Plural Doping Steps Patents (Class 438/419)
-
Patent number: 11456374Abstract: The methods of manufacture of GeSiSn heterojunction bipolar transistors, which include light emitting transistors and transistor lasers and photo-transistors and their related structures are described herein. Other embodiments are also disclosed herein.Type: GrantFiled: May 28, 2019Date of Patent: September 27, 2022Inventor: Matthew H. Kim
-
Patent number: 8933534Abstract: An isolation structure of a high-voltage driving circuit includes a P-type substrate and a P-type epitaxial layer; a high voltage area, a low voltage area and a high and low voltage junction terminal area are arranged on the P-type epitaxial layer; a first P-type junction isolation area is arranged between the high and low voltage junction terminal area and the low voltage area, and a high-voltage insulated gate field effect tube is arranged between the high voltage area and the low voltage area; two sides of the high-voltage insulated gate field effect tube and an isolation structure between the high-voltage insulated gate field effect tube and a high side area are formed as a second P-type junction isolation area.Type: GrantFiled: August 14, 2012Date of Patent: January 13, 2015Assignee: Southeast UniversityInventors: Longxing Shi, Qinsong Qian, Weifeng Sun, Jing Zhu, Xianguo Huang, Shengli Lu
-
Patent number: 8847305Abstract: A vertical super junction MOSFET and a lateral MOSFET are integrated on the same semiconductor substrate. The lateral MOSFET is electrically isolated from the vertical super junction MOSFET by an n-buried isolating layer and an n-diffused isolating layer. The lateral MOSFET is formed of a p-well region formed in an n?semiconductor layer bounded by the n-buried isolating layer and n-diffused isolating layer, an n-source region and n-drain region formed in the p-well region, and a gate electrode that covers a portion of the p-well region sandwiched by the n-source region and n-drain region. As the n-buried isolating layer is formed at the same time as an n-layer (3) of the vertical super junction MOSFET, it is possible to reduce cost. Also, it is possible to suppress parasitic action between the elements with the n-buried isolating layer.Type: GrantFiled: December 17, 2012Date of Patent: September 30, 2014Assignee: Fuji Electric Co., Ltd.Inventors: Yoshiaki Toyoda, Akio Kitamura
-
Patent number: 8754453Abstract: The capacitive pressure sensor comprises: a substrate functioning as a lower electrode; a first insulating film formed on the substrate; a cavity formed on the first insulating film; a second insulating film formed on the first insulating film to have openings communicated with the cavity and to cover the cavity; a sealing film formed of a conductive material to seal the openings and to extend partially into the cavity through the openings; and an upper electrode formed on the second insulating film to be electrically separated from the sealing film and to overlap the cavity.Type: GrantFiled: July 21, 2011Date of Patent: June 17, 2014Assignee: Korea Electronics Technology InstituteInventors: Hak-In Hwang, Dae-Sung Lee, Kyu-Sik Shin
-
Patent number: 8729640Abstract: Semiconductor devices can be fabricated using conventional designs and process but including specialized structures to reduce or eliminate detrimental effects caused by various forms of radiation. Such semiconductor devices can include the one or more parasitic isolation devices and/or buried guard ring structures disclosed in the present application. The introduction of design and/or process steps to accommodate these novel structures is compatible with conventional CMOS fabrication processes, and can therefore be accomplished at relatively low cost and with relative simplicity.Type: GrantFiled: July 29, 2013Date of Patent: May 20, 2014Assignee: Silicon Space Technology CorporationInventor: Wesley H. Morris
-
Patent number: 8704041Abstract: A variety of methods and compostions are provided, including methods and compositions for targeted modification of a specific target site in a cell or organism, methods for integrating polynucleotides of interest, methods to assess promoter activity, directly select transformed organisms, minimize or eliminate expression resulting from random integration into the genome of an organism, such as a plant, remove polynucleotides of interest, combine multiple transfer cassettes, invert or excise a polynucleotide, silence a gene, and identify and/or characterize transcriptional regulating regions. The methods involve the introduction of a cell proliferation factor and a double-strand break-inducing enzyme into an organism.Type: GrantFiled: December 30, 2010Date of Patent: April 22, 2014Assignee: Pioneer Hi Bred International IncInventors: William J. Gordon-Kamm, Keith S. Lowe, David J. Peterson, Christopher J. Scelonge, Grace M. St. Clair, Bing-Bing Wang
-
Patent number: 8580632Abstract: To provide a semiconductor device and a method of manufacturing the same capable of suppressing, when a plurality of MIS transistors having different absolute values of threshold voltage is used, the reduction of the drive current of a MIS transistor having a greater absolute value of threshold voltage. The threshold voltage of a second nMIS transistor is greater than the threshold voltage of a first nMIS transistor and the sum of the concentration of lanthanum atom and the concentration of magnesium atom in a second nMIS high-k film included in the second nMIS transistor is lower than the sum of the concentration of lanthanum atom and the concentration of magnesium atom in a first nMIS high-k film included in the first nMIS transistor.Type: GrantFiled: January 25, 2013Date of Patent: November 12, 2013Assignee: Renesas Electronics CorporationInventors: Kazuhiro Onishi, Kazuhiro Tsukamoto
