Dopant Addition Patents (Class 438/449)
  • Patent number: 11152350
    Abstract: An electronic device, e.g. integrated circuit, has an n-type region and a p-type region located within a semiconductor substrate, the n-type region and the p-type region each intersecting the substrate surface. A dielectric structure is located directly on the substrate surface. The dielectric structure has first and second laterally opposed sides, with the first side located over the n-type region and the second side located over the p-type region.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: October 19, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mahalingam Nandakumar, Alan Erik Segervall, Muhammad Yusuf Ali
  • Patent number: 9876022
    Abstract: A method for manufacturing a semiconductor device includes forming a resist film on a film to be processed. An upper portion of the film to be processed is processed using the resist film as a first mask. Tungsten or a tungsten compound is selectively formed on the resist film. A lower portion of the film to be processed is processed with a reducing gas using the tungsten or the tungsten compound as a second mask.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: January 23, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Tomo Hasegawa, Kazuhisa Matsuda, Toshiyuki Sasaki, Mitsuhiro Omura
  • Patent number: 8691653
    Abstract: A semiconductor structure and a manufacturing process thereof are disclosed. The semiconductor structure includes a substrate having a first conductive type, a first well having a second conductive type formed in the substrate, a doped region having the second conductive type formed in the first well, a field oxide and a second well having the first conductive type. The doped region has a first net dopant concentration. The field oxide is formed on a surface area of the first well. The second well is disposed underneath the field oxide and connected to a side of the doped region. The second well has a second net dopant concentration smaller than the first net dopant concentration.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: April 8, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Chih-Chia Hsu, Yu-Hsien Chin, Yin-Fu Huang
  • Patent number: 8551861
    Abstract: A semiconductor device and a method for manufacturing the same are disclosed. A method for manufacturing a semiconductor device includes forming a trench for defining an active region over a semiconductor substrate, forming a doped region by implanting impurities into the trench, forming an oxide film in the trench by performing an oxidation process, forming a nitride film at inner sidewalls of the trench, and forming a device isolation film in the trench.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: October 8, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Ki Bong Nam
  • Patent number: 8368170
    Abstract: A method of forming an integrated circuit structure includes providing a semiconductor substrate; and forming a first and a second MOS device. The first MOS device includes a first active region in the semiconductor substrate; and a first gate over the first active region. The second MOS device includes a second active region in the semiconductor substrate; and a second gate over the second active region. The method further include forming a dielectric region between the first and the second active regions, wherein the dielectric region has an inherent stress; and implanting the dielectric region to form a stress-released region in the dielectric region, wherein source and drain regions of the first and the second MOS devices are not implanted during the step of implanting.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: February 5, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Kong-Beng Thei, Mong-Song Liang
  • Patent number: 8124496
    Abstract: A cable connector assembly (100) comprises a mating member (3) assembled with a plurality of contacts (33, 34), a printed circuit board (2), a cable (7) having a plurality of wires (71) and a strain relief portion (72), and a light pipe located (4) between the printed circuit board and the strain relief portion. The printed circuit board is attached with a LED (24), and the LED is electrically connected with the contacts. The printed circuit board defines a front surface, a rear surface and a cutout (23) extending through the front surface and the rear surface along a mating direction, and the LED is disposed behind the rear surface of the printed circuit board, the wires are extending through the cutout of the printed circuit board and soldered to the contacts in front of the printed circuit board.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: February 28, 2012
    Assignee: Hon Hai Precision Ind. Co., Ltd.
