Having Gate Surrounded By Dielectric (i.e., Floating Gate) Patents (Class 438/211)
  • Patent number: 7541237
    Abstract: Rows of memory cells are electrically isolated from one another by trenches formed in the substrate between the rows that are filled with a dielectric, commonly called “shallow trench isolation” or “STI.” Discontinuous source and drain regions of the cells are connected together by column oriented bit lines, preferably made of doped polysilicon, that extend in the column direction on top of the substrate. This structure is implemented in a flash memory array of cells having either one floating gate per cell or at least two floating gates per cell. A process of making a dual-floating gate memory cell array includes etching the word lines twice along their lengths, once to form openings through which source and drain implants are made and in which the conductive bit lines are formed, and second to form individual floating gates with a select transistor gate positioned between them that also serves to erase charge from the adjacent floating gates.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: June 2, 2009
    Assignee: Sandisk Corporation
    Inventors: Jack H. Yuan, Jacob Haskell
  • Patent number: 7541637
    Abstract: The invention relates to a nonvolatile semiconductor storage element and an associated production and control method, the storage element includes a semiconductor substrate having a source region, a drain region and an intermediate channel region. On a first portion of the channel region, a control layer is formed and insulated from the channel region by a first insulating layer whereas respective charge storage layers are formed in a second portion of the channel region and are insulated from the channel region by a second insulating layer. On the charge storage layer, a programming layer is formed and insulated from the charge storage layer by a third insulating layer and is electrically connected to a respective source region and drain region via a respective interconnect layer.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: June 2, 2009
    Assignee: Infineon Technologies AG
    Inventors: Franz Schuler, Georg Tempel
  • Patent number: 7537994
    Abstract: Embodiments disclosed herein include methods in which a pair of openings are formed into semiconductor material, with the openings being spaced from one another by a segment of the semiconductor material. Liners are formed along sidewalls of the openings, and then semiconductor material is isotropically etched from bottoms of the openings to merge the openings and thereby completely undercut the segment of semiconductor material. Embodiments disclosed herein may be utilized in forming SOI constructions, and in forming field effect transistors having transistor gates entirely surrounding channel regions. Embodiments disclosed herein also include semiconductor constructions having transistor gates surrounding channel regions, as well as constructions in which insulative material entirely separates an upper semiconductor material from a lower semiconductor material.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: May 26, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Ted Taylor, Xiawan Yang
  • Patent number: 7534690
    Abstract: Stacked gate structures for a NAND string are created on a substrate. Source implantations are performed at a first implantation angle to areas between the stacked gate structures. Drain implantations are performed at a second implantation angle to areas between the stacked gate structures. The drain implantations create lower doped regions of a first conductivity type in the substrate on drain sides of the stacked gate structures. The source implantations create higher doped regions of the first conductivity type in the substrate on source sides of the stacked gate structures.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: May 19, 2009
    Assignee: SanDisk Corporation
    Inventors: Gerrit Jan Hemink, Shinji Sato
  • Patent number: 7531404
    Abstract: A method of forming a transistor gate stack having an annealed gate dielectric layer begins by providing a substrate that includes a first and second spacer separated by a trench. A conformal high-k gate dielectric layer is deposited on the substrate and within the trench with a thickness that ranges from 3 ? to 60 ?. Next, a capping layer is deposited on the high-k gate dielectric layer that substantially fills the trench and covers the high-k gate dielectric layer. The high-k gate dielectric layer is then annealed at a temperature that is greater than or equal to 600° C. The capping layer is removed to expose an annealed high-k gate dielectric layer. A metal layer is then deposited on the annealed high-k gate dielectric layer. A CMP process may be used to remove excess material and complete formation of the transistor gate stack.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: May 12, 2009
    Assignee: Intel Corporation
    Inventors: Sangwoo Pae, Jose Maiz, Justin Brask, Gilbert Dewey, Jack Kavalieros, Robert Chau, Suman Datta
  • Patent number: 7531405
    Abstract: A polycrystalline dielectric layer is formed wherein the dielectric layer comprises a first dielectric material containing an oxide or nitride and a second material contributing to less than 1% in weight to the dielectric layer, forming a non-conductive oxide or nitride having an enthalpy lower than the enthalpy of the first dielectric material such that a leakage current along grain boundaries of the first dielectric material is reduced.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: May 12, 2009
    Assignee: Qimonds AG
    Inventors: Andreas Spitzer, Elke Erben
  • Publication number: 20090117696
    Abstract: A fully logic process compatible non-volatile memory cell has a well on a substrate, a pair of source and drain outside the well, a channel between the source and drain, a control gate in the well, and a floating gate having a first portion above the channel, and a second portion above the well. The control gate includes two regions having opposite conductivity types and a third region between the two regions and under the second portion of the floating gate, and thus eliminates the parasitic depletion capacitor in the coupling path of the cell, thereby improving the coupling ratio.
