Deposited Thin Film Resistor Patents (Class 438/384)
  • Publication number: 20080132027
    Abstract: Resistors that avoid the problems of miniaturization of semiconductor devices and a related method are disclosed. In one embodiment, a resistor includes a planar resistor material that extends vertically within at least one metal layer of a semiconductor device. In another embodiment, a resistor includes a resistor material layer extending between a first bond pad and a second bond pad of a semiconductor device. The two embodiments can be used alone or together. A related method for generating the resistors is also disclosed.
    Type: Application
    Filed: December 12, 2007
    Publication date: June 5, 2008
    Inventors: Douglas D. Coolbaugh, Timothy J. Dalton, Daniel C. Edelstein, Ebenezer E. Eshun, Jeffrey P. Gambino, Kevin S. Petrarca, Anthony K. Stamper, Richard P. Volant
  • Patent number: 7375001
    Abstract: Where the silicon active layer of an SOI substrate is used as a resistor, it is difficult to form small wells densely in a semiconductor support substrate portion under the resistor because of the presence of a buried insulation film. It is also difficult to control the potential division of the wells. Therefore, there is the problem that the resistance value is varied by potential variations. Island-like silicon active layer and buried insulation film are formed by etching. Side spacers made of polycrystalline silicon are formed on the sidewalls of step portions of the island-like silicon active layer, buried insulation film, and semiconductor support substrate. The potentials at the side spacers are controlled. Thus, resistance value variations due to variations in the potential difference between the semiconductor support substrate and the resistor can be suppressed. Furthermore, accurate potential division owing to each resistor is facilitated.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: May 20, 2008
    Assignee: Seiko Instruments Inc.
    Inventor: Hisashi Hasegawa
  • Publication number: 20080094168
    Abstract: The method provides a semiconductor structure and method for forming such a structure that provides for protection for resistive layers formed within the structure from contamination from adjacent layers. By encapsulating the resistive layer in a material that is resistant to the diffusion of contaminants it is possible to protect the resistive material during the processing required to manufacture the structure.
    Type: Application
    Filed: October 20, 2006
    Publication date: April 24, 2008
    Applicant: Analog Devices, Inc.
    Inventors: Eamon Hynes, William A. Lane, Bernard Stenson
  • Patent number: 7358135
    Abstract: A method of forming a resistor of a flash memory device includes etching an isolation structure provided on a semiconductor substrate to form a first trench. A polysilicon structure is formed within the first trench of the isolation structure. A dielectric layer is formed on the polysilicon structure. A polysilicon layer is formed over the dielectric layer. The polysilicon layer is etched to define second and third trenches in the polysilicion layer. The second and third trenches separates the polysilicon layer into first, second, and third sections, where the first and third section contact the polysilicon structure, and the second section is separated from the first and third sections. An insulating film is formed over the etched polysilicion layer, the insulating film filling the second and third trenches. the first section of the polysilicon layer, the polysilicon structure, and the third section of the polysilicon layer define a resistor.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: April 15, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventor: Byung Soo Park
  • Patent number: 7351639
    Abstract: A method and structure for increasing an electrical resistance of a resistor that is within a semiconductor structure, by oxidizing or nitridizing a fraction of a surface layer of the resistor with oxygen/nitrogen (i.e., oxygen or nitrogen) particles, respectively. The semiconductor structure may include a semiconductor wafer, a semiconductor chip, and an integrated circuit. The method and structure comprises five embodiments. The first embodiment comprises heating an interior of a heating chamber that includes the oxygen/nitrogen particles as gaseous oxygen/nitrogen-comprising molecules (e.g., molecular oxygen/nitrogen). The second embodiment comprises heating the fraction of the surface layer by a beam of radiation (e.g., laser radiation), or a beam of particles, such that the semiconductor structure is within a chamber that includes the oxygen/particles as gaseous oxygen/nitrogen-comprising molecules (e.g., molecular oxygen/nitrogen).
