Physical Stress Responsive Patents (Class 438/50)
-
Patent number: 8642986Abstract: An integrated circuit (IC) having a microelectromechanical system (MEMS) device buried therein is provided. The integrated circuit includes a substrate, a metal-oxide semiconductor (MOS) device, a metal interconnect, and the MEMS device. The substrate has a logic circuit region and a MEMS region. The MOS device is located on the logic circuit region of the substrate. The metal interconnect, formed by a plurality of levels of wires and a plurality of vias, is located above the substrate to connect the MOS device. The MEMS device is located on the MEMS region, and includes a sandwich membrane located between any two neighboring levels of wires in the metal interconnect and connected to the metal interconnect.Type: GrantFiled: September 23, 2009Date of Patent: February 4, 2014Assignee: United Microelectronics Corp.Inventors: Tzung-Han Tan, Bang-Chiang Lan, Ming-I Wang, Tzung-I Su, Chien-Hsin Huang, Hui-Min Wu, Chao-An Su, Min Chen, Meng-Jia Lin
-
Patent number: 8642370Abstract: A process of forming a MEMS device with a device cavity underlapping an overlying dielectric layer stack having an etchable sublayer over an etch-resistant lower portion, including: etching through at least the etchable sublayer of the overlying dielectric layer stack in an access hole to expose a lateral face of the etchable sublayer, covering exposed surfaces of the etchable sublayer by protective material, and subsequently performing a cavity etch. A cavity etch mask may cover the exposed surfaces of the etchable sublayer. Alternatively, protective sidewalls may be formed by an etchback process to cover the exposed surfaces of the etchable sublayer. Alternatively, the exposed lateral face of the etchable sublayer may be recessed by an isotropic etch, than isolated by a reflow operation which causes edges of an access hole etch mask to drop and cover the exposed lateral face of the etchable sublayer.Type: GrantFiled: March 5, 2012Date of Patent: February 4, 2014Assignee: Texas Instruments IncorporatedInventors: Ricky Alan Jackson, Karen Hildegard Ralston Kirmse, Kandis Meinel
-
Patent number: 8643129Abstract: A micro-electrical-mechanical device comprises: a transducer arrangement having at least a membrane being mounted with respect to a substrate; and electrical interface means for relating electrical signals to movement of the membrane; in which the transducer arrangement comprises stress alleviating formations which at least partially decouple the membrane from expansion or contraction of the substrate.Type: GrantFiled: March 20, 2007Date of Patent: February 4, 2014Assignee: Wolfson Microelectronics plcInventors: Richard Ian Laming, Mark Begbie
-
Patent number: 8643125Abstract: A structure and a process for a microelectromechanical system (MEMS)-based sensor are provided. The structure for a MEMS-based sensor includes a substrate chip. A first insulating layer covers a top surface of the substrate chip. A device layer is disposed on a top surface of the first insulating layer. The device layer includes a periphery region and a sensor component region. The periphery region and a sensor component region have an air trench therebetween. The component region includes an anchor component and a moveable component. A second insulating layer is disposed on a top surface of the device layer, bridging the periphery region and a portion of the anchor component. A conductive pattern is disposed on the second insulating layer, electrically connecting to the anchor component.Type: GrantFiled: December 15, 2011Date of Patent: February 4, 2014Assignee: Industrial Technology Research InstituteInventors: Lung-Tai Chen, Shih-Chieh Lin, Yu-Wen Hsu
-
Patent number: 8643127Abstract: A sensor device and a method of forming comprises a die pad receives a sensor device, such as a MEMS device. The MEMS device has a first coefficient of thermal expansion (CTE). The die pad is made of a material having a second CTE compliant with the first CTE. The die pad includes a base and a support structure with a CTE compliant with the first and second CTE. The die pad has a support structure that protrudes from a base. The support structure has a height and wall thickness which minimize forces felt by the die pad and MEMS device when the base undergoes thermal expansion or contraction forces from a header.Type: GrantFiled: August 21, 2008Date of Patent: February 4, 2014Assignee: S3C, Inc.Inventors: John Dangtran, Roger Horton
-
Publication number: 20140026670Abstract: A method for manufacturing an integrated circuit includes forming in a substrate a measuring circuit sensitive to mechanical stresses and configured to supply a measurement signal representative of mechanical stresses exerted on the measuring circuit. The measuring circuit is positioned such that the measurement signal is also representative of mechanical stresses exerted on a functional circuit of the integrated circuit. A method of using the integrated circuit includes determining from the measurement signal the value of a parameter of the functional circuit predicted to mitigate an impact of the variation in mechanical stresses on the operation of the functional circuit, and supplying the functional circuit with the determined value of the parameter.Type: ApplicationFiled: July 29, 2013Publication date: January 30, 2014Applicant: STMicroelectronics (Rousset) SASInventors: Pascal Fornara, Christian Rivero
-