-
Publication number: 20130285208Abstract: A FinFET diode and method of fabrication are disclosed. In one embodiment, the diode comprises, a semiconductor substrate, an insulator layer disposed on the semiconductor substrate, a first silicon layer disposed on the insulator layer, a plurality of fins formed in a diode portion of the first silicon layer. A region of the first silicon layer is disposed adjacent to each of the plurality of fins. A second silicon layer is disposed on the plurality of fins formed in the diode portion of the first silicon layer. A gate ring is disposed on the first silicon layer. The gate ring is arranged in a closed shape, and encloses a portion of the plurality of fins formed in the diode portion of the first silicon layer.Type: ApplicationFiled: April 26, 2012Publication date: October 31, 2013Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Theodorus Eduardus Standaert, Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Tenko Yamashita
-
Patent number: 8552470Abstract: A photovoltaic cell is provided as a composite unit together with elements of an integrated circuit on a common substrate. In a described embodiment, connections are established between a multiple photovoltaic cell portion and a circuitry portion of an integrated structure to enable self-powering of the circuitry portion by the multiple photovoltaic cell portion.Type: GrantFiled: August 29, 2011Date of Patent: October 8, 2013Assignee: Texas Instruments IncorporatedInventors: Yuanning Chen, Thomas Patrick Conroy, Jeffrey DeBord, Nagarajan Sridhar
-
Patent number: 8530979Abstract: Provided is a semiconductor package which includes: a semiconductor substrate; a functional element that is disposed on one surface of the semiconductor substrate; a protection substrate that is disposed in an opposite side of that surface of the semiconductor substrate with a predetermined gap from a surface of the semiconductor substrate; and a junction member that is disposed to surround the functional element and bonds the semiconductor substrate and the protection substrate together, wherein the functional element has a shape different from a shape of a plane surrounded by the junction member in that surface of the semiconductor substrate, or is disposed in a region deviated from a central region of the plane surrounded by the junction member in that surface of the semiconductor substrate.Type: GrantFiled: October 1, 2010Date of Patent: September 10, 2013Assignee: Fujikura Ltd.Inventors: Shingo Ogura, Yuki Suto
-
Publication number: 20130214351Abstract: A method of manufacturing a semiconductor device having a VDMOSFET (Vertical Double-diffused Metal Oxide Semiconductor Field-Effect Transistor) and a planar gate MOSFET (Metal Oxide Semiconductor Field-Effect Transistor), including forming a semiconductor layer of a first conductivity type by epitaxy, forming a body region recess for forming a body region of the VDMOSFET on the semiconductor layer, and embedding a semiconductor material of a second conductivity type in the body region recess by epitaxy or CVD (Chemical Vapor Deposition).Type: ApplicationFiled: March 18, 2013Publication date: August 22, 2013Applicant: ROHM CO., LTD.Inventor: ROHM CO., LTD.
-
Patent number: 8513087Abstract: Processes for forming isolation structures for semiconductor devices include forming a submerged floor isolation region and a filed trench which together enclose an isolated pocket of the substrate. One process aligns the trench to the floor isolation region. In another process a second, narrower trench is formed in the isolated pocket and filled with a dielectric material while the dielectric material is deposited so as to line the walls and floor of the first trench. The substrate does not contain an epitaxial layer, thereby overcoming the many problems associated with fabricating the same.Type: GrantFiled: April 27, 2011Date of Patent: August 20, 2013Assignee: Advanced Analogic Technologies, IncorporatedInventors: Donald R. Disney, Richard K. Williams
-
Publication number: 20130126967Abstract: A vertical super junction MOSFET and a lateral MOSFET are integrated on the same semiconductor substrate. The lateral MOSFET is electrically isolated from the vertical super junction MOSFET by an n-buried isolating layer and an n-diffused isolating layer. The lateral MOSFET is formed of a p-well region formed in an n? semiconductor layer bounded by the n-buried isolating layer and n-diffused isolating layer, an n-source region and n-drain region formed in the p-well region, and a gate electrode that covers a portion of the p-well region sandwiched by the n-source region and n-drain region. As the n-buried isolating layer is formed at the same time as an n-layer (3) of the vertical super junction MOSFET, it is possible to reduce cost. Also, it is possible to suppress parasitic action between the elements with the n-buried isolating layer.Type: ApplicationFiled: December 17, 2012Publication date: May 23, 2013Applicant: FUJI ELECTRIC CO., LTD.Inventor: FUJI ELECTRIC CO., LTD.