    Type: Application
    Filed: December 22, 2008
    Publication date: May 7, 2009
    Inventor: Hung-Der Su
  • Publication number: 20090117697
    Abstract: A nonvolatile memory device including a nano dot and a method of fabricating the same are provided. The nonvolatile memory device may include a lower electrode, an oxide layer on the lower electrode, a nano dot in the oxide layer and an upper electrode on the oxide layer. In example embodiments, the current paths inside the oxide layer may be unified, thereby stabilizing the reset current.
    Type: Application
    Filed: December 22, 2008
    Publication date: May 7, 2009
    Inventors: Sang-Ji Park, Myoung-Jae Lee, Young-Kwan Cha, Sun-Ae Seo, Kyung-Sang Cho, Kwang-Soo Seol
  • Patent number: 7524719
    Abstract: A method for forming a split gate memory cell (10,11) using a semiconductor substrate (12) includes forming a select gate structure (48) and a sacrificial structure (50) over the substrate. An opening is between the select gate structure and the sacrificial structure. The opening is lined with a storage layer (56,168). The opening is further filled with select gate material (58,170). The sacrificial structure is removed after filling the opening with the select gate material.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: April 28, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Robert F. Steimle, Ko-Min Chang
  • Patent number: 7517750
    Abstract: Embodiments of the present invention provide methods of manufacturing memory devices including forming floating gate patterns on a semiconductor substrate having active regions thereon, wherein the floating gate patterns cover the active regions and are spaced apart from the active regions; forming an inter-gate dielectric layer on the semiconductor substrate having the floating gate patterns by alternately stacking a zirconium oxide layer and an aluminum oxide layer at least once, wherein the inter-gate dielectric layer is formed by a deposition process using O3 gas as a reactive gas; forming a control gate layer on the inter-gate dielectric layer; and forming a control gate, an inter-gate dielectric layer pattern and a floating gate by sequentially patterning the control gate layer, the inter-gate dielectric layer and the floating gate pattern, wherein the inter-gate dielectric layer pattern and the control gate are sequentially stacked across the active regions, and the floating gate is formed between the
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: April 14, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Han-Mei Choi, Young-Geun Park, Seung-Hwan Lee, Young-Sun Kim
  • Patent number: 7517749
    Abstract: Methods and apparatus are described to facilitate forming memory devices with low resistance polysilicon local interconnects that allow a smaller array feature size and therefore facilitate forming arrays of a denser array format. Embodiments of the present invention are formed utilizing a wet etch process that has a high selectivity, allowing the deposition and etching of polysilicon local interconnects to source regions of array transistors. By providing for a local interconnect of polysilicon, a smaller source region and/or drain region can also be utilized, further decreasing the required word line spacing. Low resistance polysilicon local source interconnects can also couple to an increased number of memory cells, thereby reducing the number of contacts made to an array ground.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: April 14, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Chun Chen, Guy Blalock, Graham Wolstenholme, Kirk Prall
  • Patent number: 7517816
    Abstract: By providing a contact etch stop layer, the stress in channel regions of different transistor types may be effectively controlled, wherein tensile and compressive stress portions of the contact etch stop layer may be obtained by well-established processes, such as wet chemical etch, plasma etch, ion implantation, plasma treatment and the like. Hence, a significant improvement in transistor performance may be obtained while not significantly contributing to process complexity.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: April 14, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Kai Frohberg, Matthias Schaller, Massud Aminpur
  • Patent number: 7517747
    Abstract: A method of forming a semiconductor device includes forming a first dielectric layer over a semiconductor substrate, forming a plurality of discrete storage elements over the first dielectric layer, thermally oxidizing the plurality of discrete storage elements to form a second dielectrics over the plurality of discrete storage elements, and forming a gate electrode over the second dielectric layer, wherein a significant portion of the gate electrode is between pairs of the plurality of discrete storage elements. In one embodiment, portions of the gate electrode is in the spaces between the discrete storage elements and extends to more than half of the depth of the spaces.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: April 14, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ramachandran Muralidhar, Rajesh A. Rao, Michael A. Sadd, Bruce E. White
  • Patent number: 7514313