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: April 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Daniel C. Edelstein, Anthony K. Stamper
  • Patent number: 7348653
    Abstract: A resistive memory cell employs a photoimageable switchable material, which is patternable by actinic irradiation and is reversibly switchable between distinguishable resistance states, as a memory element. Thus, the photoimageable switchable material is directly patterned by the actinic irradiation so that it is possible to fabricate the resistive memory cell through simple processes, and avoiding ashing and stripping steps.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: March 25, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byeong-Ok Cho, Moon-Sook Lee, Takahiro Yasue
  • Patent number: 7345573
    Abstract: An integrated circuit structure including multiple thin film resistors having different sheet resistances and TCRs includes a first oxide layer (2) formed on a semiconductor substrate (1), a first thin film resistor (3) disposed on the first oxide layer (2), and a second oxide layer (14) disposed over the first oxide layer (2) and first thin film resistor (3). A second thin film resistor (15) is formed on the second oxide layer (14) and a third oxide layer (16) is formed over the second thin film resistor (15) and the second oxide layer (14). Interconnect metallization elements (12A,B & 22A,B) disposed on at least one of the second (14) and third (16) oxide layers electrically contact the circuit element (4), terminals of the first thin film resistor (3), and terminals of the second thin film resistor (15), respectively, through corresponding contact openings through at least one of the second (14) and third (16) oxide layers.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: March 18, 2008
    Assignee: Texas Instruments Incorporated
    Inventor: Eric W. Beach
  • Patent number: 7332403
    Abstract: A buried thin film resistor having end caps defined by a dielectric mask is disclosed. A thin film resistor is formed on an integrated circuit substrate. A resistor protect layer is formed over the thin film resistor. A layer of dielectric material is formed over the resistor protect layer. The dielectric material is masked and dry etched to leave a first portion of dielectric material over a first end of the thin film resistor and a second portion of dielectric material over a second end of the thin film resistor. The resistor protect layer is then wet etched using the first and second portions of the dielectric material as a hard mask. Then a second dielectric layer is deposited and vias are etched down to the underlying portions of the resistor protect layer.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: February 19, 2008
    Assignee: National Semiconductor Corporation
    Inventors: Rodney Hill, Victor Torres, William Max Coppock, Richard W. Foote, Jr., Terry L. Lines, Tom Bold
  • Patent number: 7326624
    Abstract: A method of making a thin-film chip resistor includes: a step of making a material plate A formed with lengthwise breaking grooves A1 and crosswise breaking grooves A2 along which the plate is to be divided into individual chip substrates 1 each to become a chip resistor; and a step of forming a film of resistive element material B by a thin-film process such as spattering, on a surface of the material plate A. The step of thin-film process, in which the resistive element material B is formed, is performed with a masking sheet E placed on the surface of the material plate A, covering only regions including the lengthwise breaking grooves A1 and the crosswise breaking grooves A2.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: February 5, 2008
    Assignee: Rohm Co., Ltd.
    Inventors: Nobuo Osaki, Masanori Tanimura
  • Patent number: 7326589
    Abstract: The invention relates to a method for producing a TFA image sensor in which a multi-layer arrangement comprising a photo diode matrix is arranged on an ASIC switching circuit provided with electronic circuits for operating the TFA image sensor, such as pixel electronics, peripheral electronics and system electronics, for the pixel-wise conversion of electromagnetic radiation into an intensity-dependent photocurrent, the pixels being connected to contacts of the underlying pixel electronics of the ASIC switching circuit. The method enables conventionally produced ASIC switching circuits to be used without impairing the topography of the photoactive sensor surface. The CMOS passivation layer in the photoactive region and then the upper CMOS metallization are removed and replaced by a metallic layer which is structured in the pixel raster, for the formation of back electrodes.
    Type: Grant
    Filed: November 11, 2005
    Date of Patent: February 5, 2008
    Assignee: STMicroelectronics N.V.
    Inventors: Peter Rieve, Konstantin Seibel, Jens Prima, Markus Scholz, Tarek Lule, Stephan Benthien, Michael Sommer, Michael Wagner
  • Patent number: 7323751
    Abstract: A thin film resistor and at least one metal interconnect are formed in an integrated circuit. A first dielectric layer is formed over a metal interconnect layer. A thin film resistor is formed on the first dielectric layer and a second dielectric layer formed over the thin film resistor. Thin film resistor vias and the at least one trench are formed concurrently in the second dielectric layer. A trench via is then formed in the at least one trench. The trench via, the at least one trench and the thin film resistor vias are filled with a contact material layer to form thin film resistor contacts and at least one conductive line coupled to the metal interconnect layer.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: January 29, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Eric Williams Beach, Rajneesh Jaiswal
  • Patent number: 7323762
    Abstract: A semiconductor package substrate with embedded resistors and a method for fabricating the same are proposed. Firstly, an inner circuit board having a first circuit layer thereon is provided, and a plurality of resistor electrodes are formed in the fist circuit layer. Then, a patterned resistive material is formed on the inner circuit board and electrically connected to the resistor electrodes to accurately define a resistance value of resistors. Subsequently, at least one insulating layer is coated on a surface of the circuit board having the patterned resistive material. At least one patterned second circuit layer is formed on the insulating layer and electrically connected to the resistor electrodes by a plurality of conductive vias formed in the insulating layer or plated through holes formed through the circuit board.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: January 29, 2008
    Assignee: Phoenix Precision Technology Corporation
    Inventors: Zao-Kuo Lai, Lin-Yin Wong
  • Publication number: 20080003762
    Abstract: A method of forming a resistor of a flash memory device includes etching an isolation structure provided on a semiconductor substrate to form a first trench. A polysilicon structure is formed within the first trench of the isolation structure. A dielectric layer is formed on the polysilicon structure. A polysilicon layer is formed over the dielectric layer. The polysilicon layer is etched to define second and third trenches in the polysilicion layer. The second and third trenches separates the polysilicon layer into first, second, and third sections, where the first and third section contact the polysilicon structure, and the second section is separated from the first and third sections. An insulating film is formed over the etched polysilicion layer, the insulating film filling the second and third trenches. the first section of the polysilicon layer, the polysilicon structure, and the third section of the polysilicon layer define a resistor.