-
Patent number: 8445357Abstract: Provided are a method of fabricating a semiconductor integrated circuit device and a semiconductor integrated circuit device fabricated using the method. The method includes: forming a mask film, which exposes a portion of a substrate, on the substrate; forming a first buried impurity layer, which contains impurities of a first conductivity type and of a first concentration, in a surface of the exposed portion of the substrate by using the mask film; removing the mask film; forming a second buried impurity layer, which contains impurities of a second conductivity type and of a second concentration, using blank implantation; and forming an epitaxial layer on the substrate having the first and second buried impurity layers, wherein the first concentration is higher than the second concentration.Type: GrantFiled: March 30, 2010Date of Patent: May 21, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Yong-Don Kim, Eung-Kyu Lee, Sung-Ryoul Bae, Soo-Bang Kim, Dong-Eun Jang
-
Publication number: 20130071994Abstract: The present invention is directed to a method for forming multiple active components, such as bipolar transistors, MOSFETs, diodes, etc., on a semiconductor substrate so that active components with higher operation voltage may be formed on a common substrate with a lower operation voltage device and incorporating the existing proven process flow of making the lower operation voltage active components. The present invention is further directed to a method for forming a device of increasing operation voltage over an existing device of same functionality by adding a few steps in the early manufacturing process of the existing device therefore without drastically affecting the device performance.Type: ApplicationFiled: June 30, 2012Publication date: March 21, 2013Applicant: Alpha and Omega Semiconductor IncorporatedInventor: Hideaki Tsuchiko
-
Patent number: 8384160Abstract: To provide a semiconductor device and a method of manufacturing the same capable of suppressing, when a plurality of MIS transistors having different absolute values of threshold voltage is used, the reduction of the drive current of a MIS transistor having a greater absolute value of threshold voltage. The threshold voltage of a second nMIS transistor is greater than the threshold voltage of a first nMIS transistor and the sum of the concentration of lanthanum atom and the concentration of magnesium atom in a second nMIS high-k film included in the second nMIS transistor is lower than the sum of the concentration of lanthanum atom and the concentration of magnesium atom in a first nMIS high-k film included in the first nMIS transistor.Type: GrantFiled: November 30, 2009Date of Patent: February 26, 2013Assignee: Renesas Electronics CorporationInventors: Kazuhiro Onishi, Kazuhiro Tsukamoto
-
Patent number: 8148774Abstract: To provide a semiconductor device in which an interval between first wells can be shortened by improving a separation breakdown voltage between the first wells and a method for manufacturing the same.Type: GrantFiled: October 27, 2009Date of Patent: April 3, 2012Assignee: Renesas Electronics CorporationInventors: Hidemitsu Mori, Kazuhiro Takimoto, Toshiyuki Shou, Kenji Sasaki, Yutaka Akiyama
-
Publication number: 20120049274Abstract: A semiconductor structure includes a semiconductor substrate of a first conductivity, an epitaxial layer of a second conductivity on the substrate and a buried layer of the second conductivity interposed between the substrate and the epitaxial layer. A first trench structure extends through the epitaxial layer and the buried layer to the substrate and includes sidewall insulation and conductive material in electrical contact with the substrate at a bottom of the first trench structure. A second trench structure extends through the epitaxial layer to the buried layer and includes sidewall insulation and conductive material in electrical contact with the buried layer at a bottom of the second trench structure. A region of insulating material laterally extends from the conductive material of the first trench structure to the conductive material of the second trench structure and longitudinally extends to a substantial depth of the second trench structure.Type: ApplicationFiled: August 31, 2010Publication date: March 1, 2012Applicant: INFINEON TECHNOLOGIES AUSTRIA AGInventors: Brahim Elattari, Franz Hirler
-
Publication number: 20110241171Abstract: Provided are a method of fabricating a semiconductor integrated circuit device and a semiconductor integrated circuit device fabricated using the method. The method includes: forming a mask film, which exposes a portion of a substrate, on the substrate; forming a first buried impurity layer, which contains impurities of a first conductivity type and of a first concentration, in a surface of the exposed portion of the substrate by using the mask film; removing the mask film; forming a second buried impurity layer, which contains impurities of a second conductivity type and of a second concentration, using blank implantation; and forming an epitaxial layer on the substrate having the first and second buried impurity layers, wherein the first concentration is higher than the second concentration.Type: ApplicationFiled: March 30, 2010Publication date: October 6, 2011Applicant: Samsung Electronics Co., Ltd.Inventors: Yong-Don Kim, Eung-Kyu Lee, Sung-Ryoul Bae, Soo-Bang Kim, Dong-Eun Jang