    Abstract: A process of forming an electronic device can include forming an insulating layer over first and second active regions, and a field isolation region. The process can also include forming a seed layer and exposing the first active region. The process can further include selectively forming a first and second semiconductor layer over the first active region and the seed layer, respectively. The first and second semiconductor layers can be spaced-apart from each other. In one aspect, the process can include selectively forming the first and second semiconductor layers simultaneously at a substantially same point in time. In another aspect, an electronic device can include first and second transistor structures separated by a field isolation region and electrically connected by a conductive member. A semiconductor island, designed to be electrically floating, can lie between the conductive member and the base layer.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: April 7, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Omar Zia, Da Zhang, Venkat R. Kolagunta, Narayanan C. Ramani, Bich-Yen Nguyen
  • Patent number: 7514311
    Abstract: A method of manufacturing a silicon-oxide-nitride-oxide-silicon (SONOS) memory is provided herein. In the method, a bottom silicon oxide layer is formed over a substrate. A patterned mask layer having a trench therein is formed over the bottom silicon oxide layer. A charge-trapping layer is formed over the substrate covering the surface of the trench. The charge-trapping layer is etched back to form a pair of charge storage spacers on the sidewalls of the trench. After removing the mask layer, a top silicon oxide layer is formed over the substrate covering the charge storage spacers and the bottom silicon oxide layer. A gate corresponding to the pair of charge storage spacers is formed on the top silicon oxide layer. A source/drain region is formed in the substrate on each side of the gate.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: April 7, 2009
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Sheng Wu, Da Sung
  • Publication number: 20090079007
    Abstract: The present invention can prevent occurrence of an off-leak current in the NMISFETs formed over the Si (110) substrate and having a silicided source/drain region. The semiconductor device includes N channel MISFETs (Metal Insulator Semiconductor Field Effect Transistors) which are formed over a semiconductor substrate having a main surface with a (110) plane orientation and have a source region and a drain region at least one of which has thereover nickel silicide or a nickel alloy silicide. Of these NMISFETs, those having a channel width less than 400 nm are laid out so that their channel length direction is parallel to a <100> crystal orientation.
    Type: Application
    Filed: September 17, 2008
    Publication date: March 26, 2009
    Inventors: TADASHI YAMAGUCHI, Keiichiro Kashihara, Toshiaki Tsutsumi, Tomonori Okudaira
  • Patent number: 7508024
    Abstract: A floating gate memory cell includes isolation regions between adjacent cells, and a staggered pattern of columns of cells. Word lines are formed parallel to control gate structures.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: March 24, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Roger W. Lindsay, Lyle Jones
  • Patent number: 7504280
    Abstract: Provided is a nonvolatile memory device and a method of manufacturing the same. The nonvolatile memory device includes a semiconductor substrate on which a source, a drain, and a channel region are formed, a tunneling oxide film formed on the channel region, a floating gate formed of a fullerene material on the tunneling oxide, a blocking oxide film formed on the floating gate, and a gate electrode formed on the blocking oxide film.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: March 17, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-ho Khang, Kyo-yeol Lee, Eun-hye Lee, Joo-hyun Lee
  • Patent number: 7501319
    Abstract: A semiconductor device and a fabricating method thereof are disclosed. The semiconductor device includes polysilicon gate electrodes, a gate oxide layer, sidewall floating gates, a block oxide layer, source/drain areas, and sidewall spacers. In addition, the method includes the steps of: forming a block dielectric layer and a sacrificial layer on a semiconductor substrate; forming trenches by etching the sacrificial layer; forming sidewall floating gates on lateral faces of the trenches; forming a block oxide layer on the sidewall floating gates; forming polysilicon gate electrodes by a patterning process; removing the sacrificial layer; forming source/drain areas by implanting impurity ions into the resulting structure; injecting carriers or electric charges into the sidewall floating gates; and forming spacers on lateral faces of the polysilicon gate electrodes and the sidewall floating gates.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: March 10, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Jin Hyo Jung
  • Patent number: 7498217