    Type: Application
    Filed: June 30, 2006
    Publication date: January 3, 2008
    Applicant: Hynix Semiconductor Inc.
    Inventor: Byung Soo Park
  • Patent number: 7314786
    Abstract: A metal resistor and resistor material and method of forming the metal resistor are disclosed. The metal resistor may include an infused metal selected from the group consisting of: copper (Cu) infused with at least one of silicon (Si), nitrogen (N2), carbon (C), tantalum (Ta), titanium (Ti) and tungsten (W), and aluminum infused with at least one of silicon (Si), nitrogen (N2), carbon (C), tantalum (Ta), titanium (Ti) and tungsten (W). The method is less complex than conventional processes, allows control of the resistance by the amount of infusion material infused, and is compatible with conventional BEOL processes.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: January 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Kaushik Chanda, Shyng-Tsong Chen
  • Patent number: 7306552
    Abstract: A semiconductor device includes a semiconductor substrate having a resistor region, an isolation layer disposed in the resistor region, the isolation layer defining active regions, first conductive layer patterns disposed on the active regions, a second conductive layer pattern covering the first conductive layer patterns and disposed on the isolation layer, the second conductive layer pattern and the first conductive layer patterns constituting a load resistor pattern, an upper insulating layer disposed over the load resistor pattern, and resistor contact plugs disposed over the active regions, the resistor contact plugs penetrating the upper insulating layer to contact the load resistor pattern.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: December 11, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-Young Choi, Eun-Jin Baek
  • Patent number: 7303972
    Abstract: A BEOL thin-film resistor adapted for flexible integration rests on a first layer of ILD. The thickness of the first layer of ILD and the resistor thickness combine to match the nominal design thickness of vias in the layer of concern. A second layer of ILD matches the resistor thickness and is planarized to the top surface of the resistor. A third layer of ILD has a thickness equal to the nominal value of the interconnections on this layer. Dual damascene interconnection apertures and apertures for making contact with the resistor are formed simultaneously, with the etch stop upper cap layer in the resistor protecting the resistive layer while the vias in the dual damascene apertures are formed.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: December 4, 2007
    Assignee: International Business Machines Incorporated
    Inventors: Eric M. Coker, Douglas D. Coolbaugh, Ebenezer E. Eshun, Zhong-Xiang He, Matthew D. Moon, Anthony K. Stamper
  • Patent number: 7297989
    Abstract: Disclosed are a diboride single crystal substrate which has a cleavage plane as same as that of a nitride compound semiconductor and is electrically conductive; a semiconductor laser diode and a semiconductor device using such a substrate and methods of their manufacture wherein the substrate is a single crystal substrate 1 of diboride XB2 (where X is either Zr or Ti) which is facially oriented in a (0001) plane 2 and has a thickness of 0.1 mm or less. The substrate 1 is permitted cleaving and splitting along a (10-10) plane 4 with ease. Using this substrate to form a semiconductor laser diode of a nitride compound, a vertical structure device can be realized. Resonant planes of a semiconductor laser diode with a minimum of loss can be fabricated by splitting the device in a direction parallel to the (10-10) plane. A method of manufacture that eliminates a margin of cutting is also realized.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: November 20, 2007
    Assignees: National Institute for Materials Science, Kyocera Corporation
    Inventors: Shigeki Otani, Hiroyuki Kinoshita, Hiroyuki Matsunami, Jun Suda, Hiroshi Amano, Isamu Akasaki, Satoshi Kamiyama
  • Patent number: 7262108
