region. The low-voltage gate insulating layer is formed on the exposed substrate. A low-voltage gate conductive pattern is formed on the low-voltage gate insulating layer.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: October 27, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-Kwan You, Jun-Eui Song, Gyeong-Hee Kim, Hee-Jueng Lee
  • Patent number: 7605430
    Abstract: A nonvolatile memory device includes a semiconductor substrate and a device isolation layer on the semiconductor substrate. A fin-shaped active region is formed between portions of the device isolation layer. A sidewall protection layer is formed on the sidewall of the fin-shaped active region where source and drain regions are formed. Thus, it may be possible to reduce the likelihood of an undesirable connection between an interconnection layer connected to the source and drain regions and a lower sidewall of the active region so that charge leakage from the interconnection layer to a substrate can be prevented or reduced. The sidewall protection layer may be formed using the device isolation layer. Alternatively, an insulating layer having an etch selectivity with respect to an interlayer insulating layer may be formed on the device isolation layer so as to cover the sidewall of the active region.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: October 20, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Hyun Lee, Jung-Dal Choi, Chang-Seok Kang, Yoo-Cheol Shin, Jong-Sun Sel
  • Patent number: 7605419
    Abstract: A flash memory device includes a floating gate formed on a substrate, sidewall gates formed on sidewalls of the floating gate, an interlayer insulating layer formed the floating gate and the sidewall gates, and a control gate formed on the interlayer insulating layer. The fabricating method of a flash memory device includes forming a floating gate on a substrate, forming sidewall gates at sidewalls of the floating gate, forming an interlayer insulating layer on the floating gate and the sidewall gates, and forming a control gate on the interlayer insulating layer.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: October 20, 2009
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sang Bum Lee
  • Patent number: 7605473
    Abstract: Methods of fabricating nonvolatile memory devices are provided. An isolation layer is formed on a substrate. The substrate has a memory region and a well contact region and the isolation layer defines an active region of the substrate. A gate insulating layer is formed on the active region. The gate insulating layer is patterned to define an opening therein. The opening exposes at least a portion of the well contact region of the substrate and acts as a charge pathway for charges generated during a subsequent etch of the isolation layer. Related memory device are also provided.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: October 20, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Dal Choi, Yun-Seung Shin, Jong-Sun Sel
  • Patent number: 7598141
    Abstract: A method of fabricating a static random access memory device includes selectively removing an insulating film and growing a single crystalline silicon layer using selective epitaxy growth, the single crystalline silicon layer being grown in a portion from which the insulating film is removed; recessing the insulating film; and depositing an amorphous silicon layer on the single crystalline silicon layer and the insulating film, such that the amorphous silicon layer partially surrounds a top surface and side surfaces of the single crystalline silicon layer.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: October 6, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Hoon Lee, Sang-Jin Park, Won-Seok Yoo, Kong-Soo Lee
  • Patent number: 7598564
    Abstract: A non-volatile memory device including a barrier spacer that serves to protect a control gate, including a metal layer, from damage that may result from exposure to a cleaning solution and/or oxygen. With the barrier spacer layer, a cleaning process using a high-power cleaning solution may be used to effectively remove etch byproducts. An oxidation process may be performed to cure etch damage of an intergate dielectric pattern, a floating gate and a gate insulator. The barrier spacer and/or the oxidation process enable a non-volatile memory device having enhanced speed and reliability to be formed.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: October 6, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-woong Kang, Sung-nam Chang, Kwang-jae Lee
  • Patent number: 7598136
    Abstract: An image sensor comprising a transfer gate electrode having a uniform impurity doping distribution is provided. The image sensor further comprises a semiconductor substrate comprising a pixel area, wherein the pixel area comprises an active region and the transfer gate electrode is disposed on the active region. A method of fabricating the image sensor is also provided. The method comprises preparing a semiconductor substrate, forming a polysilicon layer on the semiconductor substrate, doping the polysilicon layer with impurity ions, and patterning the polysilicon layer.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: October 6, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Hoon Park, Jae-Ho Song, Won-Je Park
  • Patent number: 7598561
    Abstract: Semiconductor memory array and process of fabrication in which a plurality of bit line diffusions are formed in a substrate, and memory cells formed in pairs between the bit line diffusions, with each of the pairs of cells having first and second conductors adjacent to the bit line diffusions, floating gates beside the first and second conductors, an erase gate between the floating gates, and a source line diffusion in the substrate beneath the erase gate, and at least one additional conductor capacitively coupled to the floating gates. In some disclosed embodiments, the conductors adjacent to the bit line diffusions are word lines, and the additional conductors consist of either a pair of coupling gates which are coupled to respective ones of the floating gates or a single coupling gate which is coupled to both of the floating gates.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: October 6, 2009
    Assignee: Silicon Storage Technolgy, Inc.