    Abstract: In a method of manufacturing a semiconductor device such as a SONOS type semiconductor device, a trench is formed on a substrate. An isolation layer protruding from the substrate is formed to fill the trench. After a first layer is formed on the substrate, a preliminary second layer pattern is formed on the first layer. The preliminary second layer pattern has an upper face substantially lower than or substantially equal to an upper face of the isolation layer. A third layer is formed on the preliminary second layer and the isolation layer. A fourth layer is formed on the third layer. The fourth layer, the third layer, the preliminary second layer pattern and the first layer are partially etched to form a gate structure on the substrate. Source/drain regions are formed at portions of the substrate adjacent to the gate structure.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: March 3, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Min Oh, Jeong-Nam Han, Chang-Ki Hong, Kun-Tack Lee, Dae-Hyuk Kang, Woo-Gwan Shim, Jong-Won Lee
  • Patent number: 7494860
    Abstract: In a nonvolatile memory using floating gates to store charge, individual floating gates are L-shaped. Orientations of L-shaped floating gates may alternate in the bit line direction and may also alternate in the word line direction. L-shaped floating gates are formed by etching conductive portions using etch masks of different patterns to obtain floating gates of different orientations.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: February 24, 2009
    Assignee: SanDisk Corporation
    Inventor: Nima Mokhlesi
  • Patent number: 7495284
    Abstract: A non-volatile memory device comprises a cell region defined at a substrate and a plurality of device isolation layers formed in the cell region to define a plurality of active regions. A charge storage insulator covers substantially the entire top surface of the cell region. A plurality of gate lines are formed on the charge storage insulator that cross over the device isolation layers. Conductive patterns are disposed between predetermined gate lines that penetrate the charge storage insulator to electrically connect with the active regions. According to the method of fabricating the device, a plurality of device isolation layers are formed in the substrate and then a charge storage insulator is formed on an entire surface of the substrate and the device isolation layers. A plurality of parallel gate lines that cross over the device isolation layers are formed on the charge storage insulator and then conductive patterns are formed between predetermined gate lines.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: February 24, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Chang-Hyun Lee
  • Patent number: 7494861
    Abstract: MOSFET devices suitable for operation at gate lengths less than about 40 nm, and methods of their fabrication is being presented. The MOSFET devices include a ground plane formed of a monocrystalline Si based material. A Si based body layer is epitaxially disposed over the ground plane. The body layer is doped with impurities of opposite type than the ground plane. The gate has a metal with a mid-gap workfunction directly contacting a gate insulator layer. The gate is patterned to a length of less than about 40 nm, and possibly less than 20 nm. The source and the drain of the MOSFET are doped with the same type of dopant as the body layer. In CMOS embodiments of the invention the metal in the gate of the NMOS and the PMOS devices may be the same metal.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: February 24, 2009
    Assignee: International Business Machines Corporation
    Inventors: Jack Oon Chu, Bruce B. Doris, Meikei Ieong, Jing Wang
  • Patent number: 7491597
    Abstract: Provided is a flash memory, and more particularly, to a method and structure for erasing flash blocks based on back-bias. The method comprises the steps of forming a flash block on a silicon on insulator (SOI) substrate and forming a body-electrode on back side of the silicon on insulator (SOI) substrate.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: February 17, 2009
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Yang-Kyu Choi, Hyunjin Lee
  • Patent number: 7485542
    Abstract: A semiconductor device can be fabricated by forming a floating gate layer over a semiconductor body. The floating gate layer is at least partially arranged over an insulation region in the semiconductor body. The floating gate layer is patterned to expose a portion of the insulation region. A recess is formed in a portion of the insulation region exposed by the patterned floating gate layer. A conductor is deposited within the recess. The conductor serves as a buried bitline. An insulator can then be formed within the recess over the conductor.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: February 3, 2009
    Assignee: Infineon Technologies AG
    Inventors: Achim Gratz, Mayk Roehrich, Veronika Polei
  • Patent number: 7482656