    Abstract: Methods of forming an integrated circuit device may include forming an insulating layer on an integrated circuit substrate, forming a first conductive layer on the insulating layer, and forming a second conductive layer on the first conductive layer so that the first conductive layer is between the second conductive layer and the insulating layer. Moreover, the first conductive layer may be a layer of a first material, the second conductive layer may be a layer of a second material, and the first and second materials may be different. A hole may be formed in the second conductive layer so that portions of the first conductive layer are exposed through the hole. After forming the hole in the second conductive layer, the first and second conductive layers may be patterned so that portions of the first and second conductive layers surrounding portions of the first conductive layer exposed through the hole are removed while maintaining portions of the first conductive layer previously exposed through the hole.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: August 28, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Je-Min Park, Yoo-Sang Hwang
  • Patent number: 7250348
    Abstract: A method and apparatus for packaging semiconductor devices using patterned laminate films to reduce stress buffering. The method includes fabricating a semiconductor die having thin film resistors and bond pads formed on an active surface. A film layer is formed onto the active surface of the die, covering the thin film resistors and bond pads. The film layer is then patterned to create recesses in the film layer in the vicinity of the bond pads on the active surface of the die. The die then undergoes wire bonding and is next encapsulated in a molding compound. The film layer between the film resister and the molding compound reduces stress buffering created by the molding compound.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: July 31, 2007
    Assignee: National Semiconductor Corporation
    Inventors: Zabarulla Hanifah, Pradeep A/L P. Divakaran, Low Chian Inn, Lim Leong Heng
  • Patent number: 7244656
    Abstract: The present invention relates to a thin film circuit board device having passive elements in wiring layers. The thin film circuit board device includes a base board (2) and a circuit part (3) including insulating layers (11) and (16) and pattern wiring (14) and (17) formed on a build-up forming surface (2a). On the first insulating layer (11), a receiving electrode part (21) is formed and the passive elements electrically connected to the receiving electrode part (21) are formed. In the circuit part (3), a substrate titanium film and a substrate film are laminated so as to cover the receiving electrode part (21) and the passive elements respectively. The substrate film and the substrate titanium film in areas in which a metallic film is not formed are etched through the metallic film serving as the first pattern wiring (14) formed on the substrate film as a mask. Thus, a substrate layer (23) and a substrate titanium layer (22) are formed.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: July 17, 2007
    Assignee: Sony Corporation
    Inventor: Tsuyoshi Ogawa
  • Patent number: 7223668
    Abstract: An Al film is formed on a barrier metal covering a thin film resistor to have a first opening. A photo-resist is formed on the Al film and in the opening, and is patterned to have a second opening having an opening area smaller than that of the first opening and open in the first opening to expose the barrier metal therefrom. Then, the barrier metal is etched through the second opening. Because the barrier metal is etched from an inner portion more than the opening end of the first opening, under-cut of the barrier metal is prevented.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: May 29, 2007
    Assignee: DENSO COrporation
    Inventors: Ichiro Ito, Satoshi Shiraki
  • Patent number: 7211494
    Abstract: Semiconductor structures and methods for fabricating semiconductor structures are provided. The method comprises forming a first insulating layer having a substantially planar surface overlying a first conductive layer of an interconnect stack. A thin film resistor is formed overlying the first insulating layer and a second insulating layer is deposited overlying the first insulating layer and the resistor. A portion of the second insulating layer is removed to form a substantially planar surface. The second insulating layer is anisotropically etched to form a first via to the first conductive layer and a fill material comprising tungsten is deposited within the first via. The second insulating layer is wet etched to form a second via to the thin film resistor and a second conductive layer is deposited overlying the second insulating layer and within the second via.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: May 1, 2007
    Assignee: Medtronic, Inc.