Patent number: 8637943Abstract: An integrated multi-axis mechanical device and integrated circuit system. The integrated system can include a silicon substrate layer, a CMOS device region, four or more mechanical devices, and a wafer level packaging (WLP) layer. The CMOS layer can form an interface region, on which any number of CMOS and mechanical devices can be configured. The mechanical devices can include MEMS devices configured for multiple axes or for at least a first direction. The CMOS layer can be deposited on the silicon substrate and can include any number of metal layers and can be provided on any type of design rule. The integrated MEMS devices can include, but not exclusively, any combination of the following types of sensors: magnetic, pressure, humidity, temperature, chemical, biological, or inertial. Furthermore, the overlying WLP layer can be configured to hermetically seal any number of these integrated devices.Type: GrantFiled: January 2, 2011Date of Patent: January 28, 2014Assignee: mCube Inc.Inventor: Xiao “Charles” Yang
-
Patent number: 8637383Abstract: Methods of fabricating semiconductor structures include forming a plurality of openings extending through a semiconductor material and at least partially through a metal material and deforming the metal material to relax a remaining portion of the semiconductor material. The metal material may be deformed by exposing the metal material to a temperature sufficient to alter (i.e., increase) its ductility. The metal material may be formed from one or more of hafnium, zirconium, yttrium, and a metallic glass. Another semiconductor material may be deposited over the remaining portions of the semiconductor material, and a portion of the metal material may be removed from between each of the remaining portions of the semiconductor material. Semiconductor structures may be formed using such methods.Type: GrantFiled: December 23, 2010Date of Patent: January 28, 2014Assignee: SoitecInventor: Christiaan J. Werkhoven
-
Publication number: 20140024160Abstract: An integrated circuit structure includes a triple-axis accelerometer, which further includes a proof-mass formed of a semiconductor material; a first spring formed of the semiconductor material and connected to the proof-mass, wherein the first spring is configured to allow the proof-mass to move in a first direction in a plane; and a second spring formed of the semiconductor material and connected to the proof-mass. The second spring is configured to allow the proof-mass to move in a second direction in the plane and perpendicular to the first direction. The triple-axis accelerometer further includes a conductive capacitor plate including a portion directly over, and spaced apart from, the proof-mass, wherein the conductive capacitor plate and the proof-mass form a capacitor; an anchor electrode contacting a semiconductor region; and a transition region connecting the anchor electrode and the conductive capacitor plate, wherein the transition region is slanted.Type: ApplicationFiled: January 28, 2013Publication date: January 23, 2014Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
-
Publication number: 20140021443Abstract: A nano resonator includes a substrate, a first insulating layer disposed on the substrate, a first source disposed on the first insulating layer at a first position, a first drain disposed on the first insulating layer at a second position spaced apart from the first position so that the first drain faces the first source, a first nano-wire channel having a first end connected to the first source and a second end connected to the first drain, and having a doping type and a doping concentration that are identical to a doping type and a doping concentration of the first source and the first drain, and a second nano-wire channel disposed at a predetermined distance from the first nano-wire channel in a direction perpendicular to the substrate or a direction parallel to the substrate.Type: ApplicationFiled: March 18, 2013Publication date: January 23, 2014Applicant: Samsung Electronics Co., Ltd.Inventors: Jie Ai Yu, Duck Hwan Kim, In Sang Song, Jing Cui
-
Publication number: 20140021561Abstract: A high temperature micro-glassblowing process and a novel inverted-wineglass architecture that provides self-aligned stem structures. The fabrication process involves the etching of a fused quartz substrate wafer. A TSG or fused quartz device layer is then bonded onto the fused quartz substrate, creating a trapped air pocket or cavity between the substrate and the TSG device layer. The substrate and TSG device layer 14 are then heated at an extremely high temperature of approximately 1700° C., forming an inverted wineglass structure. Finally, the glassblown structure is cut or etched from the substrate to create a three dimensional wineglass resonator micro-device. The inverted wineglass structure may be used as a high performance resonator for use as a key element in precision clock resonators, dynamic MEMS sensors, and MEMS inertial sensors.Type: ApplicationFiled: March 15, 2013Publication date: January 23, 2014Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIAInventors: Alexander A. Trusov, Doruk Senkal, Andrei M. Shkel
-
Patent number: 8633048Abstract: A fabrication method of a package structure having MEMS elements includes: disposing a plate on top of a wafer having MEMS elements and second alignment keys; cutting the plate to form therein a plurality of openings exposing the second alignment keys; performing a wire bonding process and disposing block bodies corresponding to the second alignment keys, respectively; forming an encapsulant and partially removing the encapsulant and the block bodies from the top of the encapsulant; and aligning through the second alignment keys so as to form on the encapsulant a plurality of metal traces. The present invention eliminates the need to form through holes in a silicon substrate as in the prior art so as to reduce the fabrication costs. Further, since the plate only covers the MEMS elements and the encapsulant is partially removed, the overall thickness and size of the package structure are reduced.Type: GrantFiled: December 8, 2011Date of Patent: January 21, 2014Assignee: Siliconware Precision Industries Co., Ltd.Inventors: Chen-Han Lin, Hong-Da Chang, Cheng-Hsiang Liu, Hsin-Yi Liao, Shih-Kuang Chiu