    Inventors: Ping-Sheng Su, Dou-Feng Wu, Wei Zhang, Da-Wei Xing
  • Patent number: 8115271
    Abstract: A method of forming an integrated circuit structure includes providing a semiconductor substrate; and forming a first and a second MOS device. The first MOS device includes a first active region in the semiconductor substrate; and a first gate over the first active region. The second MOS device includes a second active region in the semiconductor substrate; and a second gate over the second active region. The method further include forming a dielectric region between the first and the second active regions, wherein the dielectric region has an inherent stress; and implanting the dielectric region to form a stress-released region in the dielectric region, wherein source and drain regions of the first and the second MOS devices are not implanted during the step of implanting.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: February 14, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Harry Chuang, Kong-Beng Thei, Mong-Song Liang
  • Publication number: 20110275189
    Abstract: In one aspect of the present invention, a semiconductor device may include a semiconductor substrate; an element isolation region provided in the semiconductor substrate and having an oxide layer and an oxidant-diffusion prevention layer provided on the oxide layer; a gate dielectric film provided on the semiconductor substrate and the oxidant-diffusion prevention layer; and a gate electrode provided on the gate dielectric film.
    Type: Application
    Filed: July 20, 2011
    Publication date: November 10, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Masakazu GOTO
  • Patent number: 7977202
    Abstract: A method of forming an integrated circuit structure includes providing a semiconductor substrate; and forming a first and a second MOS device. The first MOS device includes a first active region in the semiconductor substrate; and a first gate over the first active region. The second MOS device includes a second active region in the semiconductor substrate; and a second gate over the second active region. The method further include forming a dielectric region between the first and the second active regions, wherein the dielectric region has an inherent stress; and implanting the dielectric region to form a stress-released region in the dielectric region, wherein source and drain regions of the first and the second MOS devices are not implanted during the step of implanting.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: July 12, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry Chuang, Kong-Beng Thei, Mong-Song Liang
  • Patent number: 7968424
    Abstract: Provided is a method of implanting dopant ions to an integrated circuit. The method includes forming a first pixel and a second pixel in a substrate, forming an etch stop layer over the substrate, forming a hard mask layer over the etch stop layer, patterning the hard mask layer to include an opening between the first pixel and the second pixel, and implanting a plurality of dopants through the opening to form an isolation feature.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: June 28, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jeng-Shyan Lin, Dun-Nian Yaung, Jen-Cheng Liu, Chun-Chieh Chuang, Pao-Tung Chen, Wen-De Wang, Jyh-Ming Hung
  • Patent number: 7951679
    Abstract: First, on a semiconductor region of a first conductivity type, a trapping film is formed which stores information by accumulating charges. Then, the trapping film is formed with a plurality of openings, and impurity ions of a second conductivity type are implanted into the semiconductor region from the formed openings, thereby forming a plurality of diffused layers of the second conductivity type in portions of the semiconductor region located below the openings, respectively. An insulating film is formed to cover edges of the trapping film located toward the openings, and then the semiconductor region is subjected to a thermal process in an atmosphere containing oxygen to oxidize upper portions of the diffused layers. Thereby, insulating oxide films are formed in the upper portions of the diffused layers, respectively. Subsequently, a conductive film is formed over the trapping film including the edges thereof to form an electrode.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: May 31, 2011
    Assignee: Panasonic Corporation
    Inventors: Koji Yoshida, Keita Takahashi, Fumihiko Noro, Masatoshi Arai, Nobuyoshi Takahashi
  • Patent number: 7709350
    Abstract: A method for manufacturing a semiconductor elemental device including an SOI structure in which an SOI layer is laminated, includes the steps of setting transistor forming regions and a device isolation region to the SOI layer, forming a pad oxide film over the SOI layer and forming an oxidation-resistant film over the pad oxide film; forming a resist mask in a region corresponding to each of the transistor forming regions, and etching the oxidation-resistant film and the pad oxide film with the resist mask as a mask to expose the SOI layer of the device isolation region; removing the resist mask and oxidizing the exposed SOI layer by a LOCOS method using the oxidation-resistant film to form a field oxide film; and implanting amorphization ions in an edge portion formed in the SOI layer upon formation of the field oxide film to amorphize the edge portion.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: May 4, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Hirotaka Komatsubara
  • Patent number: 7659179
    Abstract: A method of forming a memory device includes forming first and second isolation structures on a semiconductor substrate, the first and second isolation structures defining an active region therebetween; and etching a portion of the semiconductor substrate provided within the active region to define a step profile, so that the active region includes a first vertical portion and an upper primary surface, the first vertical portion extending above the upper primary surface.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: February 9, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hyun Hu
  • Patent number: 7601610
    Abstract: A process for the realization of a high integration density power MOS device includes the following steps of: providing a doped semiconductor substrate with a first type of conductivity; forming, on the substrate, a semiconductor layer with lower conductivity; forming, on the semiconductor layer, a dielectric layer of thickness comprised between 3000 and 13000 A (Angstroms); depositing, on the dielectric layer, a hard mask layer; masking the hard mask layer by means of a masking layer; etching the hard mask layers and the underlying dielectric layer for defining a plurality of hard mask portions to protect said dielectric layer; removing the masking layer; isotropically and laterally etching said dielectric layer forming lateral cavities in said dielectric layer below said hard mask portions; forming a gate oxide of thickness comprised between 150 and 1500 A (Angstroms) depositing a conductor material in said cavities and above the same to form a recess spacer, which is totally aligned with a gate structure c
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: October 13, 2009
    Assignee: STMicroelectronics, S.r.L.