    Inventors: Bomy Chen, Prateep Tuntasood, Der-Tsyr Fan
  • Patent number: 7595218
    Abstract: Programmable resistive RAM cells have a resistance that depends on the size of the programmable resistive elements. Manufacturing methods and integrated circuits for programmable resistive elements with uniform resistance are disclosed that have a cross-section of reduced size compared to the cross-section of the interlayer contacts.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: September 29, 2009
    Assignee: Macronix International Co., Ltd.
    Inventors: ChiaHua Ho, Erh Kun Lai, Kuang Yeu Hsieh
  • Patent number: 7588979
    Abstract: Methods of manufacturing a semiconductor integrated circuit using selective disposable spacer technology and semiconductor integrated circuits manufactured thereby. The method includes providing a semiconductor substrate; forming gate patterns on the semiconductor substrate, wherein a first space and a second space wider than the first space are disposed between the gate patterns; forming a first impurity region in the semiconductor substrate under the first space and forming a second impurity region in the semiconductor substrate under the second space; forming insulation spacers on sidewalls of the gate patterns, wherein a portion of the second impurity region is exposed and the first impurity region is covered with the insulation spacers; etching the insulation spacers, wherein an opening width of the second impurity region is enlarged and wherein the etching is carried out with a wet etching process; and forming an interlayer insulating layer on the overall structure including the gate patterns.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: September 15, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Eun Lee, Yun-Heub Song
  • Patent number: 7589371
    Abstract: The present invention provides semiconductor device and a fabrication method therefor. The semiconductor device includes trenches (11) formed in a semiconductor substrate (10), first ONO films (18) provided on both side surfaces of the trenches, and first word lines (22) provided on side surfaces of the first ONO films (18) and running in a length direction of the trenches (11). According to the present invention, it is possible to provide a semiconductor device and a fabrication method therefor, in which higher memory capacity can be achieved.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: September 15, 2009
    Assignee: Spansion LLC
    Inventors: Masaya Hosaka, Masatomi Okanishi
  • Patent number: 7588986
    Abstract: According to an exemplary embodiment of the present invention, a method of manufacturing a semiconductor device having active regions including a SONOS device region, a high voltage device region, and a logic device region, includes defining the active regions by forming a device isolation region on a semiconductor substrate; performing ion-implantation in the SONOS device region to control a threshold voltage of a SONOS device; performing ion-implantation in the high voltage device region to form a well; performing ion-implantation in the SONOS device region and the logic device region to form a well; and forming an ONO pattern on the SONOS device region, generally by performing a photolithography and etching process on the ONO layer.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: September 15, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Jin-Hyo Jung
  • Patent number: 7585721
    Abstract: In a process for fabricating a nano-floating gate memory structure, a substrate and a nanocluster source are firstly provided. The nanocluster source is activated for generating a beam of nanoclusters towards the substrate, and at least part of the nanoclusters are received atop the substrate. Thereby, a plurality of nanoclusters of controllable size are formed atop the substrate.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: September 8, 2009
    Assignee: The Hong Kong Polytechnic University
    Inventors: Jiyan Dai, Xubing Lu, Pui-Fai Lee
  • Patent number: 7585726
    Abstract: The present invention enables to avoid a reduction in coupling ratio in a nonvolatile semiconductor memory device. The reduction is coupling ratio is caused due to difficulties in batch forming of a control gate material, an interpoly dielectric film material, and a floating gate material, the difficulties accompanying a reduction in word line width. Further, the invention enables to avoid damage caused in the batch forming on a gate oxide film. Before forming floating gates of memory cells of a nonvolatile memory, a space enclosed by insulating layers is formed for each of the floating gates of the memory cells, so that the floating gate is buried in the space. This structure is realized by processing the floating gates in a self alignment manner after depositing the floating gate material.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: September 8, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Yoshitaka Sasago, Takashi Kobayashi
