By Layers Which Are Coated, Contacted, Or Diffused Patents (Class 438/476)
  • Patent number: 8568537
    Abstract: An epitaxial wafer comprises a silicon substrate, a gettering epitaxial film formed thereon and containing silicon and carbon, and a main silicon epitaxial film formed on the gettering epitaxial film, in which the gettering epitaxial film has a given carbon atom concentration and carbon atoms are existent between its silicon lattices.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: October 29, 2013
    Assignee: Sumco Corporation
    Inventors: Naoshi Adachi, Tamio Motoyama
  • Publication number: 20130221497
    Abstract: A method for producing a substrate with buried layers of getter material, including: making a first stack including one layer of a first getter material, arranged on a first support; making a second stack including one layer of a second getter material, arranged on a second support; and bringing the first stack into contact with the second stack and performing thermocompression, the layers of the first and of the second getter material being arranged between the first and the second support, at a temperature greater than or equal to a lowest temperature among thermal activation temperatures of the first and of the second getter material, to bond the layers of the first and second getter materials together.
    Type: Application
    Filed: October 31, 2011
    Publication date: August 29, 2013
    Applicant: Commissariat a l'energie atomique et aux ene alt
    Inventor: Xavier Baillin
  • Patent number: 8507917
    Abstract: A thin film transistor includes a substrate, a semiconductor layer provided on the substrate and crystallized by using a metal catalyst, a gate electrode insulated from and disposed on the semiconductor layer, and a getter layer disposed between the semiconductor layer and the gate electrode and formed with a metal oxide having a diffusion coefficient that is less than that of the metal catalyst in the semiconductor layer.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: August 13, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Byoung-Keon Park, Jin-Wook Seo, Ki-Yong Lee, Dong-Hyun Lee, Kil-Won Lee, Jong-Ryuk Park, Yun-Mo Chung, Tak-Young Lee, Byung-Soo So, Min-Jae Jeong, Seung-Kyu Park, Yong-Duck Son, Jae-Wan Jung
  • Patent number: 8501515
    Abstract: Methods of forming electro-micromechanical resonators provide passive temperature compensation of semiconductor device layers used therein. A first substrate is provided that includes a first electrically insulating temperature compensation layer on a first semiconductor device layer. A step is performed to bond the first electrically insulating temperature compensation layer to a second substrate containing the second electrically insulating temperature compensation layer therein, to thereby form a relatively thick temperature compensation layer. A piezoelectric layer is formed on the first electrically insulating temperature compensation layer and at least a first electrode is formed on the piezoelectric layer.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: August 6, 2013
    Assignee: Integrated Device Technology Inc.
    Inventor: Wanling Pan
  • Patent number: 8492193
    Abstract: There is provided a semiconductor substrate for solid-state image sensing device in which the production cost is lower than that of a gettering method through a carbon ion implantation and problems such as occurrence of particles at a device production step and the like are solved. Silicon substrate contains solid-soluted carbon having a concentration of 1×1016-1×1017 atoms/cm3 and solid-soluted oxygen having a concentration of 1.4×1018-1.6×1018 atoms/cm3.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: July 23, 2013
    Assignee: Sumco Corporation
    Inventor: Kazunari Kurita
  • Patent number: 8455322
    Abstract: Disclosed is an improved semiconductor structure (e.g., a silicon germanium (SiGe) hetero-junction bipolar transistor) having a narrow essentially interstitial-free SIC pedestal with minimal overlap of the extrinsic base. Also, disclosed is a method of forming the transistor which uses laser annealing, as opposed to rapid thermal annealing, of the SIC pedestal to produce both a narrow SIC pedestal and an essentially interstitial-free collector. Thus, the resulting SiGe HBT transistor can be produced with narrower base and collector space-charge regions than can be achieved with conventional technology.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: June 4, 2013
    Assignee: International Business Machines Corporation
    Inventors: Oleg Gluschenkov, Rajendran Krishnasamy, Kathryn T. Schonenberg
  • Patent number: 8445368
    Abstract: A semiconductor device includes a trench MOS barrier Schottky diode having an integrated PN diode and a method is for manufacturing same.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: May 21, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Alfred Goerlach, Ning Qu
  • Publication number: 20130113103
    Abstract: An integrated circuit (IC) includes a substrate having a topside semiconductor surface including active circuitry configured to provide functionality and a bottomside surface. A plurality of through substrate vias (TSVs) extend from the topside semiconductor surface to beyond the bottomside surface to provide protruding TSV tips. The TSVs include an outer dielectric liner, a metal comprising diffusion barrier layer on the dielectric liner, and a metal filler on the metal comprising barrier layer. A dielectric metal gettering layer (MGL) is on the bottomside surface lateral to and on sidewalls of the protruding TSV tips. The MGL includes at least one metal gettering agent selected from a halogen or a Group 15 element in an average concentration from 0.1 to 10 atomic %.