-
Patent number: 8030148Abstract: In a strained SOI semiconductor layer, the stress relaxation which may typically occur during the patterning of trench isolation structures may be reduced by selecting an appropriate reduced target height of the active regions, thereby enabling the formation of transistor elements on the active region of reduced height, which may still include a significant amount of the initial strain component. The active regions of reduced height may be advantageously used for forming fully depleted field effect transistors.Type: GrantFiled: July 23, 2009Date of Patent: October 4, 2011Assignee: Advanced Micro Devices, Inc.Inventors: Jan Hoentschel, Andy Wei, Sven Beyer
-
Patent number: 8017488Abstract: A manufacturing method of a NOR flash memory with phosphorous and arsenic ion implantations mainly implants both phosphorous and arsenic ions on a drain area of a transistor memory unit, and controls specific energy and dosage for the implantation to reduce the defects of a memory device and improve the yield rate of the NOR flash memory.Type: GrantFiled: September 18, 2009Date of Patent: September 13, 2011Assignee: EON Silicon Solutions Inc.Inventors: Sheng-Da Liu, Yider Wu
-
Patent number: 7951679Abstract: First, on a semiconductor region of a first conductivity type, a trapping film is formed which stores information by accumulating charges. Then, the trapping film is formed with a plurality of openings, and impurity ions of a second conductivity type are implanted into the semiconductor region from the formed openings, thereby forming a plurality of diffused layers of the second conductivity type in portions of the semiconductor region located below the openings, respectively. An insulating film is formed to cover edges of the trapping film located toward the openings, and then the semiconductor region is subjected to a thermal process in an atmosphere containing oxygen to oxidize upper portions of the diffused layers. Thereby, insulating oxide films are formed in the upper portions of the diffused layers, respectively. Subsequently, a conductive film is formed over the trapping film including the edges thereof to form an electrode.Type: GrantFiled: July 25, 2005Date of Patent: May 31, 2011Assignee: Panasonic CorporationInventors: Koji Yoshida, Keita Takahashi, Fumihiko Noro, Masatoshi Arai, Nobuyoshi Takahashi
-
Patent number: 7915069Abstract: An n/p semiconductor substrate is formed in such a manner that an n type semiconductor layer is deposited on a p+ semiconductor substrate. An imaging area including a plurality of n type semiconductor regions making photoelectric conversion and a plurality of p type semiconductor region for isolation formed around the n type semiconductor regions, is formed in the n/p semiconductor substrate. The n type semiconductor layer is divided into an upper layer and a lower layer. A second n type semiconductor region is formed to connect to the p+ type semiconductor substrate from a surface of the n/p semiconductor substrate in a peripheral region of the imaging area.Type: GrantFiled: April 1, 2010Date of Patent: March 29, 2011Assignee: Kabushiki Kaisha ToshibaInventor: Ikuko Inoue
-
Patent number: 7901968Abstract: Some embodiments of the invention are related to manufacturing semiconductors. Methods and apparatuses are disclosed that provide thin and fully relaxed SiGe layers. In some embodiments, the presence of oxygen between a single crystal structure and a SiGe heteroepitaxial layer, and/or within the SiGe heteroepitaxial layer, allow the SiGe layer to be thin and fully relaxed. In some embodiments, a strained layer of Si can be deposited over the fully relaxed SiGe layer.Type: GrantFiled: March 23, 2006Date of Patent: March 8, 2011Assignee: ASM America, Inc.Inventors: Keith Doran Weeks, Paul D. Brabant
-
Patent number: 7880240Abstract: A semiconductor device has a high voltage circuit section disposed on a semiconductor substrate having a first conductivity. The high voltage circuit section has a well region with a second conductivity, a first heavily doped impurity region with the first conductivity and disposed on the well region, a second heavily doped impurity region having a second conductivity and disposed on the semiconductor substrate, a trench isolation region disposed between the first and second heavily doped impurity regions, and an interconnect disposed over the trench isolation region. First and second electrodes are disposed above the trench isolation region, below the interconnect, and on opposite sides of a junction between the well region and the semiconductor substrate. The first electrode is disposed above the semiconductor substrate, and the second electrode is disposed above the well region.Type: GrantFiled: February 15, 2008Date of Patent: February 1, 2011Assignee: Seiko Instruments Inc.Inventor: Hiroaki Takasu
-
Patent number: 7659179Abstract: A method of forming a memory device includes forming first and second isolation structures on a semiconductor substrate, the first and second isolation structures defining an active region therebetween; and etching a portion of the semiconductor substrate provided within the active region to define a step profile, so that the active region includes a first vertical portion and an upper primary surface, the first vertical portion extending above the upper primary surface.Type: GrantFiled: December 29, 2005Date of Patent: February 9, 2010Assignee: Hynix Semiconductor Inc.Inventor: Hyun Hu