-
Publication number: 20140018126Abstract: A technique capable of maintaining the filter characteristics of a transmitting filter and a receiving filter by reducing the influences of heat from the power amplifier given to the transmitting filter and the receiving filter as small as possible in the case where the transmitting filter and the receiving filter are formed on the same semiconductor substrate together with the power amplifier in a mobile communication equipment typified by a mobile phone is provided. A high heat conductivity film HCF is provided on a passivation film PAS over the entire area of a semiconductor substrate 1S including an area AR1 on which an LDMOSFET is formed and an area AR2 on which a thin-film piezoelectric bulk wave resonator BAW is formed. The heat mainly generated in the LDMOSFET is efficiently dissipated in all directions by the high heat conductivity film HCF formed on the surface of the semiconductor substrate 1S.Type: ApplicationFiled: March 8, 2012Publication date: January 16, 2014Applicant: RENESAS ELECTRONICS CORPORATIONInventors: Kengo Asai, Atsushi Isobe
-
Publication number: 20140017842Abstract: Methods for forming an enclosed liquid metal (LM) drop inside a sealed cavity by formation of LM components as solid LM component layers and reaction of the solid LM component layers to form the LM drop. In some embodiments, the cavity has boundaries defined by layers or features of a microelectronics (e.g. VLSI-CMOS) or MEMS technology. In such embodiments, the methods comprise implementing an initial microelectronics or MEMS process to form the layers or features and the cavity, sequential or side by side formation of solid LM component layers in the cavity, sealing of the cavity to provide a closed space and reaction of the solid LM components to form a LM alloy in the general shape of a drop. In some embodiments, nanometric reaction barriers may be inserted between the solid LM component layers to lower the LM eutectic formation temperature.Type: ApplicationFiled: July 31, 2012Publication date: January 16, 2014Applicant: Kadoor Microelectronics Ltd.Inventors: Oren Aharon, Shai Feldman
-
Patent number: 8627720Abstract: A semiconductor device includes a semiconductor substrate and a semiconductor mass element configured to move in response to an applied acceleration. The mass element is defined by trenches etched into the semiconductor substrate and a cavity below the mass element. The semiconductor device includes a sensing element configured to sense movement of the mass element.Type: GrantFiled: September 12, 2012Date of Patent: January 14, 2014Assignee: Infineon Technologies AGInventors: Thoralf Kautzsch, Bernhard Winkler, Dirk Meinhold, Ben Rosam, Bernd Foeste, Andreas Thamm, Boris Binder
-
Publication number: 20140007705Abstract: A microelectromechanical (“MEMS”) load sensor device for measuring a force applied by a human user is described herein. In one aspect, the load sensor device has a contact surface in communication with a touch surface which communicates forces originating on the touch surface to a deformable membrane, on which load sensor elements are arranged, such that the load sensor device produces a signal proportional to forces imparted by a human user along the touch surface. In another aspect, the load sensor device has an overload protection ring to protect the load sensor device from excessive forces. In another aspect, the load sensor device has embedded logic circuitry to allow a microcontroller to individually address load sensor devices organized into an array. In another aspect, the load sensor device has electrical and mechanical connectors such as solder bumps designed to minimize cost of final component manufacturing.Type: ApplicationFiled: July 3, 2013Publication date: January 9, 2014Inventors: Ian Campbell, Ryan Diestelhorst
-
Patent number: 8624337Abstract: A resonator body has an inversion gate, an accumulation gate, and a center region. The resonator body also has a source contact coupled to the center region and a drain contact coupled to the center region. The resonator body further has a first dielectric layer coupled between the inversion gate and the center region. The resonator body also has a second dielectric layer coupled between the accumulation gate and the center region. A resonant body transistor is also disclosed. The resonant body transistor has an inversion gate electrode, an accumulation gate electrode, a source electrode, a drain electrode, and a plurality of anchor beams. The resonant body transistor also has a resonator body coupled-to and suspended-from the inversion gate electrode, the accumulation gate electrode, the source electrode, and the drain electrode by the plurality of anchor beams. A resonant body oscillator is also disclosed.Type: GrantFiled: December 11, 2008Date of Patent: January 7, 2014Assignee: Cornell UniversityInventors: Dana Weinstein, Sunil A. Bhave
-
Publication number: 20140001577Abstract: A method for producing a MEMS device having improved charge elimination characteristics includes providing a substrate having one or more layers, and applying a first charge elimination layer onto at least one portion of one given layer of the substrate. The method may then (1) apply a sacrificial layer onto the first charge elimination layer, (2) apply a second charge elimination layer onto at least a portion of the sacrificial layer, and (3) deposit a movable layer onto at least a portion of the second charge elimination layer. To form a structure within the movable layer the method may etch the movable layer. The method may then etch the sacrificial layer to release the structure.Type: ApplicationFiled: June 28, 2012Publication date: January 2, 2014Applicant: ANALOG DEVICES, INC.Inventors: Fang Liu, Kuang L. Yang
-