    Type: Application
    Filed: June 5, 2012
    Publication date: May 9, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: JEFFREY A. WEST, RAJESH TIWARI
  • Publication number: 20130092949
    Abstract: A second epitaxial layer is grown epitaxially over a first epitaxial layer. The first epitaxial layer includes an epitaxially grown layer and a defect layer. The defect layer is disposed over the epitaxially grown layer and serves as a surface layer of the first epitaxial layer. The defect density of the defect layer is 5×1017 cm?2 or more. Defects penetrating through the defect layer form loops in the second epitaxial layer.
    Type: Application
    Filed: September 12, 2012
    Publication date: April 18, 2013
    Inventors: Nobuyuki Ikarashi, Masayasu Tanaka
  • Publication number: 20130089971
    Abstract: Methods for protecting circuit device materials, optoelectronic devices, and caps using a reflowable getter are described. The methods, devices and caps provide advantages because they enable modification of the shape and activity of the getter after sealing of the device. Some embodiments of the invention provide a solid composition comprising a reactive material and a phase changing material. The combination of the reactive material and phase changing material is placed in the cavity of an electronic device. After sealing the device by conventional means (epoxy seal for example), the device is subjected to thermal or electromagnetic energy so that the phase changing material becomes liquid, and consequently: exposes the reactive material to the atmosphere of the cavity, distributes the getter more equally within the cavity, and provides enhanced protection of sensitive parts of the device by flowing onto and covering these parts, with a thin layer of material.
    Type: Application
    Filed: October 2, 2012
    Publication date: April 11, 2013
    Inventor: Osram Opto Semiconductors GmbH
  • Patent number: 8399299
    Abstract: A method for making a structure including at least the steps of: making at least one first portion of at least one getter material against a first substrate or a second substrate, making at least one second portion of at least one getter material against the second substrate when the first portion of getter material is placed against the first substrate, or against the first substrate when the first portion of getter material is placed against the second substrate, and attaching the second substrate to the first substrate by thermocompression of a first part of the first portion of getter material against at least one part of the second portion of getter material, forming at least one cavity delimited by the first substrate and the second substrate, a second part of the first portion of getter material being placed in the cavity.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: March 19, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventor: Xavier Baillin
  • Patent number: 8357593
    Abstract: Provided are methods of removing water adsorbed or bonded to a surface of a semiconductor substrate, and methods of depositing an atomic layer using the method of removing water described herein. The method of removing water includes applying a chemical solvent to the surface of a semiconductor substrate, and removing the chemical solvent from the surface of the semiconductor substrate.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: January 22, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-chul Kim, Youn-soo Kim, Ki-vin Im, Cha-young Yoo, Jong-cheol Lee, Ki-yeon Park, Hoon-sang Choi, Se-hoon Oh
  • Patent number: 8357994
    Abstract: An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiNX with a nitrogen content X which is generally in the range of 0<X?1.2, and preferably 0.5?X?1.2. The breakdown voltage VBD for the antifuse can be defined to be as small as a few volts for CMOS applications by controlling the composition and thickness of the SiNX layer. The SiNX layer thickness can also be made sufficiently large so that Poole-Frenkel emission will be the primary electrical conduction mechanism in the antifuse. Different types of electrodes are disclosed including electrodes formed of titanium silicide, aluminum and silicon. Arrays of antifuses can also be formed.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: January 22, 2013
    Assignee: Sandia Corporation
    Inventors: Scott D. Habermehl, Roger T. Apodaca
  • Publication number: 20130015568
    Abstract: Getter structure comprising at least one getter portion arranged on a support and including at least two adjacent getter material parts arranged on the support one beside the other, with different thicknesses and of which the surface grain densities are different from one another.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 17, 2013
    Applicant: Commissariat a I'energie atomique et aux ene alt
    Inventors: Christine FERRANDON, Xavier BAILLIN
  • Publication number: 20130005094
    Abstract: A reduction in contaminating impurities in a TFT, and a TFT which is reliable, is obtained in a semiconductor device which uses the TFT. By removing contaminating impurities residing in a film interface of the TFT using a solution containing fluorine, a reliable TFT can be obtained.