    Inventor: Ralph B Danzl
  • Patent number: 7202533
    Abstract: An integrated circuit structure includes a first dielectric layer disposed on a semiconductor layer, a first thin film resistor disposed on the first dielectric layer, a second dielectric layer disposed on the first dielectric layer and the first thin film resistor, and a second thin film resistor disposed on the second dielectric layer. A first layer of interconnect conductors is disposed on the second dielectric layer and includes a first interconnect conductor contacting a first contact area of the first thin film resistor, a second interconnect conductor contacting a second contact area of the first thin film resistor, and a third interconnect conductor electrically contacting a first contact area of the second thin film resistor. A third dielectric layer is disposed on the second dielectric layer. A second layer of interconnect conductors is disposed on the third dielectric layer including a fourth interconnect conductor for contacting the second interconnect conductor.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: April 10, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Eric W. Beach, Vladimir F. Drobny, Derek W. Robinson
  • Patent number: 7199016
    Abstract: An integrated circuit resistor is provided that comprises a mesa 14 between electrical contacts 16 and 18. The electrical resistance between electrical contacts 16 and 18 is selectively increased through the formation of recesses 20 and 22 in the mesa 14. The size of recesses 20 and 22 can be used to tune the value of the electrical resistance between contacts 16 and 18.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: April 3, 2007
    Assignee: Raytheon Company
    Inventors: David D. Heston, Jon E. Mooney
  • Patent number: 7195966
    Abstract: Methods of fabricating semiconductor devices are provided. Transistors are provided on a semiconductor substrate. A first interlayer insulating layer is provided on the transistors. A second interlayer insulating layer is provided on the first interlayer insulating layer. The second interlayer insulating layer defines a trench such that at least a portion of an upper surface of the first interlayer insulating layer is exposed. A resistor pattern is provided in the trench such that the at least a portion of the resistor pattern contacts the exposed portion of the first interlayer insulating layer. Related methods are also provided.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: March 27, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Taek Park, Jung-Dal Choi, Jung-Young Lee, Hyun-Suk Kim
  • Patent number: 7165316
    Abstract: An electrical resistor is made by providing a sacrificial layer and conductive pads disposed on a first surface of the sacrificial layer. An electrically resistive material is deposited over the pads and on the first surface of the sacrificial layer to form at least one unit including the resistive material and the pads. At least part of the sacrificial layer is then removed so as to expose one or more of the pads.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: January 23, 2007
    Assignee: Tessera, Inc.
    Inventor: Joseph Fjelstad
  • Patent number: 7166518
    Abstract: A system and method is disclosed for providing a self heating adjustable titanium disilicon (TiSi2) resistor. A triangularly shaped layer of polysilicon is placed a layer of insulation material. A layer of titanium is applied over the polysilicon and heated to form a layer of C49 type of TiSi2. A current is then applied to the small end of the triangularly shaped layer of C49 TiSi2. The current generates heat in a high resistance portion of the triangularly shaped layer of C49 TiSi2 and converts a portion of the C49 TiSi2 to C54 TiSi2. The lower resistance of the C54 TiSi2 decreases the effective resistance of the resistor. A desired value of resistance may be selected by adjusting the magnitude of the applied current.
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: January 23, 2007
    Assignee: National Semiconductor Corporation
    Inventor: Richard W. Foote
  • Patent number: 7166498
    Abstract: A thin film transistor array substrate has a gate electrode of the thin film transistor, a gate line connected to the gate electrode, and a gate pad connected to the gate line; a source/drain pattern including a source electrode and a drain electrode of the thin film transistor, a data line connected to the source electrode, a data pad connected to the data line, a storage electrode formed and superimposed with the gate line; a semiconductor pattern formed in low part of the substrate; a transparent electrode pattern including a pixel electrode connected to the drain electrode and the storage electrode, a gate pad protection electrode covering the gate pad, and a data pad protection electrode covering the data pad; and a protection pattern and a gate insulation pattern stacked in a region other than the region where the transparent electrode pattern is formed.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: January 23, 2007
    Assignee: LG.Philips LCD Co., Ltd.
    Inventors: Soon Sung Yoo, Youn Gyoung Chang, Heung Lyul Cho
  • Patent number: 7135367
    Abstract: A silicon oxide film as an insulating film is accumulated so as to cover a whole surface of a silicon substrate including a surface of a resistance element by, for example, a thermal CVD method, just after a resist pattern is removed. This silicon oxide film is processed to form a silicide block on the resistance element, and side wall spacers at both side surfaces of gate electrodes, and so on, of respective transistors, at the same time.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: November 14, 2006
    Assignee: Fujitsu Limited
    Inventors: Tomohiko Tsutsumi, Taiji Ema, Hideyuki Kojima, Toru Anezaki
  • Patent number: 7135377
    Abstract: A semiconductor package substrate with embedded resistors and a method for fabricating the same are proposed. Firstly, an inner circuit board having a first circuit layer thereon is provided, and a plurality of resistor electrodes are formed in the fist circuit layer. Then, a patterned resistive material is formed on the inner circuit board and electrically connected to the resistor electrodes to accurately define a resistance value of resistors. Subsequently, at least one insulating layer is coated on a surface of the circuit board having the patterned resistive material. At least one patterned second circuit layer is formed on the insulating layer and electrically connected to the resistor electrodes by a plurality of conductive vias formed in the insulating layer or plated through holes formed through the circuit board.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: November 14, 2006