    Inventors: Giuseppe Arena, Giuseppe Ferla, Marco Camalleri
  • Patent number: 7566482
    Abstract: A method in which a SOI substrate structure is fabricated by oxidation of graded porous Si is provided. The graded porous Si is formed by first implanting a dopant (p- or n-type) into a Si-containing substrate, activating the dopant using an activation anneal step and then anodizing the implanted and activated dopant region in a HF-containing solution. The graded porous Si has a relatively coarse top layer and a fine porous layer that is buried beneath the top layer. Upon a subsequent oxidation step, the fine buried porous layer is converted into a buried oxide, while the coarse top layer coalesces into a solid Si-containing over-layer by surface migration of Si atoms.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: July 28, 2009
    Assignee: International Business Machines Corporation
    Inventors: Kwang Su Choe, Keith E. Fogel, Devendra K. Sadana
  • Patent number: 7560330
    Abstract: A CIS and a method of manufacturing the same are provided. The CIS includes a device isolation layer formed on a device isolation region of a substrate of a first conductive type, the substrate including an active region and the device isolation region, the active region including a photodiode region and a transistor region; a high-concentration diffusion region of the first conductive type formed around the device isolation layer; a gate electrode formed on the active region of the substrate with a gate insulation layer interposed therebetween; a low-concentration diffusion region of a second conductive type formed on the photodiode region and spaced a predetermined distance apart from the device isolation layer; and a high-concentration diffusion region of a second conductive type formed on the transistor region.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: July 14, 2009
    Assignee: Dongbu Electronics, Co., Ltd.
    Inventor: Joon Hwang
  • Patent number: 7550355
    Abstract: A boron ion stream may be used to implant ions, such as boron ions, into the sidewalls of an active area, such as an NFET active area. The boron ion stream has both vertical tilt and horizontal rotation components relative to the sidewalls and/or the silicon device, to provide a better line of sight onto the sidewalls. This may allow components of the silicon device to be moved closer together without unduly reducing the effectiveness of boron doping of NFET active area sidewalls, and provides an improved line of sight of a boron ion stream onto the sidewalls of an NFET active area prior to filling the surrounding trench with STI material.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: June 23, 2009
    Assignee: Toshiba America Electronic Components, Inc.