-
Patent number: 7598153Abstract: A method for fabricating bonded substrate structures, e.g., silicon on silicon. In a specific embodiment, the method includes providing a thickness of single crystal silicon material transferred from a first silicon substrate coupled to a second silicon substrate. In a specific embodiment, the second silicon substrate has a second surface region that is joined to a first surface region from the thickness of single crystal silicon material to form of an interface region having a first characteristic including a silicon oxide material between the thickness of single crystal silicon material and the second silicon substrate. The method includes subjecting the interface region to a thermal process to cause a change to the interface region from the first characteristic to a second characteristic.Type: GrantFiled: March 31, 2006Date of Patent: October 6, 2009Assignee: Silicon Genesis CorporationInventors: Francois J. Henley, James Andrew Sullivan, Sien Giok Kang, Philip James Ong, Harry Robert Kirk, David Jacy, Igor Malik
-
Patent number: 7589257Abstract: The invention provides isolated NUE (nitrogen utilization efficiency) nucleic acids and their encoded proteins. The present invention provides methods and compositions relating to altering nitrogen utilization and/or uptake in plants. The invention further provides recombinant expression cassettes, host cells, and transgenic plants.Type: GrantFiled: January 30, 2007Date of Patent: September 15, 2009Assignee: Pioneer Hi-Bred International Inc.Inventors: Howard P. Hershey, Carl R. Simmons, Dale Loussaert
-
Publication number: 20090166672Abstract: This invention discloses a semiconductor power device formed in a semiconductor substrate. The semiconductor power device further includes rows of multiple horizontal columns of thin layers of alternate conductivity types in a drift region of the semiconductor substrate where each of the thin layers having a thickness to enable a punch through the thin layers when the semiconductor power device is turned on. In a specific embodiment the thickness of the thin layers satisfying charge balance equation q*ND*WN=q*NA*WP and a punch through condition of WP<2*WD*[ND/(NA+ND)] where ND and WN represent the doping concentration and the thickness of the N type layers 160, while NA and WP represent the doping concentration and thickness of the P type layers; WD represents the depletion width; and q represents an electron charge, which cancel out. This device allows for a near ideal rectangular electric field profile at breakdown voltage with sawtooth like ridges.Type: ApplicationFiled: December 31, 2007Publication date: July 2, 2009Inventor: Madhur Bobde
-
Patent number: 7541247Abstract: A semiconductor structure and a method for forming the same. The method includes providing a semiconductor structure. The semiconductor structure includes a semiconductor substrate. The method further includes simultaneously forming a first doped transistor region of a first transistor and a first doped guard-ring region of a guard ring on the semiconductor substrate. The first doped transistor region and the first doped guard-ring region comprise dopants of a first doping polarity. The method further includes simultaneously forming a second doped transistor region of the first transistor and a second doped guard-ring region of the guard ring on the semiconductor substrate. The second doped transistor region and the second doped guard-ring region comprise dopants of the first doping polarity. The second doped guard-ring region is in direct physical contact with the first doped guard-ring region. The guard ring forms a closed loop around the first and second doped transistor regions.Type: GrantFiled: July 16, 2007Date of Patent: June 2, 2009Assignee: International Business Machines CorporationInventor: Steven Howard Voldman
-
Publication number: 20080197451Abstract: Formation of an electrostatic discharge (ESD) protection device having a desired breakdown voltage (BV) is disclosed. The breakdown voltage (BV) of the device can be set, at least in part, by varying the degree to which a surface junction between two doped areas is covered. This junction can be covered in one embodiment by a dielectric material and/or a semiconductor material. Moreover, a variable breakdown voltage can be established by concurrently forming, in a single process flow, multiple diodes that have different breakdown voltages, where the diodes are also formed concurrently with circuitry that is to be protected. To generate the variable or different breakdown voltages, respective edges of isolation regions can be extended to cover more of the surface junctions of different diodes. In this manner, a first diode can have a first breakdown voltage (BV1), a second diode can have a second breakdown voltage (BV2), a third diode can have a third breakdown voltage (BV3), etc.Type: ApplicationFiled: February 20, 2007Publication date: August 21, 2008Inventors: Martin B. Mollat, Tony Thanh Phan
-