    Assignee: Phoenix Precision Technology Corporation
    Inventors: Zao-Kuo Lai, Lin-Yin Wong
  • Patent number: 7112286
    Abstract: A thin film resistor structure and a method of fabricating a thin film resistor structure is provided. The thin film resistor structure includes an electrical interface layer or head layer that is a combination of a Titanium (Ti) layer and a Titanium Nitride (TiN) layer. The combination of the Ti layer and the TiN layer mitigates resistance associated with the electrical interface layers.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: September 26, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Brian Vialpando, Eric William Beach, Philipp Steinmann
  • Patent number: 7098101
    Abstract: A method of forming PrXCa1-xMnO3 thin films having a PMO/CMO super lattice structure using metalorganic chemical vapor deposition includes preparing organometallic compounds and solvents and mixing organometallic compounds and solvents to form PMO and CMO precursors. The precursors for PMO and CMO are injected into a MOCVD chamber vaporizer. Deposition parameters are selected to form a nano-sized PCMO thin film or a crystalline PCMO thin film from the injection of PMO and CMO precursors, wherein the PMO and CMO precursors are alternately injected into the MOCVD chamber vaporizer. The selected deposition parameters are maintained to deposit the PCMO thin film species having a desired Pr:Ca concentration ratio in a specific portion of the PCMO thin film. The resultant PCMO thin film is annealed at a selected temperature for a selected time period.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: August 29, 2006
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Lawrence J. Charneski, Sheng Teng Hsu
  • Patent number: 7078306
    Abstract: The present invention relates to a method for forming a thin film resistor and a thin film resistor formed over a semiconductor substrate. A gate structure is formed and a dielectric layer is formed over the gate structure. A via is then etched that extends through the dielectric layer so as to expose a portion of the gate structure. A layer of titanium nitride is deposited using a chemical vapor deposition process. A rapid thermal anneal is performed in an oxygen ambient. The rapid thermal anneal incorporates oxygen into the titanium nitride, forming titanium oxynitride film. A layer of dielectric material is then deposited and etched-back to form a dielectric plug that fills the remaining portion of the via. The titanium oxynitride film is patterned to form a titanium oxynitride structure that is electrically coupled to the gate structure. A metal layer is deposited and patterned to form an interconnect structure that electrically couples the titanium oxynitride structure to other circuitry.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: July 18, 2006
    Assignee: Integrated Device Technology, Inc.
    Inventors: Gaolong Jin, Wanqing Cao, Guo-Qiang Lo, Shih-Ked Lee
  • Patent number: 7078305
    Abstract: A resistor structure is disclosed that is constructed out of two layers of polysilicon. The intrinsic device is made using the top layer which is either a dedicated deposition, or formed as part of an existing process step such as a base epi growth in a BiCMOS flow. This poly layer can be made with a relatively high (greater than 2000 ohms per square) sheet resistance by appropriate scaling of the implant dose or by insitu doping methods. In this invention this layer is arranged to be about 1000 A or less thick. Such a resistor form with this thickness has been shown to demonstrate a better standard deviation of resistance compared to resistors made with a thicker layer. Additionally, practical resistors made in elongated forms demonstrate better standard deviations of resistance when five bends were incorporated into the form. The resistor ends are formed by the addition of a bottom poly layer in a self aligned manner with a deposition that may already be part of the process sequence.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: July 18, 2006
    Assignee: Fairchild Semiconductor Corporation
    Inventor: James Michael Olson
  • Patent number: 7074667
    Abstract: A semiconductor memory device according to embodiments of the invention includes storage nodes and resistors. A method of manufacturing the semiconductor memory device according to some embodiments of the invention includes forming an interlayer insulation layer on a semiconductor substrate including a memory cell array area and a core/perimeter area; forming a first etch stop layer thereon; forming a plurality of contact plugs arranged linearly in at least one direction on the memory cell array area; forming a first conductive layer on the resultant structure; forming a second etch stop layer thereon; etching the second etch stop layer and the first conductive layer and forming landing pads and resistors arranged non-linearly in at least one direction; and forming storage nodes on the entire outer lateral surfaces of which are exposed, on the landing pads.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: July 11, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Hyun Cho, Tae-Young Chung, Yong-Seok Ahn
  • Patent number: 7069651
    Abstract: The invention provides abrasion resistant electrodes that comprise metal-coated conductive valleys between protrusions having a fractured metal coating thereon; electrical devices made from a plurality of said electrodes; and methods of making said devices.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: July 4, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Paul D. Graham, Douglas A. Huntley
  • Patent number: 7071070
    Abstract: A method of fabricating a capacitor is described. A dielectric layer is formed over a substrate. An upper electrode having multiple openings therein is formed over the dielectric layer. Then, a doping step is performed to the substrate through the openings to form a single doped region as a lower electrode in the substrate under the upper electrode.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: July 4, 2006
    Assignee: United Microelectronics Corp.