    Type: Application
    Filed: September 10, 2012
    Publication date: January 3, 2013
    Inventors: Masaya KADONO, Shunpei YAMAZAKI, Yukio YAMAUCHI, Hidehito KITAKADO
  • Patent number: 8329563
    Abstract: A device and a device manufacturing process. First, a gettering layer is formed on the bottom surface of a silicon substrate. Gates having a MOS structure are then formed on the principal surface of the silicon substrate, and the gettering layer is removed. According to this manufacturing method, the formation of the gates having a MOS structure is performed such that the gettering layer getters dissolved oxygen present in the silicon substrate. This reduces the concentration of dissolved oxygen in the silicon substrate, resulting in improved device characteristics.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: December 11, 2012
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Tadaharu Minato, Hidekazu Yamamoto
  • Publication number: 20120302042
    Abstract: An object of the present invention is to provide an adhesive composition that can form an adhesive sheet for producing a semiconductor device capable of suppressing deterioration in ion scavengeability after the adhesive sheet goes through thermal history. It is an adhesive composition for producing a semiconductor device containing at least an organic complex-forming compound that forms a complex with cations, and the 5% weight loss temperature of the organic complex-forming compound measured by thermogravimetry is 180° C. or more.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 29, 2012
    Inventors: Yuta KIMURA, Yasushi INOUE, Takeshi MATSUMURA
  • Publication number: 20120302043
    Abstract: The present invention relates to a novel process for decarburizing a silicon melt, and to the use thereof for production of silicon, preferably solar silicon or semiconductor silicon.
    Type: Application
    Filed: December 27, 2010
    Publication date: November 29, 2012
    Inventor: Jochen Hintermayer
  • Publication number: 20120295416
    Abstract: An object of the present invention is to provide an adhesive sheet that can capture cations mixed in from outside during various processes of manufacturing a semiconductor device to prevent deterioration in electrical characteristics of a semiconductor device to be manufactured and to improve product reliability. It is an adhesive sheet for producing a semiconductor device, in which when 2.5 g of the adhesive sheet is soaked in 50 ml of an aqueous solution containing 10 ppm of copper ions, and the solution is left at 120° C. for 20 hours, the concentration of copper ions in the aqueous solution is 0 to 9.9 ppm.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 22, 2012
    Inventors: Yuta KIMURA, Yasushi INOUE, Takeshi MATSUMURA
  • Patent number: 8293613
    Abstract: An embodiment of a semiconductor device includes a semiconductor substrate, a first insulating layer formed over the semiconductor substrate, and a first semiconductor layer formed over the first insulation layer. At least one gettering region is formed in at least one of the first insulating layer and the first semiconductor layer. The gettering region includes a plurality of gettering sites, and at least one gettering site includes one of a precipitate, a dispersoid, an interface with the dispersoid, a stacking fault and a dislocation.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: October 23, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Soo Park, Young-Nam Kim, Young-Sam Lim, Gi-Jung Kim, Pil-Kyu Kang
  • Patent number: 8273638
    Abstract: Provided is a thin film transistor that may be manufactured using Metal Induced Crystallization (MIC) and method for fabricating the same. Also provided is an active matrix flat panel display using the thin film transistor, which may be created by forming a crystallization inducing metal layer below a buffer layer and diffusing the crystallization inducing metal layer. The thin film transistor may include a crystallization inducing metal layer formed on an insulating substrate, a buffer layer formed on the crystallization inducing metal layer, and an active layer formed on the buffer layer and including source/drain regions, and including polycrystalline silicon crystallized by the MIC process.