Patent number: 7049199Abstract: A method for forming a plurality of MOSFETs wherein each one of the MOSFET has a unique predetermined threshold voltage. A doped well or tub is formed for each MOSFET. A patterned mask is then used to form a material line proximate each semiconductor well, wherein the width of the line is dependent upon the desired threshold voltage for the MOSFET. A tilted ion implantation is performed at an acute angle with respect to the substrate surface such that the ion beam passes through the material line. Thicker lines have a lower transmission coefficient for the ion beam and thus the intensity of the ion beam reaching the adjacent semiconductor well is reduced. By appropriate selection of the line width the dopant density in the well, and thus the final MOSFET threshold voltage, is controllable.Type: GrantFiled: July 14, 2003Date of Patent: May 23, 2006Assignee: Agere Systems Inc.Inventors: Paul Arthur Layman, Samir Chaudhry
-
Patent number: 6946339Abstract: In a method for creating a stepped structure on a substrate, which at least includes a first portion with a first thickness and a second portion with a second thickness, at first a layer sequence of a first oxide layer, a first nitride layer, and a second oxide layer is applied onto the substrate. Then a portion of the second oxide layer and a portion of the first nitride layer are removed to expose a portion of the first oxide layer. Then a part of the first nitride layer is removed to establish the first region of the stepped structure. Then the thickness of the first oxide layer is changed at least in the established first region to establish the first thickness of this region. Subsequently, a further part of the first nitride layer is removed to establish a second region of the stepped structure.Type: GrantFiled: December 31, 2003Date of Patent: September 20, 2005Assignee: Infineon Technologies AGInventor: Christian Herzum
-
Patent number: 6900109Abstract: A semiconductor device includes an improved drain drift layer structure of alternating conductivity types, that is easy to manufacture, and that facilitates realizing a high current capacity and a high breakdown voltage and to provide a method of manufacturing the semiconductor device. The vertical MOSFET according to the invention includes an alternating-conductivity-type drain drift layer on an n+-type drain layer as a substrate. The alternating-conductivity-type drain drift layer is formed of n-type drift current path regions and p-type partition regions alternately arranged laterally with each other. The n-type drift current path regions and p-type partition regions extend in perpendicular to n+-type drain layer. Each p-type partition region is formed by vertically connecting p-type buried diffusion unit regions Up. The n-type drift current path regions are residual regions, left after connecting p-type buried diffusion unit regions Up, with the conductivity type thereof unchanged.Type: GrantFiled: February 28, 2003Date of Patent: May 31, 2005Assignee: Fuji Electric Co., Ltd.Inventors: Yasuhiko Onishi, Tatsuhiko Fujihira, Susumu Iwamoto, Takahiro Sato
-
Patent number: 6828206Abstract: In a method for fabricating a semiconductor device, a silicide material is formed at least on the surface of an area to be silicided. Then, a first RTA (Rapid Thermal Annealing) process is performed to form a first-reacted silicide region. Next, a supplemental silicon layer is formed over the entire surface; and a second RTA process is performed to form a second-reacted suicide region.Type: GrantFiled: September 17, 1999Date of Patent: December 7, 2004Assignee: Oki Electric Industry Co., Ltd.Inventor: Jun Kanamori
-
Patent number: 6677194Abstract: A low threshold voltage NMIS area and a high threshold voltage PMIS area are set by a photoresist mask also used for well formation. Using a photoresist mask with openings for the NMIS and PMIS, the NMIS and PMIS areas are set by one ion implantation step. After gate oxidation, ion implantation is conducted through an amorphous silicon film onto wells, channels, and gate electrodes. A plurality of CMIS threshold voltages can be set and the gate electrodes of both polarities can be formed in a reduced number of steps using photoresist. This solves the problem in which photomasks are required as many as there are ion implantation types for wells, channel stoppers, gate electrodes, and threshold voltage control and hence the number of manufacturing steps and the production cost are increased.Type: GrantFiled: June 6, 2002Date of Patent: January 13, 2004Assignee: Hitachi, Ltd.Inventors: Toshiaki Yamanaka, Akio Nishida, Yasuko Yoshida, Shuji Ikeda, Kenichi Kuroda, Shiro Kamohara, Shinichiro Kimura, Eiichi Murakami, Hideyuki Matsuoka, Masataka Minami
-
Patent number: 6649498Abstract: The present invention concerns the field of microstructures and in particular microstructures made via CMOS technology on semiconductor substrates intended to undergo micro-machining by wet chemical etching, in particular by a KOH etchant. According to the present invention, protection against the KOH reactive agent is provided to such a structure by the deposition of a metal film (40, 41, 43) including at least on external gold layer (43) on the surface of the structure. This metal film (40, 41, 43) advantageously allows the use of mechanical protective equipment to be omitted and thus allows the wafers to be processed in batches. The present invention also proves perfectly compatible with a standard gold bumping process.Type: GrantFiled: February 8, 2002Date of Patent: November 18, 2003Assignee: EM MicroelectronicInventor: Ulrich Münch