    Inventor: Yusuke Kohyama
  • Patent number: 7541260
    Abstract: A semiconductor structure is formed comprising a plurality of columns doped with alternating dopants. The columns are separated by trenches, and the dopant is diffused in the doped columns. The trenches are filled with semiconductor material. Other embodiments may be described and claimed.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: June 2, 2009
    Assignee: Infineon Technologies Austria AG
    Inventors: Frank Pfirsch, Walter Rieger
  • Patent number: 7429514
    Abstract: A sidewall oxidation process for use during the formation of a transistor such as a flash memory cell allows for improved control of a gate oxide profile. The method comprises doping transistor source and drain regions to different doping levels, then performing a transistor sidewall oxidation using a particular process to modify the gate oxide thickness. The oxide forms at a faster rate along the source sidewall than along the drain sidewall. By using ranges within the oxidation environment described, a source side gate oxide having a variable and selectable thickness may be formed, while forming a drain-side oxide which has a single thickness where a thinner layer is desirable. This leads to improved optimization of key competing requirements of a flash memory cell, such as program and erase performance, while maintaining sufficient long-term data retention. The process may allow improved cell scalability, shortened design time, and decreased manufacturing costs.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: September 30, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Paul J. Rudeck, Don C. Powell
  • Publication number: 20080036048
    Abstract: A semiconductor junction device includes a semiconductor substrate of a first conductivity type and a junction layer formed on the substrate which has a second conductivity type. A field reducing region of the first conductivity type surrounds a periphery of the junction layer and extends under a peripheral portion of the junction layer. An insulating layer is provided on the field reducing region and a metal layer overlies the junction layer and the insulating layer.
    Type: Application
    Filed: July 12, 2007
    Publication date: February 14, 2008
    Inventors: Sheng-Huei Dai, Ya-Chin King, Hai-Ning Wang, Ming-Tai Chiang
  • Publication number: 20070298574
    Abstract: A method of manufacturing an integrated circuit comprising forming gate structures for first, second and third semiconductor device types located on a semiconductor substrate. A dopant block is formed over the second semiconductor device type and first dopants are implanted into unblocked regions of the semiconductor substrate corresponding to the first and third semiconductor device types. The dopant block is removed and a second dopant block is formed over the first semiconductor device type. Second dopants are implanted into unblocked regions of the semiconductor substrate corresponding to the second and third semiconductor device types.
    Type: Application
    Filed: June 26, 2006
    Publication date: December 27, 2007
    Applicant: Texas Instruments Incorporated
    Inventors: Shashank S. Ekbote, Frank Scot Johnson, Srinivasan Chakravarthi
  • Patent number: 7300834
    Abstract: Disclosed herein are methods of forming a well in a semiconductor device, in which a well end point under a trench is formed deeper than other area by well implantation prior to trench filling and by which leakage current is minimized. In one example, the disclosed method includes forming a trench in a surface of a substrate to define a field area, forming a first conductive type well in a first active area of the substrate, forming a second conductive type well in a second active area of the substrate, and filling up the trench with a dielectric.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: November 27, 2007
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Dae Kyeun Kim
  • Patent number: 7244661
    Abstract: A method for forming a buried diffusion layer with reducing topography in a surface of a semiconductor substrate is provided. A patterned first dielectric layer is formed on a semiconductor substrate for being used as a first hard mask. A thermal oxidation process is performed to form field oxides on the exposed potions of the semiconductor substrate. The patterned first dielectric layer is then removed. A second patterned dielectric layer is formed on the field oxides and the semiconductor substrate for being used as a second hard mask. An isotropic etching process is performed to etch the exposed portions of the field oxides and the semiconductor substrate. The patterned second dielectric layer and the underlying field oxides are removed to form a plurality of trenches on the surface of the semiconductor substrate. A buried diffusion layer is formed along surroundings of the trenches in the semiconductor substrate.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: July 17, 2007
    Assignee: Macronix International Co., Ltd.
    Inventors: Cheng-Ming Yih, Huei-Huarng Chen, Hsuan-Ling Kao
  • Patent number: 7235460
    Abstract: A process for forming isolation and active regions, wherein the patterning of an oxidation-barrier active stack is performed separately in the PMOS and NMOS regions. After the active stack is in place, two masking steps are used: one exposes the isolation areas on the NMOS side, for stack etch, channel-stop implant, and silicon recess etch (optional); the other masking step is exactly complementary, and performs the analogous operations on the PMOS side. After these two steps are performed (in either order), an additional nitride layer can optionally be deposited and etched to cover the sidewall of the active stack. Field oxide is then formed, and processing then proceeds in conventional fashion.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: June 26, 2007
    Assignee: STMicroelectronics, Inc.