    Inventor: Jing-Horng Gau
  • Patent number: 7059041
    Abstract: Methods are specified for producing passive components on a substrate, which methods permit, with a low outlay and a good yield, the production of different components, in particular high-resistance and low-resistance resistor elements and/or capacitor elements having a higher and those having a lower capacitance per unit length on a substrate. In this case, lift-off processes can largely be dispensed with, particularly in the case of critical patternings, and selective dry- and/or wet-chemical etching can be effected.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: June 13, 2006
    Assignee: United Monolithic Semiconductors GmbH
    Inventor: Dag Behammer
  • Patent number: 7060586
    Abstract: PrCaMnO (PCMO) thin films with predetermined memory-resistance characteristics and associated formation processes have been provided. In one aspect the method comprises: forming a Pr3+1?xCa2+xMnO thin film composition, where 0.1<x<0.6; in response to the selection of x, varying the ratio of Mn and O ions as follows: O2?(3±20%); Mn3+((1?x)±20%); and, Mn4+(x±20%). When the PCMO thin film has a Pr3+0.70Ca2+0.30Mn3+0.78Mn4+0.22O2?2.96 composition, the ratio of Mn and O ions varies as follows: O2?(2.96); Mn3+((1?x)+8%); and, Mn4+(x?8%). In another aspect, the method creates a density in the PCMO film, responsive to the crystallographic orientation. For example, if the PCMO film has a (110) orientation, a density is created in the range of 5 to 6.76 Mn atoms per 100 ?2 in a plane perpendicular to the (110) orientation.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: June 13, 2006
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Wei-Wei Zhuang, David R. Evans, Sheng Teng Hsu
  • Patent number: 7029982
    Abstract: A method of fabricating a doped-PCMO thin film layer includes preparing a PCMO precursor solution having a transition metal additive therein; and spin-coating the doped-PCMO spin-coating solution onto a wafer.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: April 18, 2006
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Wei-Wei Zhuang, David R. Evans, Fengyan Zhang, Sheng Teng Hsu
  • Patent number: 7029956
    Abstract: A memory system having a plurality of T-RAM cells arranged in an array is presented where each T-RAM cell has dual vertical devices and is fabricated over a SiC substrate. Each T-RAM cell has a vertical thyristor and a vertical transfer gate. The top surface of each thyristor is coplanar with the top surface of each transfer gate within the T-RAM array to provide a planar cell structure for the T-RAM array. A method is also presented for fabricating the T-RAM array having the vertical thyristors, the vertical transfer gates and the planar cell structure over the SiC substrate.
    Type: Grant
    Filed: September 19, 2003
    Date of Patent: April 18, 2006
    Assignee: International Business Machines Corp.
    Inventors: Louis L. Hsu, Li-Kong Wang
  • Patent number: 7022579
    Abstract: A method of filling vias for a PCRAM cell with a metal is described. A PCRAM intermediate structure including a substrate, a first conductor, and an insulator through which a via extends has a metallic material formed within the via and on a surface of the insulator. The metallic material may be deposited on the surface and within the via. A hard mask of a flowable oxide is deposited over the metallic material in the via to protect the metallic material in the via. A subsequent dry sputter etch removes the metallic material from the surface of the insulator and a portion of the hard mask. After complete removal of the hard mask, a glass material is recessed over the metallic material in the via. Then, a layer of a metal-containing material is formed over the glass material. Finally, a second conductor is formed on the surface of the insulator.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: April 4, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Li Li, Jiutao Li
  • Patent number: 7022246
    Abstract: A method is disclosed of fabricating a MIMCAP (a capacitor (CAP) formed by successive layers of metal, insulator, metal (MIM)) and a thin film resistor at the same level. A method is also disclosed of fabricating a MIMCAP and a thin film resistor at the same level, and a novel integration scheme for BEOL (back-end-of-line processing) thin film resistors which positions them closer to FEOL (front-end-of-line processing) devices.