-
Patent number: 6645855Abstract: A method fabricates an integrated semiconductor product. The first step is providing a semiconductor wafer that has preformed semiconductor components. The next step is forming at least one connection, in particular a polysilicon connection. The next step is exposing the at least one connection from the wafer front surface. The next step is applying a protective layer, in particular a silicon nitride protective layer, to the wafer front surface. The next step is treating the wafer front surface by a chemical mechanical polishing (CMP) step, with the result that the at least one connection is made accessible again.Type: GrantFiled: November 27, 2001Date of Patent: November 11, 2003Assignee: Infineon Technologies AGInventor: Joachim Hoepfner
-
Publication number: 20030203593Abstract: A partially-depleted Silicon-on-Insulator (SOI) substrate with minimal charge build up and suppressed floating body effect is disclosed, as well as a simple method for its fabrication. A thin Si/Ge epitaxial layer is grown between two adjacent epitaxial silicon layers of a SOI substrate, and as part of the silicon epitaxial growth. The thin Si/Ge epitaxial layer introduces misfit dislocations at the interface between the thin Si/Ge epitaxial layer and the adjacent epitaxial silicon layers, which removes undesired charge build up within the substrate.Type: ApplicationFiled: May 22, 2003Publication date: October 30, 2003Inventor: Kevin L. Beaman
-
Patent number: 6617217Abstract: Retrograde wells are formed by implanting through nitride films (40). Nitride films (40) are formed after STI (20) formation. By selectively masking a portion of the wafer with photoresist (47) after portions of a retrograde well are formed (45, 50, 55, and 60) the channeling of the subsequent zero degree implants is reduced.Type: GrantFiled: September 28, 2001Date of Patent: September 9, 2003Assignee: Texas Instruments IncorpatedInventors: Mahalingam Nandakumar, Dixit Kapila, Seetharaman Sridhar
-
Patent number: 6586296Abstract: A method is provided for processing a semiconductor topography. In particular, a method is provided for forming wells of opposite conductivity type using a single patterned layer. In addition, the method may include forming a silicon layer having first and second portions of opposite conductivity type. The formation of the silicon layer may include the use of the single patterned layer or an additional patterned layer. In addition, the method may include forming channel dopant regions within the wells of opposite conductivity type. The formation of such channel dopant regions may be incorporated into the method using the one or two patterned layers used for the formation of the wells and doped silicon layer. Such a method may include introducing impurities at varying energies and doses to compensate for the introduction of subsequent impurities. As such, the method may form a dual gate transistor pair, including n-channel and p-channel transistors.Type: GrantFiled: April 30, 2001Date of Patent: July 1, 2003Assignee: Cypress Semiconductor Corp.Inventor: Jeffrey T. Watt
-
Patent number: 6538328Abstract: The present invention concerns the field of microstructures and in particular microstructures made via CMOS technology on semiconductor substrates intended to undergo micro-machining by wet chemical etching, in particular by a KOH etchant. According to the present invention, protection against the KOH reactive agent is provided to such a structure by the deposition of a metal film (40, 41, 43) including at least on external gold layer (43) on the surface of the structure. This metal film (40, 41, 43) advantageously allows the use of mechanical protective equipment to be omitted and thus allows the wafers to be processed in batches. The present invention also proves perfectly compatible with a standard gold bumping process.Type: GrantFiled: October 16, 2000Date of Patent: March 25, 2003Assignee: EM MicroelectronicInventor: Ulrich Münch
-
Publication number: 20010026979Abstract: The invention discloses a method of forming threshold voltage adjustment for MOS transistors. At first, a first oxide layer and a nitride layer are formed on a silicon substrate in sequence. Next, shallow trenches and active regions are formed by using photolithography and dry etching technology. A wet etching step is performed to remove part of the nitride layer, and then the first ion implantation for threshold voltage adjustment are performed. After accomplishing shallow trench isolations, the second ion implantation for threshold voltage adjustment are finally performed.Type: ApplicationFiled: March 29, 2000Publication date: October 4, 2001Inventor: Yuh-Sheng Chern
-
Patent number: 6287921Abstract: The invention discloses a method of forming threshold voltage adjustment for MOS transistors. At first, a first oxide layer and a nitride layer are formed on a silicon substrate in sequence. Next, shallow trenches and active regions are formed by using photolithography and dry etching technology. A wet etching step is performed to remove part of the nitride layer, and then the first ion implantation for threshold voltage adjustment are performed. After accomplishing shallow trench isolations, the second ion implantation for threshold voltage adjustment are finally performed.Type: GrantFiled: March 29, 2000Date of Patent: September 11, 2001Assignee: Vanguard International Semiconductor CorporationInventor: Yuh-Sheng Chern