    Type: Grant
    Filed: January 2, 2008
    Date of Patent: September 25, 2012
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Jae-Bon Koo, Sang-Gul Lee
  • Publication number: 20120205821
    Abstract: Disclosed embodiments include external gettering provided by electronic packaging. An external gettering element for a semiconductor substrate, which may be incorporated as part of an electronic packaging for the structure, is disclosed. Semiconductor structures and stacked semiconductor structures including an external gettering element are also disclosed. An encapsulation mold compound providing external gettering is also disclosed. Methods of fabricating such devices are also disclosed.
    Type: Application
    Filed: February 10, 2011
    Publication date: August 16, 2012
    Inventors: Michael Tan, Cheng P. Pour
  • Patent number: 8227299
    Abstract: A method for removing impurities from at least one semiconductor device layer during manufacturing of a semiconductor device is disclosed. The semiconductor device layer has a compound semiconductor material and/or germanium. Each heating process performed during the manufacturing of the semiconductor device after provision of the semiconductor device layer has a low thermal budget determined by temperatures equal to or lower than about 900° C. and time periods equal to or lower than about 5 minutes. In one aspect, the method includes providing a germanium gettering layer with a higher solubility for the impurities than the semiconductor device layer. The germanium gettering layer is provided at least partly in direct or indirect contact with the at least one semiconductor device layer, such that impurities can diffuse from the at least one semiconductor device layer to the germanium gettering layer.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: July 24, 2012
    Assignees: IMEC, Umicore
    Inventors: Eddy Simoen, Jan Vanhellemont
  • Publication number: 20120164818
    Abstract: Disclosed is a process for cleaning a wafer having an uneven pattern at its surface. The process includes at least: a step of cleaning the wafer; a step of substituting a cleaning liquid retained in recessed portions of the wafer with a water-repellent liquid chemical after cleaning; and a step of drying the wafer. The process is characterized in that the cleaning liquid has a boiling point of 55 to 200° C., and characterized in that the water-repellent liquid chemical used for the substitution has a temperature of not lower than 40° C. and lower than a boiling point of the water-repellent liquid chemical thereby imparting water repellency at least to surfaces of the recessed portions. With this process, it is possible to provide a cleaning process for improving the cleaning step that tends to induce a pattern collapse.
    Type: Application
    Filed: February 22, 2011
    Publication date: June 28, 2012
    Applicant: Central Glass Company, Limited
    Inventors: Soichi KUMON, Takashi SAIO, Shinobu ARATA, Masanori SAITO, Hidehisa NANAI, Yoshinori AKAMATSU
  • Patent number: 8207048
    Abstract: Method for producing nanostructures comprising: a step of providing a substrate (100) having a buried barrier layer (2) and above said barrier layer (2) a crystalline film (5) provided with a network of crystalline defects and/or stress fields (12) in a crystalline zone (13), one or several steps of attacking the substrate (100), of which a preferential attack either of the crystalline defects and/or the stress fields, or the crystalline zone (13) between the crystalline defects and/or the stress fields, said attack steps enabling the barrier layer (2) to be laid bared locally and protrusions (7) to be formed on a nanometric scale, separated from each other by hollows (7.1) having a base located in the barrier layer, the protrusions leading to nanostructures (7, 8).
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: June 26, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Franck Fournel, Hubert Moriceau, Chrystel Deguet
  • Publication number: 20120149175
    Abstract: A method of cleaning a SiC semiconductor includes the steps of forming an oxide film at the surface of a SiC semiconductor, and removing the oxide film. At the step of forming an oxide film, an oxide film is formed using ozone water having a concentration greater than or equal to 30 ppm. The forming step preferably includes the step of heating at least one of the surface of the SiC semiconductor and the ozone water. Thus, there can be obtained a method of cleaning a SiC semiconductor that can exhibit cleaning effect on the SiC semiconductor.