    Inventor: Jia Li
  • Patent number: 7157340
    Abstract: A manufacturing method of a semiconductor device, the method including implanting impurity ions into a silicon layer and irradiating a pulsed light having a pulse width of 100 milliseconds or less and a rise time of 0.3 milliseconds or more onto the silicon layer thereby activating the impurity ions. The rise time is defined as a time interval of a leading edge between an instant at which the pulsed light starts to rise and an instant at which the pulsed light reaches a peak energy.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: January 2, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takayuki Ito, Kyoichi Suguro, Kanna Tomiie, Kazuya Ouchi
  • Patent number: 7015111
    Abstract: A sidewall oxidation process for use during the formation of a transistor such as a flash memory cell allows for improved control of a gate oxide profile. The method comprises doping transistor source and drain regions to different doping levels, then performing a transistor sidewall oxidation using a particular process to modify the gate oxide thickness. The oxide forms at a faster rate along the source sidewall than along the drain sidewall. By using ranges within the oxidation environment described, a source side gate oxide having a variable and selectable thickness may be formed, while forming a drain-side oxide which has a single thickness where a thinner layer is desirable. This leads to improved optimization of key competing requirements of a flash memory cell, such as program and erase performance, while maintaining sufficient long-term data retention. The process may allow improved cell scalability, shortened design time, and decreased manufacturing costs.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: March 21, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Paul J. Rudeck, Don C. Powell
  • Patent number: 6949445
    Abstract: A trench isolation having a sidewall and bottom implanted region located within a substrate of a first conductivity type is disclosed. The sidewall and bottom implanted region is formed by an angled implant, a 90 degree implant, or a combination of an angled implant and a 90 degree implant, of dopants of the first conductivity type. The sidewall and bottom implanted region located adjacent the trench isolation reduces surface leakage and dark current.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: September 27, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Howard Rhodes, Chandra Mouli
  • Patent number: 6861320
    Abstract: The invention provides a method of making silicon-on-insulator SOI substrates with nitride buried insulator layer by implantation of molecular deuterated ammonia ions ND3+, instead of implanting nitrogen ions (N+, or N2+) as is done in prior art nitride SOI processes. The resultant structure, after annealing, has a buried insulator with a defect density which is substantially lower than in prior art nitride SOI. The deuterated nitride SOI substrates allow much better heat dissipation than SOI with a silicon dioxide buried insulator. These substrates can be used for manufacturing of high speed and high power dissipation monolithic integrated circuits.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: March 1, 2005
    Assignee: Silicon Wafer Technologies, Inc.
    Inventor: Alexander Usenko
  • Patent number: 6855618
    Abstract: A method for manufacturing a radiation hardened semiconductor device, having defined active region and isolation region. The isolation region containing an isolation material and active region containing a transition region between active and isolation region, sometimes denoted a bird's beak region. Wherein the transition region is implanted with germanium and boron, to prevent formation of leakage paths between active devices, or within an active device. The implanted area can be further limited to that area of the transition region that is adapted to be covered by a gate material, such as polysilicon.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: February 15, 2005
    Assignee: Aeroflex Colorado Springs, Inc.
    Inventors: Richard L. Woodruff, Scott M. Tyson, John T. Chaffee, David B. Kerwin
  • Patent number: 6846722
    Abstract: The present disclosure relates to a method for fabricating an image sensor capable of improving dark current characteristics.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: January 25, 2005
    Assignee: Hynix Semiconductor Inc.
    Inventor: Won-Ho Lee
  • Patent number: 6790752
    Abstract: The present invention is generally directed to various methods of controlling Vss implants on memory devices, and a system for performing same. In one illustrative embodiment, the method comprises forming a plurality of trenches in a semiconducting substrate, measuring at least one physical characteristic of at least one of the trenches and determining at least one parameter of a VSS implant process to be performed on the substrate based upon the measured at least one physical characteristic of at least one trench.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: September 14, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Matthew A. Purdy
  • Patent number: 6746936
    Abstract: The present invention relates to a method for forming an isolation film for semiconductor devices.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: June 8, 2004
    Assignee: Hynix Semiconductor Inc.