    Abstract: Methods of forming a self-aligned, selective semiconductor on insulator (SOI) structure and a related structure are disclosed. In one embodiment, a method includes providing a substrate; forming a gate structure over a channel within the substrate; recessing a portion of the substrate adjacent the channel; forming an insulating layer on a bottom of the recessed portion; and forming a semiconductor material above the insulating layer. An upper surface of the semiconductor material may be sloped. A MOSFET structure may include a substrate; a channel; a source region and a drain region adjacent the channel; a gate structure above the channel and the substrate; a shallow trench isolation (STI) distal from the gate structure; a selectively laid insulating layer in at least one of the source region and the drain region; and an epitaxially grown semiconductor material above the selectively laid insulating layer.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: January 27, 2009
    Assignee: International Business Machines Corporation
    Inventors: Zhijiong Luo, Yung Fu Chong, Kevin K Dezfulian, Huilong Zhu, Judson R Holt
  • Patent number: 7479434
    Abstract: A semiconductor device includes a gate structure formed on a substrate. The gate structure includes an uppermost first metal silicide layer pattern having a first thickness. Spacers are formed on sidewalls of the gate structure. One or more impurity regions are formed in the substrate adjacent to at least one sidewall of the gate structure. A second metal silicide layer pattern, having a second thickness thinner than the first thickness, is formed on the one or more impurity regions.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: January 20, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Jo Kang, In-Sun Park, Dae-Joung Kim
  • Publication number: 20080318374
    Abstract: MOSFET devices suitable for operation at gate lengths less than about 40 nm, and methods of their fabrication is being presented. The MOSFET devices include a ground plane formed of a monocrystalline Si based material. A Si based body layer is epitaxially disposed over the ground plane. The body layer is doped with impurities of opposite type than the ground plane. The gate has a metal with a mid-gap workfunction directly contacting a gate insulator layer. The gate is patterned to a length of less than about 40 nm, and possibly less than 20 nm. The source and the drain of the MOSFET are doped with the same type of dopant as the body layer. In CMOS embodiments of the invention the metal in the gate of the NMOS and the PMOS devices may be the same metal.
    Type: Application
    Filed: August 26, 2008
    Publication date: December 25, 2008
    Applicant: International Business Machines Corporation
    Inventors: Jack Oon Chu, Bruce B. Doris, Meikei Ieong, Jing Wang
  • Patent number: 7462531
    Abstract: Disclosed is a semiconductor device comprising a semiconductor substrate including first and second element-formation regions partitioned by an isolation trench, first and second lower gate insulating films formed on the first and second element-formation regions, first and second floating gates formed on the first and second lower gate insulating films, an isolation insulating film formed at least in the isolation trench and has a depression formed in an upper surface thereof, an upper gate insulating film formed on the first and second floating gates, and a control gate line including an opposed portion opposed to the first and second floating gates, with the upper gate insulating film being interposed, and a portion located inside the depression, the first floating gate including a side surface opposed to the second floating gate and entirely aligns with a side surface included in the first element-formation region and defined by the isolation trench.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: December 9, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshinori Kitamura, Shigeki Sugimoto
  • Publication number: 20080296658
    Abstract: An embodiment of a process is disclosed herein for fabricating a memory device integrated on a semiconductor substrate and comprising at least a nanocrystal memory cell and CMOS transistors respectively formed in a memory area and in a circuitry area. According to an embodiment, a process includes forming a nitride layer having an initial thickness, placed above a nanocrystal layer, in the memory area and the formation in the circuitry area of at least one submicron gate oxide. The process also provides that the initial thickness is such as to allow a complete transformation of the nitride layer into an oxide layer at upon formation of said at least one submicron gate oxide.
    Type: Application
    Filed: May 29, 2008
    Publication date: December 4, 2008
    Applicant: STMICROELECTRONICS S.R.L.
    Inventor: Alfonso Maurelli
  • Publication number: 20080299721
    Abstract: A method for forming semiconductor transistor. The method comprises providing a structure including (a) a semiconductor region, and (b) first and second dopant source regions on and in direct physical contact with the semiconductor region, wherein each region of the first and second dopant source regions comprises a dielectric material which contains dopants; causing the dopants to diffuse from the first and second dopant source regions into the semiconductor region so as to form first and second source/drain extension regions, respectively, wherein the first and second source/drain extension regions define a channel region disposed between; forming a gate dielectric region on a channel region; and forming a gate region on the gate dielectric region, wherein the gate dielectric region electrically insulates the gate region from the channel region.