    Type: Grant
    Filed: January 6, 2003
    Date of Patent: April 4, 2006
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Shwu-Jen Jeng, Michael F. Lofaro, Christopher M. Schnabel, Kenneth J. Stein
  • Patent number: 7005361
    Abstract: In one embodiment, an integrated circuit includes a thin film resistor, which includes a resistor material that has been deposited on a substrate surface within a channel defined by opposing first and second portions of a stencil structure formed on the substrate surface, the resistor material having an initial width determined by a width of the channel. The stencil structure has been adapted to receive a planarizing material that protects against reduction of the initial width of the resistor material during subsequent process steps for removing the stencil structure. A head mask overlays an end portion of the thin film resistor and a dielectric overlays the head mask, the dielectric defining a via formed in the dielectric above a portion of the head mask. A conductive material has been deposited in the via, coupled to the portion of the head mask and electrically connecting the thin film resistor to other components of the integrated circuit.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: February 28, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Siang Ping Kwok, Eric W. Beach, Philipp Steinmann
  • Patent number: 7002235
    Abstract: A semiconductor device has a semiconductor support substrate, a buried insulation film disposed on the semiconductor support substrate, and a single-crystal silicon active layer disposed on the buried insulation film. The buried insulation film has portions which have been removed so that remaining portions of the buried insulating film form buried insulating film island regions. The single-crystal silicon active layer has portions which have been removed so that remaining portions of the single-crystal silicon active layer form single-crystal silicon active layer island regions defining single-crystal silicon resistors of a resistance circuit.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: February 21, 2006
    Assignee: Seiko Instruments Inc.
    Inventor: Hisashi Hasegawa
  • Patent number: 6989310
    Abstract: A process for selectively doping predetermined resistive elements on an electronic chip is provided. The resistive elements are arranged in a pattern, and there are three phases in the process. The first phase electrically charges selected elements of the pattern. The second phase adds doping atoms to the charged elements as a function of their state of charge. The third phase anneals the electronic chip to cause penetration of the doping agents and to activate them.
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: January 24, 2006
    Assignee: STMicroelectronics SA
    Inventor: Yvon Gris
  • Patent number: 6984869
    Abstract: The present invention provides a diffusion resistor that is formed in the substrate. A diffusion region is formed within the substrate that contains first and second contact regions extending downward from the surface of the substrate. Third and fourth contacts are also located within the diffusion region between the first and second contacts and define a conduction channel therebetween. This contact also extends downward from the surface of the substrate. These contacts are connected to metal layers. The first and second contacts form the two ends of the diffusion resistor; the third and fourth contacts connect to N+p? diodes such that application of a voltage to these contacts forms respective depletion regions within the diffusion region. The depletion regions change in size depending on the voltage applied to their respective contact, thereby changing the resistance of the depletion resistor.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: January 10, 2006
    Assignee: LSI Logic Corporation
    Inventors: Sean Christopher Erickson, Kevin Roy Nunn, Jonathan Alan Shaw
  • Patent number: 6979637
    Abstract: A method and structure for controlling the surface properties in the dielectric layers in a thin film component can be provided for improving the trimming process of thin film element. A metal fill is configured with a uniform fill pattern beneath an array of thin film resistors, and can comprise a plurality of smaller features or peaks providing a finer fill pattern that improves the control of the topology of the dielectric layers. The fill pattern can be configured in various manners, such as fill patterns parallel to the thin film resistor, fill patterns perpendicular to the thin film resistor, or fill patterns comprising a checkerboard-like configuration.
    Type: Grant
    Filed: September 2, 2003
    Date of Patent: December 27, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Eric W. Beach, Walter B. Meinel, Eric L. Hoyt
  • Patent number: 6972211
    Abstract: Resistive cross-point memory devices are provided, along with methods of manufacture and use. The memory devices are comprised by an active layer of resistive memory material interposed between upper electrodes and lower electrodes. A bit region located within the resistive memory material at the cross-point of an upper electrode and a lower electrode has a resistivity that can change through a range of values in response to application of one, or more, voltage pulses. Voltage pulses may be used to increase the resistivity of the bit region, decrease the resistivity of the bit region, or determine the resistivity of the bit region. A diode is formed between at the interface between the resistive memory material and the lower electrodes, which may be formed as doped regions, isolated from each other by shallow trench isolation.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: December 6, 2005
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Wei Pan, Wei-Wei Zhuang
  • Patent number: 6972239
    Abstract: A method of fabricating a PCMO thin film at low temperature for use in a RRAM device includes preparing a PCMO precursor; preparing a substrate; placing the substrate into a MOCVD chamber; introducing the PCMO precursor into the MOCVD chamber to deposit a PCMO thin film on the substrate; maintaining a MOCVD vaporizer at between about 240° C. to 280° C. and maintaining the MOCVD chamber at a temperature of between about 300° C. to 400° C.; removing the PCMO thin-film bearing substrate from the MOCVD chamber; and completing the RRAM device.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: December 6, 2005
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Wei-Wei Zhuang, Lawrence J. Charneski, David R. Evans, Sheng Teng Hsu