    Inventor: Joon Hyeon Lee
  • Patent number: 6730569
    Abstract: An electronic device architecture is described comprising a field effect device in an active region 22 of a substrate 10. Channel stop implant regions 28a and 28b are used as isolation structures and are spaced apart from the active region 22 by extension zones 27a and 27b. The spacing is established by using an inner mask layer 20 and an outer mask layer 26 to define the isolation structures.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: May 4, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Lily X. Springer, Binghua Hu, Chin-Yu Tsai, Jozef C. Mitros
  • Patent number: 6706638
    Abstract: A method of forming openings in the dielectric layer. The method includes an ion implantation step to reduce a lateral etching in a chemical vapor etching step, and to provide a high etching selectivity ratio of the dielectric layer to a mask. The dry etching process is partially substituted by the chemical vapor etching step, so that an opening having a straight profile is formed in the dielectric layer. Consequently, problems, such as loss of critical dimension and striation of the opening caused by loss of the mask can be effectively ameliorated.
    Type: Grant
    Filed: January 17, 2001
    Date of Patent: March 16, 2004
    Assignee: Winbond Electronics Corp.
    Inventors: Yun-Kuei Yang, Yi-Ming Chang
  • Publication number: 20040033667
    Abstract: The present invention relates to a method for fabricating an image sensor capable of improving a dark current characteristic. The method includes the steps of: forming sequentially a pad oxide layer and a pad nitride layer on a substrate and selectively removing the pad oxide layer and the pad nitride layer to expose a surface of the substrate in which a field insulation layer will be formed; forming the field insulation layer by performing a channel stop ion-implantation process to the exposed substrate with use of the pad nitride layer as a mask; removing a partial portion of the pad nitride layer so that one side of the pad nitride layer is spaced out with a predetermined distance from an edge of the field insulation layer; and performing an additional ion-implantation process onto the exposed substrate surface and the field insulation layer by using the pad nitride layer as a mask.
    Type: Application
    Filed: July 9, 2003
    Publication date: February 19, 2004
    Inventor: Won-Ho Lee
  • Patent number: 6642120
    Abstract: A semiconductor circuit is provided which has a high breakdown voltage and is capable of outputting a large current. Field transistors (Q1, Q11) are cross-coupled. The gate of the first field transistor (Q1) and the drain of the second field transistor (Q11) are not directly connected to the drain of an MOS transistor (Q4) but are connected to the base of a bipolar transistor (Q12). The second field transistor (Q11) has its source connected to the collector of the bipolar transistor (Q12) and the MOS transistor (Q4) has its drain connected to the emitter of the bipolar transistor (Q12). When the current amplification factor of the bipolar transistor (Q12) is taken as &bgr;, then the current of the output (SO) can be increased approximately &bgr; times.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: November 4, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Tomohide Terashima
  • Patent number: 6620704
    Abstract: A method is provided of fabricating a semiconductor device that includes forming a silicon oxide film on a semiconductor substrate. A silicon nitrite film may be formed on the silicon oxide film. A portion of the silicon nitrite film and the silicon oxide film may be removed at a desired portion. Additionally, a groove may be formed in the semiconductor substrate in the portion in which the silicon oxide film is removed. A part of the silicon oxide film may be etched back around the groove with hydrofluoric acid type at the portion in which the silicon nitrite film is located above. Additionally, an oxidized film may be formed in the groove of the semiconductor substrate and the groove may be oxidized.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: September 16, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Hideo Miura, Makoto Ogasawara, Hiroo Masuda, Jun Murata, Noriaki Okamoto
  • Patent number: 6583018
    Abstract: An ion implantation method which can accurately control the effective dose amount even in ion implantation at a very low energy. This ion implantation method comprises the steps of carrying out preamorphization ion implantation for a semiconductor substrate in an ion implantation apparatus; then cleaning the surface of semiconductor substrate in a cleaning apparatus so as to eliminate an oxidized film; and thereafter carrying out ion implantation again in the ion implantation apparatus under a low implantation energy so as to form a shallow junction in the semiconductor substrate. As a consequence, the influence of the oxidized film formed by preamorphization ion implantation can be suppressed, whereby the effective dose can be controlled accurately.