Publication number: 20140001583Abstract: An apparatus including a die including a first side and an opposite second side including a device side with contact points and lateral sidewalls defining a thickness of the die; a build-up carrier coupled to the second side of the die, the build-up carrier including a plurality of alternating layers of conductive material and insulating material, wherein at least one of the layers of conductive material is coupled to one of the contact points of the die; and at least one device within the build-up carrier disposed in an area void of a layer of patterned conductive material. A method and an apparatus including a computing device including a package including a microprocessor are also disclosed.Type: ApplicationFiled: June 30, 2012Publication date: January 2, 2014Applicant: Intel CorporationInventors: Weng Hong Teh, Zuoming Ming Zhao, Danny R. Singh
-
Publication number: 20130341738Abstract: A method for manufacturing a component having an electrical through-connection includes: providing a semiconductor substrate having a front side and a back side opposite from the front side; producing, on the front side of the semiconductor substrate, an insulating trench which annularly surrounds a contact area; introducing an insulating material into the insulating trench; producing a contact hole on the front side of the semiconductor substrate by removing the semiconductor material surrounded by the insulating trench in the contact area; and depositing a metallic material in the contact hole.Type: ApplicationFiled: June 19, 2013Publication date: December 26, 2013Applicant: ROBERT BOSCH GMBHInventors: Jochen REINMUTH, Jens FREY, Yvonne BERGMANN
-
Publication number: 20130341740Abstract: Pressure sensors having components with reduced variations due to stresses caused by various layers and components that are included in the manufacturing process. In one example, a first stress in a first direction causes a variation in a component. A second stress in a second direction is applied, thereby reducing the variation in the component. The first and second stresses may be caused by a polysilicon layer, while the component may be a resistor in a Wheatstone bridge.Type: ApplicationFiled: March 26, 2013Publication date: December 26, 2013Applicant: Silicon Microstructures, Inc.Inventor: Silicon Microstructures, Inc.
-
Publication number: 20130340525Abstract: An integrated inertial sensor and pressure sensor may include a first substrate including a first surface and a second surface; at least one or more conductive layers, formed on the first surface of the first substrate; a movable sensitive element, formed by using a first region of the first substrate; a second substrate and a third substrate, the second substrate being coupled to a surface of the conductive layer, the third substrate being coupled to the second surface of the first substrate in which the movable sensitive element of the inertial sensor is formed, and the third substrate and the second substrate are respectively arranged on opposite sides of the movable sensitive element; and a sensitive film of the pressure sensor, including at least a second region of the first substrate, or including at least one of the conductive layers on the second region of the first substrate.Type: ApplicationFiled: February 23, 2012Publication date: December 26, 2013Applicant: MEMSEN ELECTRONICS INCInventor: Lianjun Liu
-
Publication number: 20130340526Abstract: A MEMS inertial sensor, may include a movable sensitive element; and second substrate and a third substrate. The movable sensitive element may be formed by using a first substrate which may be formed of a monocrystalline semiconductor material. The first substrate may include a first surface and a second surface which are opposite to each other. One or more conductive layers may be formed on the first surface of the first substrate The second substrate may be coupled to a surface of the one or more conductive layer on the first substrate. The third substrate may be coupled to the second surface of the first substrate. The third substrate and the second substrate are respectively arranged on two opposite sides of the movable sensitive element.Type: ApplicationFiled: February 23, 2012Publication date: December 26, 2013Applicant: MEMSEN ELECTRONICS INCInventor: Lianjun Liu
-
Patent number: 8614492Abstract: Stress sensors and stress sensor integrated circuits using one or more nanowire field effect transistors as stress-sensitive elements, as well as design structures for a stress sensor integrated circuit embodied in a machine readable medium for designing, manufacturing, or testing an integrated circuit, and related methods thereof. The stress sensors and stress sensor integrated circuits include one or more pairs of gate-all-around field effect transistors, which include one or more nanowires as a channel region. The nanowires of each of the field effect transistors are configured to change in length in response to a mechanical stress transferred from an object. A voltage output difference from the field effect transistors indicates the magnitude of the transferred mechanical stress.Type: GrantFiled: October 26, 2009Date of Patent: December 24, 2013Assignee: International Business Machines CorporationInventors: Andres Bryant, Oki Gunawan, Shih-Hsien Lo, Jeffrey W Sleight
-
Patent number: 8614110Abstract: A method is provided to create a proof mass supported by a dual-suspension system for Micro-Electro-Mechanical Systems (MEMS) using crystalline silicon. The pre-fabricated cavity method decreases the subsequent processing required to create the final mechanical structure including the proof mass and dual-suspension system. During processing, the proof mass may be connected to a support structure via tethered regions, which are removed subsequent to proof mass formation.Type: GrantFiled: July 21, 2010Date of Patent: December 24, 2013Assignee: The United States of America as represented by the Secretary of the NavyInventors: Richard Waters, Steve Fanelli