    Type: Application
    Filed: February 25, 2011
    Publication date: June 14, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Keiji Wada, Takeyoshi Masuda, Tomihito Miyazaki, Toru Hiyoshi, Satomi Itoh, Hiromu Shiomi
  • Publication number: 20120146024
    Abstract: At least one exemplary embodiment is directed to a method of forming a multilayered Bettering structure that can be used to control wafer warpage.
    Type: Application
    Filed: December 13, 2010
    Publication date: June 14, 2012
    Inventors: David Lysacek, Jana Vojtechovska, Lubomir Dornak, Petr Kostelnik, Lukas Valek, Petr Panek
  • Patent number: 8187954
    Abstract: The present invention provides a method for manufacturing a silicon single crystal wafer, in which a silicon single crystal wafer that is fabricated based on a Czochralski method and has an entire plane in a radial direction formed of an N region is subjected to a rapid thermal annealing in an oxidizing atmosphere, an oxide film formed in the rapid thermal annealing in the oxidizing atmosphere is removed, and then a rapid thermal annealing is carried out in a nitriding atmosphere, an Ar atmosphere, or a mixed atmosphere of these atmospheres. As a result, there can be provided the manufacturing method that can inexpensively manufacture a silicon single crystal wafer both in which a DZ layer is formed in a wafer surface layer to provide excellent device characteristics and in which an oxide precipitate functioning as a gettering site can be sufficiently formed in a bulk region.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: May 29, 2012
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Yoshinori Hayamizu, Hiroyasu Kikuchi
  • Patent number: 8173523
    Abstract: To provide a method of removing a heavy metal contained in a thinned semiconductor substrate. A method of removing a heavy metal in a semiconductor substrate of the present invention comprises: attaching, to a rear surface of the semiconductor substrate, a material that lowers a potential barrier of the rear surface of the semiconductor substrate, on a front surface of which a circuit is to be formed or is formed; applying a thermal treatment to the semiconductor substrate under a condition based on a thickness and a resistivity of the semiconductor substrate; and, depositing the heavy metal in the semiconductor substrate on the rear surface.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: May 8, 2012
    Assignee: Sumco Corporation
    Inventors: Noritomo Mitsugi, Masataka Hourai, Shuichi Samata, Kiyoshi Nagai, Kei Matsumoto
  • Patent number: 8168467
    Abstract: The present invention provides improved solar cells. This patent teaches a particularly efficient method of device manufacture based on incorporating the solar cell fabrication into the widely used, high temperature, Float Glass manufacture process.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: May 1, 2012
    Inventors: James P Campbell, Harry R Campbell, Ann B Campbell, Joel F Farber
  • Patent number: 8148192
    Abstract: The present invention provides improved devices such as transparent solar cells. This patent teaches a particularly efficient method of device manufacture based on incorporating the solar cell fabrication into the widely used, high temperature, Float Glass manufacture process.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: April 3, 2012
    Inventors: James P Campbell, Harry R Campbell, Ann B Campbell, Joel F Farber
  • Patent number: 8143142
    Abstract: A method of fabricating an epi-wafer includes providing a wafer including boron by cutting a single crystal silicon ingot, growing an insulating layer on one surface of the wafer, performing thermal treatment of the wafer, removing the insulating layer formed on one surface of the wafer, mirror-surface-grinding one surface of the wafer, and growing an epitaxial layer on one surface of the wafer and forming a high-density boron layer within the wafer that corresponds to the interface between the wafer and the epitaxial layer.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: March 27, 2012
    Assignee: SAMSUNG Electronics Co., Ltd.
    Inventors: Young-Soo Park, Gi-Jung Kim, Won-Je Park, Jae-Sik Bae
  • Patent number: 8124502
    Abstract: A semiconductor device manufacturing method is provided, including: providing a semiconductor substrate, forming on the semiconductor substrate a layer including a semiconductor compound and a dope additive, and thereafter forming an emitter region and gettering impurities by annealing the semiconductor substrate including the layer.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: February 28, 2012
    Assignee: Applied Materials, Inc.