    Type: Grant
    Filed: February 5, 2001
    Date of Patent: June 24, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Yasuhiko Matsunaga, Majeed Ali Foad
  • Patent number: 6583044
    Abstract: A buried channel and a method of fabricating a buried channel in a substrate including depositing a layer of masking material onto a surface of a substrate, etching a groove in the masking layer, etching a channel into the substrate through the groove, and depositing a cover layer over the masking layer and groove such that the covering layer at least substantially closes over the groove.
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: June 24, 2003
    Assignee: Agilent Technologies, Inc.
    Inventors: Sandeep Bahl, Karen L. Seaward
  • Publication number: 20030068870
    Abstract: According to the present invention, a semiconductor device to use a SOI substrate performing insulation by a LOCOS method in which an oxide resistivety film provided on a silicon layer is used, includes steps of: implanting impurity in a LOCOS edge which is a silicon layer under bird's beak of the field oxide film with the oxide resistant film as a mask after a field oxide film is formed and forming a high density impurity area having impurity density higher than impurity density of an impurity diffusion layer formed on the silicon layer, and removing a pad oxide film after a heat treatment is performed for the field oxide film after the high density impurity area is formed. Therefore, a method of manufacturing the semiconductor device at a lower cost to suppress occurrence of hump and to prevent a MOSFET characteristic from deteriorating can be provided.
    Type: Application
    Filed: January 31, 2002
    Publication date: April 10, 2003
    Inventor: Hirotaka Komatsubara
  • Patent number: 6528390
    Abstract: A method for fabricating a semiconductor structure includes growing regions of oxide on a first structure, to form bit-line regions; wherein said semiconductor structure includes a semiconducting substrate, a patterned ONO layer on said substrate, wherein said patterned ONO layer comprises regions of ONO and exposed regions of said semiconducting substrate, a patterned hard mask layer on said regions of ONO, and a patterned photoresist layer on said patterned hard mask layer.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: March 4, 2003
    Assignees: Advanced Micro Devices, Inc., Fujitsu Limited
    Inventors: Hideki Komori, David K. Foote, Fei Wang, Bharath Rangarajan
  • Patent number: 6511893
    Abstract: A method for manufacturing a radiation hardened semiconductor device, having defined active region and isolation region. The isolation region containing an isolation material and active region containing a transition region between active and isolation region, sometimes denoted a bird's beak region. Wherein the transition region is implanted with germanium and boron, to prevent formation of leakage paths between active devices, or within an active device. The implanted area can be further limited to that area of the transition region that is adapted to be covered by a gate material, such as polysilicon.
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: January 28, 2003
    Assignee: Aeroflex UTMC Microelectronics, Inc.
    Inventors: Richard L. Woodruff, Scott M. Tyson, John T. Chaffee, David B. Kerwin
  • Patent number: 6482719
    Abstract: An MOS device is provided having a channel-stop implant placed between active regions and beneath field oxides. The channel-stop dopant material is a p-type material of atomic weight greater than boron, and preferably utilizes solely indium ions. The indium ions, once implanted, have a greater tendency to remain in their position than boron ions. Subsequent temperature cycles caused by, for example, field oxide growth do not significantly change the initial implant position. Thus, NMOS devices utilizing indium channel-stop dopant can achieve higher pn junction breakdown voltages and lower parasitic source/drain-to-substrate capacitances. Furthermore, the heavier indium ions can be more accurately placed than lighter boron ions to a region just below the silicon layer which is to be consumed by subsequent field oxide growth. By fixing the peak concentration density of indium at a depth just below the field oxide lower surface, channel-stop implant region is very shallow.