-
Publication number: 20130334532Abstract: In one example, a stress gauge for an integrated circuit product is disclosed that includes a layer of insulating material, a body positioned at least partially in the layer of insulating material, wherein the body is comprised of a material having a piezoelectric constant of at least about 0.1 pm/V, and a plurality of spaced apart conductive contacts, each of which is conductively coupled to the body.Type: ApplicationFiled: June 18, 2012Publication date: December 19, 2013Applicant: GLOBALFOUNDRIES INC.Inventors: Xunyuan Zhang, Vivian W. Ryan
-
Publication number: 20130334622Abstract: A micromechanical device, in particular a sensor device, and a method for manufacturing a micromechanical device are provided. The micromechanical device has a housing, the housing including a first cavity, and the housing including a second cavity that is separate from the first cavity. The micromechanical device is configured in such a way that a predetermined first gas pressure prevails in the first cavity, and a predetermined second gas pressure which is reduced compared to the first gas pressure prevails in the second cavity. A heating element is situated in the area of the second cavity. The micromechanical device has a printed conductor, the heating element being heatable with the aid of the printed conductor.Type: ApplicationFiled: June 13, 2013Publication date: December 19, 2013Applicant: Robert Bosch GmbHInventors: Julian GONSKA, Jochen REINMUTH, Kathrin GUTSCHE
-
Publication number: 20130335122Abstract: An electronic device includes: a base member; a conductive film including a first end portion and a second end portion fixed to the base member, the conductive film being movable in a lateral direction of the base member between the first end portion and the second end portion; a first driving electrode, which is provided in the base member at a position opposed to a first main surface of the conductive film, and to which a first driving voltage is applied; a second driving electrode, which is provided in the base member at a position opposed to a second main surface of the conductive film, and to which a second driving voltage is applied; and a terminal provided in the base member at a position where the terminal enables to come into contact with the second main surface of the conductive film.Type: ApplicationFiled: August 16, 2013Publication date: December 19, 2013Applicant: FUJITSU LIMITEDInventors: Takeaki SHIMANOUCHI, Osamu TOYODA, Satoshi UEDA
-
Patent number: 8610997Abstract: As for the method that modulates optical path length by the position of reflection plane of light, the movement of the position-movable plate in micrometer-size electromechanical device can be restricted by the stopping plates placed above and below the edge of the position-movable plate, the distance between the stopping plates may be set depending on the desired amount in modulating the optical path length. The voltage differential in the device is operable to create electrostatic attraction, to perform transition movement of the position-movable plate between the stopping plates, the light reflector connected to the position-movable plate takes at least two states in positioning, enabling to modulate the optical path length of reflected light by the light reflector with high reproducibility and high accuracy.Type: GrantFiled: October 22, 2011Date of Patent: December 17, 2013Inventor: Toshiyuki Kaeriyama
-
Patent number: 8610223Abstract: Embodiments of embedded MEMS sensors and related methods are described herein. Other embodiments and related methods are also disclosed herein.Type: GrantFiled: July 27, 2011Date of Patent: December 17, 2013Assignee: Arizona Board of RegentsInventors: Narendra V. Lakamraju, Sameer M. Venugopal, Stephen M. Phillips, David R. Allee
-
Publication number: 20130330870Abstract: Micro-electromechanical system (MEMS) devices and methods of manufacture thereof are disclosed. In one embodiment, a MEMS device includes a semiconductive layer disposed over a substrate. A trench is disposed in the semiconductive layer, the trench with a first sidewall and an opposite second sidewall. A first insulating material layer is disposed over an upper portion of the first sidewall, and a conductive material disposed within the trench. An air gap is disposed between the conductive material and the semiconductive layer.Type: ApplicationFiled: November 26, 2012Publication date: December 12, 2013Applicant: INFINEON TECHNOLOGIES AGInventors: Karlheinz Mueller, Robert GRUENBERGER, WINKLER Bernhard
-
Patent number: 8604564Abstract: A semiconductor structure has embedded stressor material for enhanced transistor performance. The method of forming the semiconductor structure includes etching an undercut in a substrate material under one or more gate structures while protecting an implant with a liner material. The method further includes removing the liner material on a side of the implant and depositing stressor material in the undercut under the one or more gate structures.Type: GrantFiled: March 16, 2012Date of Patent: December 10, 2013Assignee: International Business Machine CorporationInventors: Xi Li, Viorel C. Ontalus
-
Patent number: 8603848Abstract: Provided are a three-dimensional (3D) MEMS structure and a method of manufacturing the same. The method of manufacturing the 3D MEMS structure having a floating structure includes depositing a first etch mask on a substrate, etching at least two regions of the first etch mask to expose the substrate, and forming at least one step in the etched region, partially etching the exposed region of the substrate using the first etch mask, and forming at least two grooves, depositing a second etch mask on a sidewall of the groove, and performing an etching process to connect lower regions of the at least two grooves to each other, and forming at least one floating structure.Type: GrantFiled: August 10, 2010Date of Patent: December 10, 2013Assignee: Electronics and Telecommunications Research InstituteInventor: Chang Han Je