    Inventor: Rafel Ferre i Tomas
  • Patent number: 8120155
    Abstract: A MEMS device is packaged in a process which hydrogen (H) deuterium (D) for reduced stiction. H is exchanged with D by exposing the MEMS device with a deuterium source, such as deuterium gas or heavy water vapor, optionally with the assistance of a direct or downstream plasma.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: February 21, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Earl V. Atnip, Simon Joshua Jacobs
  • Publication number: 20120034761
    Abstract: Embodiments of the present invention generally relate to methods for removing contaminants and native oxides from substrate surfaces. The methods generally include exposing a substrate having an oxide layer thereon to an oxidizing source. The oxidizing source oxidizes an upper portion of the substrate beneath the oxide layer to form an oxide layer having an increased thickness. The oxide layer with the increased thickness is then removed to expose a clean surface of the substrate. The removal of the oxide layer generally includes removal of contaminants present in and on the oxide layer, especially those contaminants present at the interface of the oxide layer and the substrate. An epitaxial layer may then be formed on the clean surface of the substrate.
    Type: Application
    Filed: July 6, 2011
    Publication date: February 9, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Satheesh Kuppurao, Manish Hemkar, Vinh Tran, Yihwan Kim
  • Patent number: 8088670
    Abstract: When manufacturing a bonded substrate using an insulator substrate as a handle wafer, there is provided a method for manufacturing a bonded substrate which can be readily removed after carried and after mounted by roughening a back surface of the bonded substrate (corresponding to a back surface of the insulator substrate) and additionally whose front surface can be easily identified like a process of a silicon semiconductor wafer in case of the bonded substrate using a transparent insulator substrate as a handle wafer. There is provided a method for manufacturing a bonded substrate in which an insulator substrate is used as a handle wafer and a donor wafer is bonded to a front surface of the insulator substrate, the method comprises at least that a sandblast treatment is performed with respect to a back surface of the insulator substrate.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: January 3, 2012
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Shoji Akiyama, Yoshihiro Kubota, Atsuo Ito, Kouichi Tanaka, Makoto Kawai, Yuuji Tobisaka
  • Publication number: 20110285004
    Abstract: Methods for protecting circuit device materials, optoelectronic devices, and caps using a reflowable getter are described. The methods, devices and caps provide advantages because they enable modification of the shape and activity of the getter after sealing of the device. Some embodiments of the invention provide a solid composition comprising a reactive material and a phase changing material. The combination of the reactive material and phase changing material is placed in the cavity of an electronic device. After sealing the device by conventional means (epoxy seal for example), the device is subjected to thermal or electromagnetic energy so that the phase changing material becomes liquid, and consequently: exposes the reactive material to the atmosphere of the cavity, distributes the getter more equally within the cavity, and provides enhanced protection of sensitive parts of the device by flowing onto and covering these parts, with a thin layer of material.
    Type: Application
    Filed: July 28, 2011
    Publication date: November 24, 2011
    Inventor: Pierre-Marc Allemand
  • Patent number: 8058174
    Abstract: A semiconductor processing component has an outer surface portion comprised of silicon carbide, the outer surface portion having a skin impurity level and a bulk impurity level. The skin impurity level is average impurity level from 0 nm to 100 nm of depth into the outer surface portion, the bulk impurity level is measured at a depth of at least 3 microns into the outer surface portion, and the skin impurity level is not greater than 80% of the bulk impurity level.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: November 15, 2011
    Assignee: CoorsTek, Inc.