    Type: Application
    Filed: August 11, 2008
    Publication date: December 4, 2008
    Inventor: Anthony C. Speranza
  • Patent number: 7459755
    Abstract: A scalable semiconductor device is formed using control gates formed on opposite sides of a semiconductor layer. A first control gate is formed electrically isolated from a first surface of the semiconductor layer by a first dielectric layer, such that, when a first voltage is applied on the first control gate, a first depletion region is formed in the semiconductor layer opposite the first control gate. A second control gate and a third control gate are also formed, each isolated from the semiconductor region by a second dielectric layer formed on a second surface of the semiconductor layer opposite the first surface.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: December 2, 2008
    Inventor: Andrew J. Walker
  • Patent number: 7459364
    Abstract: A method of forming a floating gate of a non-volatile memory device can include etching a mask pattern formed between field isolation regions in a field isolation pattern on a substrate to recess a surface of the mask pattern below an upper surface of adjacent field isolation regions to form an opening having a width defined by a side wall of the adjacent field isolation regions above the surface. Then the adjacent field isolation regions is etched to increase the width of the opening.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: December 2, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Hoon Lee, Hun-Hyeoung Leam, Jai-Dong Lee, Jung-Hwan Kim, Young-Sub You, Ki-Su Na, Woong Lee, Yong-Sun Lee, Won-Jun Jang
  • Patent number: 7456060
    Abstract: A nonvolatile memory device includes a floating gate formed on a tunnel oxide layer that is on a semiconductor substrate. The device also includes a drain region formed in the substrate adjacent to one side of the floating gate, a source region formed adjacent to another side of the floating gate. The source region is apart from the floating gate, and an inter-gate insulating layer formed on a portion of an active region between the source region and the floating gate and on a sidewall of the floating gate directing toward the source region, and on a sidewall of the floating gate directing toward the drain region. The device includes a word line formed over the floating gate and being across the substrate in one direction, and a field oxide layer interposing between the word line and the source region.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: November 25, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Heong Jin Kim
  • Publication number: 20080286918
    Abstract: Methods for fabricating semiconductor structures with backside stress layers are provided. In one exemplary embodiment, the method comprises the steps of providing a semiconductor device formed on and within a front surface of a semiconductor substrate. The semiconductor device comprises a channel region. A plurality of dielectric layers is formed overlying the semiconductor device. The plurality of dielectric layers comprises conductive connections that are in electrical communication with the semiconductor device. A backside stress layer is formed on a back surface of the semiconductor substrate. The backside stress layer is configured to apply to the channel region of the semiconductor device a uniaxial compressive or tensile stress that, with stresses applied by the plurality of dielectric layers, results in an overall stress exerted on the channel region to achieve a predetermined overall strain of the channel region.
    Type: Application
    Filed: May 15, 2007
    Publication date: November 20, 2008
    Applicant: NOVELLUS SYSTEMS, INC.
    Inventor: Roey Shaviv
  • Publication number: 20080286919
    Abstract: A method used during semiconductor device fabrication comprises forming at least two types of transistors. A first transistor type may comprise a CMOS transistor comprising gate oxide and having a wide active area and/or a long channel, and the second transistor type may comprise a NAND comprising tunnel oxide and having a narrow active area and/or short gate length. The transistors are exposed to a nitridation ambient which, due to their differences in sizing, results in nitridizing the tunnel oxide in its entirely but only partially nitridizing the gate oxide. Various process embodiments and completed structures are disclosed.
    Type: Application
    Filed: May 17, 2007
    Publication date: November 20, 2008
    Inventor: Akira Goda
  • Patent number: 7452766
    Abstract: Methods and apparatus are provided. For an embodiment, a plurality fins is formed in a substrate so that the fins protrude from a substrate. After the plurality fins is formed, the fins are isotropically etched to reduce a width of the fins and to round an upper surface of the fins. A first dielectric layer is formed overlying the isotropically etched fins. A first conductive layer is formed overlying the first dielectric layer. A second dielectric layer is formed overlying the first conductive layer. A second conductive layer is formed overlying the second dielectric layer.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: November 18, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Seiichi Aritome
  • Publication number: 20080277726
    Abstract: FET device structures are disclosed with the PFET and NFET devices having high-k dielectric gate insulators and metal containing gates. The metal layers of the gates in both the NFET and PFET devices have been fabricated from a single common metal layer. As a consequence of using a single layer of metal for the gates of both type of devices, the terminal electrodes of NFETs and PFETs can be butted to each other in direct physical contact. The FET device structures further contain stressed device channels, and gates with effective workfunctions of n+ Si and p+ Si values.