-
Patent number: 8605920Abstract: A condenser microphone having a flexure hinge diaphragm and a method of manufacturing the same are provided. The method includes the steps of: forming a lower silicon layer and a first insulating layer; forming an upper silicon layer on the first insulating layer; forming sound holes by patterning the upper silicon layer; forming a second insulating layer and a conductive layer on the upper silicon layer; forming a passivation layer on the conductive layer; forming a sacrificial layer on the passivation layer; depositing a diaphragm on the sacrificial layer, and forming air holes passing through the diaphragm; forming electrode pads on the passivation layer and a region of the diaphragm; and etching the layers to form an air gap between the diaphragm and the upper silicon layer. Consequently, a manufacturing process may improve the sensitivity and reduce the size of the condenser microphone.Type: GrantFiled: March 8, 2013Date of Patent: December 10, 2013Assignee: Electronics and Telecommunications Research InstituteInventors: Hye Jin Kim, Sung Q Lee, Kang Ho Park, Jong Dae Kim
-
Publication number: 20130319138Abstract: A microelectromechanical sensor is configured to measure a force, a pressure, or the like. The sensor includes a substrate and a measuring element. The measuring element includes at least two electrically conductive regions, and at least one of the electrically conductive regions is at least partly connected to the substrate. The sensor also includes at least one changing region, and the changing region lies at least partly between the electrically conductive regions. The changing region is configured in a substantially electrically insulating manner in an unloaded state and in a substantially electrically conductive manner in a loaded state.Type: ApplicationFiled: September 21, 2011Publication date: December 5, 2013Applicant: Robert Bosch GmbHInventor: Tino Fuchs
-
Publication number: 20130320466Abstract: A capped micromachined accelerometer with a Q-factor of less than 2.0 is fabricated without encapsulating a high-viscosity gas with the movable mass of the micromachined accelerometer by providing small gaps between the movable mass and the substrate, and between the movable mass and the cap. The cap may be an silicon cap, and may be an ASIC smart cap.Type: ApplicationFiled: May 31, 2012Publication date: December 5, 2013Applicant: ANALOG DEVICES, INC.Inventors: Li Chen, Kuang L. Yang
-
Publication number: 20130313661Abstract: A method for processing a wafer having microelectromechanical system structures at the first main surface includes applying a masking material at the second main surface and structuring the masking material to obtain a plurality of masked areas and a plurality of unmasked areas at the second main surface. The method further includes anisotropically etching the wafer from the second main surface at the unmasked areas to form a plurality of recesses. The masking material is then removed at least at some of the masked areas to obtain previously masked areas. The method further includes anisotropically etching the wafer from the second main surface at the unmasked areas and the previously masked areas to increase a depth of the recesses and reduce a thickness of the wafer at the previously masked areas.Type: ApplicationFiled: May 24, 2012Publication date: November 28, 2013Applicant: INFINEON TECHNOLOGIES AGInventors: Thomas Grille, Ursula Hedenig, Martin Zgaga, Daniel Maurer
-
Patent number: 8592876Abstract: A micro-electro-mechanical system (MEMS), methods of forming the MEMS and design structures are provided. The method comprises forming a coplanar waveguide (CPW) comprising a signal electrode and a pair of electrodes on a substrate. The method comprises forming a first sacrificial material over the CPW, and a wiring layer over the first sacrificial material and above the CPW. The method comprises forming a second sacrificial material layer over the wiring layer, and forming insulator material about the first sacrificial material and the second sacrificial material. The method comprises forming at least one vent hole in the insulator material to expose portions of the second sacrificial material, and removing the first and second sacrificial material through the vent hole to form a cavity structure about the wiring layer and which exposes the signal line and pair of electrodes below the wiring layer. The vent hole is sealed with sealing material.Type: GrantFiled: January 3, 2012Date of Patent: November 26, 2013Assignee: International Business Machines CorporationInventors: Hanyi Ding, Qizhi Liu, Anthony K. Stamper
-
Publication number: 20130302933Abstract: A microelectromechanical system (MEMS) device and a method for fabricating the same are described. The method of the present invention includes the following steps. A substrate is provided, including a circuit region and a MEMS region separated from each other. An interconnection structure is formed on the substrate in the circuit region, and simultaneously a plurality of dielectric layers and a first electrode are formed on the substrate in the MEMS region. The first electrode includes at least two metal layers and a protection ring. The metal layers and the protection ring are formed in the dielectric layers. The protection ring connects two adjacent metal layers, so as to define an enclosed space between the two adjacent metal layers. A second electrode is formed on the first electrode. The dielectric layers outside the enclosed space in the MEMS region are removed to form a cavity between the electrodes.Type: ApplicationFiled: July 18, 2013Publication date: November 14, 2013Inventors: Tzung-Han TAN, Bang-Chiang Lan, Ming-I Wang, Chien-Hsin Huang, Meng-Jia Lin