    Inventors: Yeshwanth Narendar, Richard F. Buckley
  • Patent number: 8030184
    Abstract: An epitaxial wafer comprises a silicon substrate, a gettering epitaxial film formed thereon and containing silicon and carbon, and a main silicon epitaxial film formed on the gettering epitaxial film, in which the gettering epitaxial film has a given carbon atom concentration and carbon atoms are existent between its silicon lattices.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: October 4, 2011
    Assignee: Sumco Corporation
    Inventors: Naoshi Adachi, Tamio Motoyama
  • Patent number: 8026519
    Abstract: Systems and methods for forming a time-averaged line image having a relatively high amount of intensity uniformity along its length is disclosed. The method includes forming at an image plane a line image having a first amount of intensity non-uniformity in a long-axis direction and forming a secondary image that at least partially overlaps the primary image. The method also includes scanning the secondary image over at least a portion of the primary image and in the long-axis direction according to a scan profile to form a time-average modified line image having a second amount of intensity non-uniformity in the long-axis direction that is less than the first amount. For laser annealing a semiconductor wafer, the amount of line-image overlap for adjacent scans of a wafer scan path is substantially reduced, thereby increasing wafer throughput.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: September 27, 2011
    Assignee: Ultratech, Inc.
    Inventors: Serguei Anikitchev, James T. McWhirter, Joseph E. Gortych
  • Publication number: 20110227070
    Abstract: Provided herein are gettering members that include a monitor substrate and a conditioning layer thereon. Also provided herein are methods of forming gettering layers and methods of performing immersion lithography processes using the same.
    Type: Application
    Filed: March 18, 2011
    Publication date: September 22, 2011
    Inventors: Jin-Young Yoon, Hyun-Woo Kim, Chan Hwang, Yun-Kyeong Jang
  • Patent number: 8012289
    Abstract: The invention relates to a method of fabricating a release substrate produced from semiconductor materials, the method comprising creating a reversible connection between two substrate release layers characterized in that the reversible connection is formed by a connecting layer produced using a first material as the basis, the connecting layer further comprising a nanoparticle concentrating zone of a second material disposed to facilitate release of the substrate, the first and second materials being selected to maintain the bonding energy of the reversible connection substantially constant even when the substrate is exposed to heat treatment.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: September 6, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventors: Olivier Rayssac, Pierre Rayssac, legal representative, Gisèle Rayssac, legal representative, Takeshi Akatsu
  • Patent number: 8008166
    Abstract: The present invention generally provides apparatus and method for forming a clean and damage free surface on a semiconductor substrate. One embodiment of the present invention provides a system that contains a cleaning chamber that is adapted to expose a surface of substrate to a plasma cleaning process prior to forming an epitaxial layer thereon. In one embodiment, a method is employed to reduce the contamination of a substrate processed in the cleaning chamber by depositing a gettering material on the inner surfaces of the cleaning chamber prior to performing a cleaning process on a substrate. In one embodiment, oxidation and etching steps are repeatedly performed on a substrate in the cleaning chamber to expose or create a clean surface on a substrate that can then have an epitaxial placed thereon. In one embodiment, a low energy plasma is used during the cleaning step.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: August 30, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Errol Antonio C. Sanchez, Johanes Swenberg, David K. Carlson, Roisin L. Doherty
  • Patent number: 7993987
    Abstract: A method includes providing a substrate including a non-insulative, silicon-including region for silicidation, the substrate including one or more contaminants at a top surface thereof. A getter layer is deposited over the non-insulative, silicon-including region, the getter layer reacting with at least one of the one or more contaminants in the non-insulative, silicon-including region at approximately room temperature. The getter layer is removed, and siliciding of the non-insulative, silicon-including region is performed.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: August 9, 2011
    Assignee: International Business Machines Corporation
    Inventors: Randolph F. Knarr, Christian Lavoie, Ahmet S. Ozcan, Filippos Papadatos
  • Publication number: 20110186969
    Abstract: A semiconductor device and a method of fabricating a semiconductor device are disclosed. Embodiments of the invention use a photosensitive self-assembled monolayer to pattern the surface of a substrate into hydrophilic and hydrophobic regions, and an aqueous (or alcohol) solution of a dopant compound is deposited on the substrate surface. The dopant compound only adheres on the hydrophilic regions. After deposition, the substrate is coated with a very thin layer of oxide to cap the compounds, and the substrate is annealed at high temperatures to diffuse the dopant atoms into the silicon and to activate the dopant. In one embodiment, the method comprises providing a semiconductor substrate including an oxide surface, patterning said surface into hydrophobic and hydrophilic regions, depositing a compound including a dopant on the substrate, wherein the dopant adheres to the hydrophilic region, and diffusing the dopant into the oxide surface of the substrate.