    Type: Application
    Filed: May 8, 2007
    Publication date: November 13, 2008
    Inventors: Bruce B. Doris, Eduard Albert Cartier, Barry Paul Linder, Vijay Narayanan, Vamsi Paruchuri, Mark Todhunter Robson, Michelle L. Steen, Ying Zhang
  • Patent number: 7445984
    Abstract: A method of making a semiconductor device includes a substrate having a semiconductor layer having a first portion for non-volatile memory and a second portion exclusive of the first portion. A first dielectric layer is formed on the semiconductor layer. A plasma nitridation is performed on the first dielectric layer. A first plurality of nanoclusters is formed over the first portion and a second plurality of nanoclusters over the second portion. The second plurality of nanoclusters is removed. A second dielectric layer is formed over the semiconductor layer. A conductive layer is formed over the second dielectric layer.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: November 4, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rajesh A. Rao, Tien Ying Luo, Ramachandran Muralidhar, Robert F. Steimle, Sherry G. Straub
  • Patent number: 7439567
    Abstract: An array of memory cells with non-volatile memory transistors having a compact arrangement of diagonally symmetric floating gates. The floating gates have portions extending in both X and Y directions, allowing them to be charged through a common tunnel oxide stripe that runs under a portion of each, for example a portion running in the X-direction while the two Y-direction portions serve to establish a channel. Shared source/drain regions are established between and in proximity to the Y-direction portions to define two non-volatile memory transistors in each memory cell. Memory cells are replicated in the word line direction and then mirrored with respect to the word line to form the next row or column. This geometry is contactless because the word line and source/drain regions are all linear throughout the array so that electrical contact can be established outside of the array of cells. Each transistor can be addressed and thus programmed and erased or pairs of transistors in a line can be erased, i.e.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: October 21, 2008
    Assignee: Atmel Corporation
    Inventor: Bohumil Lojek
  • Patent number: 7439121
    Abstract: In a film formation method of a semiconductor device including a plurality of silicon-based transistors or capacitors, there exist hydrogen at least in a part of the silicon surface in advance, and the film formation method removes the hydrogen by exposing the silicon surface to a first inert gas plasma. Thereafter a silicon compound layer is formed on the surface of the silicon gas by generating plasma while using a mixed gas of a second inert gas and one or more gaseous molecules, such that there is formed a silicon compound layer containing at least a pat of the elements constituting the gaseous molecules, on the surface of the silicon gas.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: October 21, 2008
    Inventors: Tadahiro Ohmi, Shigetoshi Sugawa, Masaki Hirayama, Yasuyuki Shirai
  • Patent number: 7439131
    Abstract: A flash memory device has a resistivity measurement pattern and method of forming the same. A trench is formed in an isolation film in a Self-Aligned Floating Gate (SAFG) scheme. The trench is buried to form a resistivity measurement floating gate. This allows the resistivity of the floating gate to be measured even in the SAFG scheme. Contacts for resistivity measurement are directly connected to the resistivity measurement floating gate. Therefore, variation in resistivity measurement values, which is incurred by the parasitic interface, can be reduced.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: October 21, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventors: Ki Hong Yang, Sang Wook Park
  • Publication number: 20080254582
    Abstract: A semiconductor memory device having nonvolatile memory cells each formed of a MISFET having both a floating gate and a control gate and first and second semiconductor regions serving as the source and drain regions, respectively. In accordance with the method of manufacture thereof, an impurity, for example, arsenic, is introduced to form both the first and second semiconductor regions but with the second semiconductor region having a lower dose thereof so that the first semiconductor region formed attains a junction depth greater than that of the second semiconductor region, and both the first and second semiconductor regions have portions thereof extending under the floating gate electrode. The device and method therefor further feature the formation of MISFETs of peripheral circuits.