  • Patent number: 7586144
    Abstract: A memory cell transistor includes a high dielectric constant tunnel insulator, a metal floating gate, and a high dielectric constant inter-gate insulator comprising a metal oxide formed over a substrate. The tunnel insulator and inter-gate insulator have dielectric constants that are greater than silicon dioxide. Each memory cell has a plurality of doped source/drain regions in a substrate. A pair of transistors in a row are separated by an oxide isolation region comprising a low dielectric constant oxide material. A control gate is formed over the inter-gate insulator.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: September 8, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7572693
    Abstract: Methods are disclosed for semiconductor device fabrication in which dopants are selectively implanted into transistor gate structures to counteract or compensate for dopant depletion during subsequent fabrication processing. A patterned implant mask is formed over a semiconductor device, which exposes at least a portion of the gate structure and covers the remaining upper surfaces of the device. Thereafter, dopants are selectively implanted in to the exposed gate structure.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: August 11, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: F. Scott Johnson, Tad Grider, Benjamin P. McKee
  • Patent number: 7566615
    Abstract: A memory device includes a semiconductor substrate, a first gate insulator on a first portion of a semiconductor substrate, a storage node on the first gate insulator, a tunnel junction barrier on the storage node and a data electrode on the layer tunnel junction barrier. The device further includes a second gate insulator layer on a sidewall of the tunnel junction barrier, a third gate insulator on a second portion of the substrate adjacent the tunnel junction barrier and a gate electrode on the second gate insulator and the third gate insulator. First and second impurity-doped regions are disposed in the substrate and are coupled by a channel through the first and second portions of the substrate. Fabrication of such a device is also describes.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: July 28, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Seung-Jae Baik
  • Patent number: 7564093
    Abstract: A semiconductor device comprises static random access memory (SRAM) cells formed in a semiconductor substrate, first deep trenches isolating each boundary of an n-well and a p-well of the SRAM cells, second deep trenches isolating the SRAM cells into each unit bit cell, and at least one or more contacts taking substance voltage potentials in regions isolated by the first and second deep trenches. Then, the device becomes possible to improve a soft error resistance without increasing the device in size.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: July 21, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Satoshi Matsuda
  • Patent number: 7563674
    Abstract: A method of manufacturing a NAND flash memory device, wherein isolation layers are formed in a semiconductor substrate, and an upper side of each of the isolation layers is made to have a negative profile. A polysilicon layer is formed on the entire surface. At this time, a seam is formed within the polysilicon layer due to the negative profile. A post annealing process is performed in order to make the seam to a void. Accordingly, an electrical interference phenomenon between cells can be reduced and a threshold voltage (Vt) shift value can be lowered.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: July 21, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventor: Byoung Ki Lee
  • Patent number: 7556999
    Abstract: A method for fabrication a memory having a memory area and a peripheral area includes forming a first gate insulating layer with a first thickness over a substrate of a first region in the peripheral area and a second insulating layer with a second thickness over the substrate of the memory region. Thereafter, a buried diffusion region is formed in the substrate of the memory area. A charge trapping layer and a third insulating layer are formed over the substrate. A gate insulating layer is formed in the second region in the peripheral area, wherein the first thickness is greater than a second thickness after removing the charge trapping layer and third insulating layer on the first and second region in the peripheral area. A conductive layer is formed over the substrate of the memory area and the peripheral area substantially after the gate insulating layer is formed.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: July 7, 2009
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Yen-Hao Shih, Erh-Kun Lai
  • Patent number: 7553719