-
Patent number: 8580597Abstract: A method for making a microelectronic device including, on a same substrate, at least one electro-mechanical component including a mobile structure of a monocrystalline semi-conductor material and a mechanism actuating and/or detecting the mobile structure, and with at least one transistor. The method a) provides a substrate including at least one first semi-conducting layer including at least one region in which a channel area of the transistor is provided, b) etches a second semi-conducting layer based on a given semi-conductor material, lying on an insulating layer placed on the first semi-conducting layer, to form at least one pattern of the mobile structure of the component in an area of monocrystalline semi-conductor material of the second semi-conducting layer, and at least one pattern of gate of the transistor on a gate dielectric area located facing the given region.Type: GrantFiled: March 26, 2010Date of Patent: November 12, 2013Assignee: Commissariat a l'Energie Atomique et aux Energies AlternativesInventors: Eric Ollier, Audrey Berthelot
-
Patent number: 8581357Abstract: A package including an electrical circuit may be produced in a more efficient manner when on a substrate including a plurality of electrical circuits the circuits are tested for their functionality and when the functional circuits are connected, by means of a frame enclosing the circuit on the surface of the substrate, to a second substrate whose surface area is smaller than that of the first substrate. The substrates are connected, by means of a second frame, which is adapted to the first frame and is located on the surface of the second substrate, such that the first and second frames lie one on top of the other. Subsequently, the functional packaged circuits may be singulated in a technologically simple manner.Type: GrantFiled: April 24, 2007Date of Patent: November 12, 2013Assignee: Fraunhofer-Gesellschft zur Foerderung der Angewandten Forschung e.V.Inventors: Holger Vogt, Jochen Bauer
-
Patent number: 8580596Abstract: The present invention relates to a method of forming a micro cavity having a micro electrical mechanical system (MEMS) in a process, such as a CMOS process. MEMS resonators are being intensively studied in many research groups and some first products have recently been released. This type of device offers a high Q-factor, small size, high level of integration and potentially low cost. These devices are expected to replace bulky quartz crystals in high-precision oscillators and may also be used as RF filters. The oscillators can be used in time-keeping and frequency reference applications such as RF modules in mobile phones, devices containing blue-tooth modules and other digital and telecommunication devices.Type: GrantFiled: April 10, 2009Date of Patent: November 12, 2013Assignee: NXP, B.V.Inventors: Petrus H. C. Magnee, Jan Jacob Koning, Jozef T. M. Van Beek
-
Publication number: 20130285164Abstract: According to one embodiment, a MEMS device comprises a first electrode fixed on a substrate, a second electrode formed above the first electrode to face the first electrode, and vertically movable, a second anchor portion formed on the substrate and configured to support the second electrode, and a second spring portion configured to connect the second electrode and the second anchor portion. The second spring portion is continuously formed from an upper surface of the second electrode to an upper surface of the second anchor portion, and has a flat lower surface.Type: ApplicationFiled: March 15, 2013Publication date: October 31, 2013Applicant: KABUSHIKI KAISHA TOSHIBAInventors: Tomohiro SAITO, Yohei SYUHAMA
-
Publication number: 20130285161Abstract: A semiconductor device is formed such that a semiconductor substrate of the device has a non-uniform thickness. A cavity is etched at a selected side of the semiconductor substrate, and the selected side is then fusion bonded to another substrate, such as a carrier substrate. After fusion bonding, the side of the semiconductor substrate opposite the selected side is ground to a defined thickness. Accordingly, the semiconductor substrate has a uniform thickness except in the area of the cavity, where the substrate is thinner. Devices that benefit from a thinner substrate, such as an accelerometer, can be formed over the cavity.Type: ApplicationFiled: January 25, 2013Publication date: October 31, 2013Inventors: Lisa H. Karlin, Hemant D. Desai, Kemiao Jia
-
Publication number: 20130285168Abstract: A MEMS inertial sensor and a method for manufacturing the same are provided. The method includes: depositing a first carbon layer on a semiconductor substrate; patterning the first carbon layer to form a fixed anchor bolt, an inertial anchor bolt and a bottom sealing ring; forming a contact plug in the fixed anchor bolt and a contact plug in the inertial anchor bolt; forming a first fixed electrode, an inertial electrode and a connection electrode on the first carbon layer, where the first fixed electrode and the inertial electrode constitute a capacitor; forming a second carbon layer on the first fixed electrode and the inertial electrode; and forming a sealing cap layer on the second carbon layer and the top sealing ring. Under an inertial force, only the inertial electrode may move, the fixed electrode will almost not move or vibrate, which improves the accuracy of the MEMS inertial sensor.Type: ApplicationFiled: April 25, 2013Publication date: October 31, 2013Applicant: Lexvu Opto Microelectronics Technology (Shanghai) Ltd.Inventor: Lexvu Opto Microelectronics Technology (Shanghai) Ltd.