    Type: Application
    Filed: June 13, 2008
    Publication date: October 16, 2008
    Inventors: Kazuhiro KOMORI, Toshiaki Nishimoto, Satoshi Meguro, Hitoshi Kume, Yoshiaki Kamigaki
  • Patent number: 7436017
    Abstract: Methods of manufacturing a semiconductor integrated circuit using selective disposable spacer technology and semiconductor integrated circuits manufactured thereby: The method includes forming a plurality of gate patterns on a semiconductor substrate. Gap regions between the gate patterns include first spaces having a first width and second spaces having a second width greater than the first width. Spacers are formed on sidewalls of the second spaces, and spacer layer patterns filling the first spaces are also formed together with the spacers. The spacers are selectively removed to expose the sidewalls of the first spaces. As a result, the semiconductor integrated circuit includes wide spaces enlarged by the removal of the spacers and narrow and deep spaces filled with the spacer layer patterns.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: October 14, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Eun Lee, Yun-Heub Song
  • Patent number: 7432158
    Abstract: A method of making a semiconductor device includes a substrate having a semiconductor layer having a first portion for non-volatile memory and a second portion exclusive of the first portion. A first dielectric layer is formed over the semiconductor layer. A first plurality of nanoclusters is formed over the first portion and a second plurality of nanoclusters is formed over the second portion. A layer of nitrided oxide is formed around each nanocluster of the first plurality and the second plurality of nanoclusters. Remote plasma nitridation is performed on the layers of nitrided oxide of the first plurality of nanoclusters. The nanoclusters are removed from the second portion. A second dielectric layer is formed over the semiconductor layer. A conductive layer is formed over the second dielectric layer.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: October 7, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rajesh A. Rao, Tien Ying Luo, Ramachandran Muralidhar, Robert F. Steimle, Sherry G. Straub
  • Patent number: 7429511
    Abstract: A method of forming a tunneling insulating layer having a size smaller than the size obtained by the resolution of a photolithography process is provided. The method includes the steps of forming a first insulating layer and a second insulating layer on a substrate, forming a re-flowable material layer pattern to re-flow the re-flowable material layer pattern, removing the second insulating layer and the first insulating layer to expose the substrate, and forming a tunneling insulating layer.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: September 30, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Weon-Ho Park, Tea-Kwang Yu, Kyoung-Hwan Kim, Kwang-Tae Kim
  • Publication number: 20080232162
    Abstract: A One Time Programming (OTP) cell structure, a method of fabricating an OTP structure, and a method of programming a OTP cell structure. The OTP structure comprises a semiconductor substrate; an n Metal-Oxide-Semiconductor (nMOS) programming structure formed on the substrate; wherein respective electrical contacts to a source of the nMOS programming structure and to a p-bulk of the substrate are separated for individual biasing of the source and the p-bulk of the substrate.
    Type: Application
    Filed: March 23, 2007
    Publication date: September 25, 2008
    Inventors: Hing Poh Kuan, Kwang Ye Sim
  • Publication number: 20080220573
    Abstract: On a surface of a Si substrate, a nonvolatile memory cell, an nMOS transistor, and a pMOS transistor are formed, and thereafter an interlayer insulation film covering the nonvolatile memory cell, the nMOS transistor, and the pMOS transistor is formed. Next, in the interlayer insulation film, there are formed plural contact plugs connected respectively to a control gate of the nonvolatile memory cell, a source or a drain of the nMOS transistor, and a source or a drain of the pMOS transistor. Thereafter, there is formed a single-layer wiring connecting the control gate to the sources or drains of the nMOS transistor and the pMOS transistor via the plural contact plugs.
    Type: Application
    Filed: April 30, 2008
    Publication date: September 11, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Koji Takahashi, Shinichi Nakagawa
  • Patent number: 7422939
    Abstract: A semiconductor device with a one-time programmable (OTP) ROM disposed over a semiconductor substrate including a memory cell area and a peripheral circuit area includes a MOS transistor and an OTP ROM capacitor. The MOS transistor has a floating gate electrode and is disposed at the memory cell area. The OTP ROM capacitor has a lower electrode, an upper intermetal dielectric, and an upper electrode which are stacked in the order named. The OTP ROM capacitor is disposed on the MOS transistor, and the floating gate electrode and the lower electrode are connected by a floating gate plug to constitute an electrically insulated conductive structure. The upper intermetal dielectric is made of at least one selected from the group consisting of silicon oxide, silicon nitride, and silicon oxynitride and may be disposed on an entire surface of the semiconductor substrate. A capacitor formed together with the OTP ROM is disposed at the peripheral circuit region.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: September 9, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Myoung-Soo Kim
  • Patent number: 7419865
    Abstract: The invention includes methods of forming memory circuitry. In one implementation, a semiconductor substrate includes a pair of word lines having a bit node received therebetween. A bit node contact opening is formed within insulative material over the bit node. Sacrificial plugging material is formed within the bit node contact opening between the pair of word lines. Sacrificial plugging material is removed from the bit node contact opening between the pair of word lines, and it is replaced with conductive material that is in electrical connection with the bit node. Thereafter, the conductive material is formed into a bit line.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: September 2, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Kunal R. Parekh, Byron N. Burgess