    Type: Application
    Filed: February 3, 2010
    Publication date: August 4, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Devendra K. Sadana, Lidija Sekaric
  • Patent number: 7989306
    Abstract: Semiconductor structures and methods of forming semiconductor structures, and more particularly to structures and methods of forming SiGe and/or SiGeC buried layers for SOI/SiGe devices. An integrated structure includes discontinuous, buried layers having alternating Si and SiGe or SiGeC regions. The structure further includes isolation structures at an interface between the Si and SiGe or SiGeC regions to reduce defects between the alternating regions. Devices are associated with the Si and SiGe or SiGeC regions.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: August 2, 2011
    Assignee: International Business Machines Corporation
    Inventors: Xuefeng Liu, Robert M. Rassel, Steven H. Voldman
  • Patent number: 7989321
    Abstract: A method is provided that allows for maintaining a desired equivalent oxide thickness (EOT) by reducing the thickness of an interfacial layer in a gate structure. An interfacial layer is formed on a substrate, a gate dielectric layer such as, a high-k gate dielectric, is formed on the interfacial layer. A gettering layer is formed on the substrate overlying the interfacial layer. The gettering layer may function to getter oxygen from the interfacial layer such that the interfacial layer thickness is decreased and/or restricted from growth.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: August 2, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Hao Chen, Yong-Tian Hou, Peng-Fu Hsu, Kuo-Tai Huang, Donald Y. Chao, Cheng-Lung Hung
  • Publication number: 20110171814
    Abstract: A method for preparing a silicon epitaxial wafer that includes a silicon single crystal wafer sliced from a CZ silicon ingot doped with carbon in a concentration range of not less than 5×1015 atoms/cm3 and not more than 5×1017 atoms/cm3 and an epitaxial layer consisting of a silicon single crystal epitaxially grown on a front surface of the silicon single crystal wafer. A polycrystalline silicon layer having a thickness of not less than 0.5 ?m and not more than 1.5 ?m is formed on a back surface of the silicon single crystal wafer.
    Type: Application
    Filed: March 18, 2011
    Publication date: July 14, 2011
    Applicant: SUMCO CORPORATION
    Inventors: Shinsuke Sadamitsu, Masataka Hourai
  • Patent number: 7972942
    Abstract: Metal impurities of an upgraded metallurgical grade (UMG) silicon (Si) wafer are reduced. The UMG Si wafer having a 5N (99.999%) purity is chosen to grow a high-quality epitaxial Si thin film through atmospheric pressure chemical vapor deposition (APCVD). Through heat treating diffusion, the epitaxial Si film is used to form sink positions for the metal impurities in the UMG Si wafer. By using concentration gradient, temperature gradient and interface defect, individual and comprehensive effects are built for enhancing purity of the UMG Si wafer from 5N to 6N. Thus, a low-cost Si wafer can be fabricated for Si-based solar cell through a simple, fast and effective method.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: July 5, 2011
    Assignee: Atomic Energy Council-Institute of Nuclear Energy Research
    Inventor: Tsun-Neng Yang
  • Patent number: RE43450
    Abstract: An object of the present invention is to provide a technology of reducing a nickel element in the silicon film which is crystallized by using nickel. An extremely small amount of nickel is introduced into an amorphous silicon film which is formed on the glass substrate. Then this amorphous silicon film is crystallized by heating. At this time, the nickel element remains in the crystallized silicon film. Then an amorphous silicon film is formed on the surface of the silicon film crystallized with the action of nickel. Then the amorphous silicon film is further heat treated. By carrying out this heat treatment, the nickel element is dispersed from the crystallized silicon film into the amorphous silicon film with the result that the nickel density in the crystallized silicon film is lowered.
    Type: Grant
    Filed: October 6, 2003
    Date of Patent: June 5, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hisashi Ohtani, Akiharu Miyanaga, Satoshi Teramoto