    Type: Grant
    Filed: August 2, 1995
    Date of Patent: November 19, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mohammed Anjum, Alan L. Stuber, Maung H. Kyaw
  • Publication number: 20020132446
    Abstract: A method for fabricating a semiconductor structure includes growing regions of oxide on a first structure, to form bit-line regions; wherein said semiconductor structure includes a semiconducting substrate, a patterned ONO layer on said substrate, wherein said patterned ONO layer comprises regions of ONO and exposed regions of said semiconducting substrate, a patterned hard mask layer on said regions of ONO, and a patterned photoresist layer on said patterned hard mask layer.
    Type: Application
    Filed: March 2, 2001
    Publication date: September 19, 2002
    Applicant: Advanced Micro Devices
    Inventors: Hideki Komori, David K. Foote, Fei Wang, Bharath Rangarajan
  • Patent number: 6426273
    Abstract: A preprocessing method of a metal film formation process before formation of a BLM film on a resist film of a substrate to be processed, wherein the resist film of substrate to be processed is irradiated with plasma, utilizing a plasma processing apparatus providing independent plasma generating power source and substrate bias power source to form an overhand area at the end face of a connecting hole and change the property of the surface area.
    Type: Grant
    Filed: January 26, 1996
    Date of Patent: July 30, 2002
    Assignee: Sony Corporation
    Inventor: Toshiharu Yanagida
  • Publication number: 20020072177
    Abstract: The instant invention describes a method for forming a dielectric film with a uniform concentration of nitrogen. The films are formed by first incorporating nitrogen into a dielectric film using RPNO. The films are then annealed in N2O which redistributes the incorporated species to produce a uniform nitrogen concentration.
    Type: Application
    Filed: September 28, 2001
    Publication date: June 13, 2002
    Inventor: Douglas T. Grider
  • Publication number: 20020064925
    Abstract: A semiconductor substrate having a first conductivity type is first prepared. Then, a well region is formed in the substrate so as to have a second conductivity type opposite to the first conductivity type. Next, a first ion having the first conductivity type is implanted into the well region to form a region to be a first drain region having a first impurity density and into the substrate to form a region to be a first channel stopper region. Next, a second ion having the second conductivity type is implanted into the well to form a region to be a second channel stopper region and into the substrate to form a region to be a the second drain region having a second impurity density. Then, the respective ion implanted regions are thermally diffused to form the first drain region and the second channel stopper region in the well region and to form the second drain region and the first channel stopper region in the substrate.
    Type: Application
    Filed: November 30, 2001
    Publication date: May 30, 2002
    Inventors: Shigeki Onodera, Ichiro Ohashi
  • Publication number: 20020048899
    Abstract: The formation of the isolating region includes ion implantation in the voluminal part, followed by annealing of said implanted voluminal part (7) of the substrate (1).
    Type: Application
    Filed: August 21, 2001
    Publication date: April 25, 2002
    Inventors: Meindert Martin Lunenborg, Walter Jan August De Coster, Alain Inard, Franck Arnaud
  • Publication number: 20020048898
    Abstract: A process for forming isolation and active regions, wherein the patterning of an oxidation-barrier active stack is performed separately in the PMOS and NMOS regions. After the active stack is in place, two masking steps are used: one exposes the isolation areas on the NMOS side, for stack etch, channel-stop implant, and silicon recess etch (optional). The other masking step is exactly complementary, and performs the analogous operations on the PMOS side. After these two steps are performed (in either order), an additional nitride layer can optionally be deposited and etched to cover the sidewall of the active stack. Field oxide is then formed, and processing then proceeds in conventional fashion.
    Type: Application
    Filed: March 9, 2001
    Publication date: April 25, 2002
    Inventor: Jia Li
  • Patent number: 6372607
    Abstract: A circuit that includes an isolation boundary formed to a depth in a substrate defining an active area of the substrate, a primary junction formed in the active area to a primary junction depth in the substrate to collect electron/hole pairs, and a secondary junction formed in the active area adjacent to the isolation boundary to a secondary junction depth at least equal to the isolation boundary depth.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: April 16, 2002
    Assignee: Intel Corporation
    Inventor: Berni W. Landau