-
Patent number: 6236100Abstract: A method and apparatus for increasing a breakdown voltage of a semiconductor device. The semiconductor device is constructed on a semiconductor substrate including an isolation diffusion region around the semiconductor device, a substrate layer, an epi layer on top of the substrate layer, a surface diffusion region extending into the epi layer from a top surface of the epi layer and a metallization line coupled to the surface diffusion, wherein the metallization line traverses the semiconductor device and the isolation diffusion region. The semiconductor device also includes a poly field plate over the isolation diffusion region and beneath the metallization line, a field limiting diffusion region provided in the epi layer between the surface diffusion region and the isolation diffusion region and below the metallization line, and a contact coupled to the field limiting diffusion region, wherein the contact extends to a region below the metallization line and overlapping the poly field plate.Type: GrantFiled: January 28, 2000Date of Patent: May 22, 2001Assignee: General Electronics Applications, Inc.Inventor: Joseph Pernyeszi
-
Patent number: 6165868Abstract: Surface to surface electrical isolation of integrated circuits has been achieved by forming N type moats that penetrate the silicon as deeply as required, including across the full thickness of a wafer. The process for creating the moats is based on transmutation doping in which naturally occurring isotopes present in the silicon are converted to phosphorus. Several methods for bringing about the transmutation doping are available including neutron, proton, and deuteron bombardment. By using suitable masking, the bombardment effects can be confined to specific areas which then become the isolation moats. Four different embodiments of the invention are described together with processes for manufacturing them.Type: GrantFiled: June 4, 1999Date of Patent: December 26, 2000Assignee: Industrial Technology Research InstituteInventor: Chungpin Liao
-
Patent number: 6069048Abstract: A technique for reducing silicon defect induced transistor failures, such as latch-up, in a CMOS or other integrated circuit structure includes fabricating the integrated circuit structure on a substrate and implanting a buried layer beneath a surface of the integrated circuit. The buried layer implant is the final implanting step during fabrication of the integrated circuit structure. In another technique, fabricating the integrated circuit structure includes performing multiple sequential processes some of which are performed at elevated temperatures above about 500.degree. C. A buried layer is implanted beneath a surface of the integrated circuit. After implanting the buried layer, the substrate is subjected to a fabrication process at an elevated temperature above about 800.degree. C. only once. Propagation of defects, such as in-the-range defects or ion enhanced stacking faults, from the buried layer to other device layers during the fabrication process is reduced.Type: GrantFiled: September 30, 1998Date of Patent: May 30, 2000Assignee: LSI Logic CorporationInventor: David W. Daniel
-
Patent number: 6051457Abstract: An integrated circuit with a passive component and an ESD device in accordance with the present invention has: a P substrate; an N+ buried layer implanted in the P substrate; a cathode coupled to the N+ buried layer with an N area formed between the cathode and the N+ buried layer; an anode coupled to the N+ buried layer with a P area formed between the anode and the N+ buried layer; and a first P+ buried layer implanted in the N+ buried layer and below the P area to form a Zener diode. In an alternative embodiment, the ESD device may be incorporated in an integrated circuit with an active component.Type: GrantFiled: March 15, 1999Date of Patent: April 18, 2000Assignee: Intersil CorporationInventor: Akira Ito
-
Patent number: 5976940Abstract: In a semiconductor device comprising a first bipolar transistor and a second bipolar transistor having different voltages formed on a semiconductor substrate made by forming an epitaxial layer on a silicon substrate, in an upper part of the silicon substrate the first bipolar transistor has an N.sup.+ -type first embedded diffusion layer having an impurity concentration higher than that of the epitaxial layer and the second bipolar transistor has an N-type second embedded diffusion layer having a lower impurity concentration and a deeper diffusion layer depth than the first embedded diffusion layer, whereby a high speed bipolar transistor and a high voltage bipolar transistor are formed on the same substrate.Type: GrantFiled: December 10, 1996Date of Patent: November 2, 1999Assignee: Sony CorporationInventors: Takayuki Gomi, Hiroaki Ammo
-
Patent number: RE38510Abstract: The device uses the horizontal insulating region and the buried layer as the power transistor base and emitter respectively. An epitaxial growth is interposed between the two diffusions needed to form the aforesaid regions and those needed to create the base and the emitter of the transistor of the integrated control circuit.Type: GrantFiled: February 6, 1995Date of Patent: May 4, 2004Assignee: STMicroelectronics SrlInventors: Raffaele Zambrano, Salvatore Musumeci