-
Publication number: 20130285160Abstract: A microscale device comprises a patterned forest of vertically grown and aligned carbon nanotubes defining a carbon nanotube forest with the nanotubes having a height defining a thickness of the forest, the patterned forest defining a patterned frame that defines one or more components of a microscale device. A conformal coating of substantially uniform thickness at least partially coats the nanotubes, defining coated nanotubes and connecting adjacent nanotubes together, without substantially filling interstices between individual coated nanotubes. A metallic interstitial material infiltrates the carbon nanotube forest and at least partially fills interstices between individual coated nanotubes.Type: ApplicationFiled: October 22, 2012Publication date: October 31, 2013Applicant: Brigham Young UniversityInventor: Brigham Young University
-
Publication number: 20130285165Abstract: A manufacturing method for hybrid integrated components having a very high degree of miniaturization is provided, which hybrid integrated components each have at least two MEMS elements each having at least one assigned ASIC element. Two MEMS/ASIC wafer stacks are initially created independently of one another in that two ASIC substrates are processed independently of one another; a semiconductor substrate is mounted on the processed surface of each of the two ASIC substrates, and a micromechanical structure is subsequently created in each of the two semiconductor substrates. The two MEMS/ASIC wafer stacks are mounted on top of each other, MEMS on MEMS. Only subsequently are the components separated.Type: ApplicationFiled: April 18, 2013Publication date: October 31, 2013Applicant: ROBERT BOSCH GMBHInventors: Johannes CLASSEN, Heribert WEBER
-
Publication number: 20130285169Abstract: A method for producing an optical window device for a MEMS device, including applying a layer made of a transparent material onto a substrate having a recess, and deforming the layer so that it is folded and the deformed area of the layer forms an optical window.Type: ApplicationFiled: April 25, 2013Publication date: October 31, 2013Applicant: ROBERT BOSCH GMBHInventor: Stefan Pinter
-
Publication number: 20130285163Abstract: According to one embodiment, a MEMS element comprises a first electrode fixed on a substrate, and a second electrode arranged above the first electrode, facing the first electrode, and vertically movable. The second electrode includes a second opening portion that penetrates from an upper surface to a lower surface of the second electrode. The first electrode includes a first opening portion at a position corresponding to at least a part of the second opening portion, the first opening portion penetrating from an upper surface to a lower surface of the first electrode.Type: ApplicationFiled: March 13, 2013Publication date: October 31, 2013Applicant: KABUSHIKI KAISHA TOSHIBAInventors: Yuriko KATO, Hiroaki YAMAZAKI, Etsuji OGAWA, Takayuki MASUNAGA
-
Publication number: 20130285171Abstract: An environment-resistant module which provides both thermal and vibration isolation for a packaged micromachined or MEMS device is disclosed. A microplatform and a support structure for the microplatform provide the thermal and vibration isolation. The package is both hermetic and vacuum compatible and provides vertical feedthroughs for signal transfer. A micromachined or MEMS device transfer method is also disclosed that can handle a wide variety of individual micromachined or MEMS dies or wafers, in either a hybrid or integrated fashion. The module simultaneously provides both thermal and vibration isolation for the MEMS device using the microplatform and the support structure which may be fabricated from a thin glass wafer that is patterned to create crab-leg shaped suspension tethers or beams.Type: ApplicationFiled: June 28, 2013Publication date: October 31, 2013Inventors: Khalil Najafi, Sang-Hyun Lee, Sang Woo Lee