    Abstract: A flash memory device includes a source region formed in an active region of a semiconductor substrate; a recessed region formed in the active region on either side of the source region, the recessed region including a recess surface having sidewalls; floating gates formed at the sidewalls of the recess surface by interposing a tunnel insulating film; a source line formed on the source region across the active region; and control gate electrodes formed at sidewalls of the source line across a portion of the active region where the floating gates are formed. The floating gates and the control gate electrodes are formed by anisotropically etching a conformal conductive film to have a spacer structure. Cell transistor size can be reduced by forming a deposition gate structure at both sides of the source line, and short channel effects can be minimized by forming the channel between the sidewalls of a recess surface.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: June 30, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Sang Bum Lee
  • Patent number: 7553726
    Abstract: A method of fabricating nonvolatile memory devices may involve forming separate floating gates on a semiconductor substrate, forming control gates on the semiconductor substrate, conformally forming a buffer film on a surface of the semiconductor substrate, injecting ions into the semiconductor substrate between the pairs of the floating gates to form a common source region partially overlapping each floating gate of the respective pair of the floating gates, depositing an insulating film on the buffer film, etching the buffer film and the insulating film at side walls of the floating gates and the control gates to form spacers at the side walls of the floating gates and the control gates, and forming a drain region in the semiconductor substrate at a side of the control gate other than a side of the control gate where the common source region is formed.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: June 30, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: In-gu Yoon, Chul-soon Kwon, Jae-won Um, Jung-ho Moon
  • Patent number: 7550339
    Abstract: A memory cell transistor includes a high dielectric constant tunnel insulator, a metal floating gate, and a high dielectric constant inter-gate insulator comprising a metal oxide formed over a substrate. The tunnel insulator and inter-gate insulator have dielectric constants that are greater than silicon dioxide. Each memory cell has a plurality of doped source/drain regions in a substrate. A pair of transistors in a row are separated by an oxide isolation region comprising a low dielectric constant oxide material. A control gate is formed over the inter-gate insulator.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: June 23, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7550341
    Abstract: A first plurality of memory cells is in a first plane in a first column of the array. A second plurality of memory cells is in a second plane in the same column. The second plurality of memory cells are coupled to the first plurality of memory cells through a series connection of their source/drain regions.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: June 23, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Patent number: 7550342
    Abstract: A nonvolatile semiconductor memory device whose gate structure of a transistor other than a memory cell transistor has a same stacked gate structure as the memory cell transistor, the gate structure comprising a semiconductor substrate, a first insulation film provided on the semiconductor substrate, a first conductive film provided on the first insulation film, a second insulation film, provided on the first conductive film, having an opening, a spacer provided on the second insulation film to define the opening, and a second conductive film provided on the spacer and electrically connected to the first conductive film via the opening.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: June 23, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koichi Matsuno, Tadashi Iguchi
  • Publication number: 20090140345
    Abstract: A semiconductor structure, such as a field effect device structure, and more particularly a CMOS structure, includes a gate dielectric that is at least in-part aligned to an active region of a semiconductor substrate over which is located the gate dielectric. The gate dielectric comprises other than a thermal processing product of the semiconductor substrate. In particular, the gate dielectric may be formed using an area selective deposition method such as but not limited to an area selective atomic layer deposition method. Within the context of a CMOS structure, the invention provides particular advantage insofar as the use of a self-aligned method for forming a gate dielectric aligned upon an active region of a semiconductor substrate may avoid a masking process that may otherwise be needed to strip portions of an area non-selective blanket gate dielectric.
    Type: Application
    Filed: November 29, 2007
    Publication date: June 4, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Huilong Zhu