Thermally Responsive Patents (Class 438/54)
  • Patent number: 10122944
    Abstract: Various techniques are provided for implementing an infrared imaging system. In one example, a system includes a focal plane array (FPA). The FPA includes an array of infrared sensors adapted to image a scene. The FPA also includes a bias circuit adapted to provide a bias voltage to the infrared sensors. The bias voltage is selected from a range of approximately 0.2 volts to approximately 0.7 volts. The FPA also includes a read out integrated circuit (ROIC) adapted to provide signals from the infrared sensors corresponding to captured image frames. Other implementations are also provided.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: November 6, 2018
    Assignee: FLIR Systems, Inc.
    Inventors: Mark Nussmeier, Eric A. Kurth, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Patent number: 10121758
    Abstract: A bonding wire for a semiconductor device includes a Cu alloy core material and a Pd coating layer on a surface of the Cu alloy core material, and contains Ga and Ge of 0.011 to 1.2% by mass in total, which is able to increase bonding longevity of the ball bonded part in the high-temperature, high-humidity environment, and thus to improve the bonding reliability. The thickness of the Pd coating layer is preferably 0.015 to 0.150 ?m. When the bonding wire further contains one or more elements of Ni, Ir, and Pt in an amount, for each element, of 0.011 to 1.2% by mass, it is able to improve the reliability of the ball bonded part in a high-temperature environment at 175° C. or more. When an alloy skin layer containing Au and Pd is further formed on a surface of the Pd coating layer, wedge bondability improves.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: November 6, 2018
    Assignees: Nippon Micrometal Corporation, Nippon Steel & Sumikin Materials Co., Ltd.
    Inventors: Daizo Oda, Motoki Eto, Kazuyuki Saito, Teruo Haibara, Ryo Oishi, Takashi Yamada, Tomohiro Uno
  • Patent number: 10109781
    Abstract: A method for forming a unique, environmentally-friendly micron scale autonomous electrical power source is provided in a configuration that generates renewable energy for use in electronic systems, electronic devices and electronic system components. The configuration includes a first conductor with a facing surface conditioned to have a low work function, a second conductor with a facing surface having a comparatively higher work function, and a dielectric layer, not more than 200 nm thick, sandwiched between the respective facing surfaces of the first conductor and the second conductor. The autonomous electrical power source formed according to the disclosed method is configured to harvest minimal thermal energy from any source in an environment above absolute zero.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: October 23, 2018
    Assignee: Face International Corporation
    Inventor: Clark D Boyd
  • Patent number: 9852927
    Abstract: Two-dimensional (2D) transition-metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure-of-merit, the room-temperature photoluminescence quantum yield (QY) is extremely poor. The prototypical 2D material, MoS2 is reported to have a maximum QY of 0.6% which indicates a considerable defect density. We report on an air-stable solution-based chemical treatment by an organic superacid which uniformly enhances the photoluminescence and minority carrier lifetime of MoS2 monolayers by over two orders of magnitude. The treatment eliminates defect-mediated non-radiative recombination, thus resulting in a final QY of over 95% with a longest observed lifetime of 10.8±0.6 nanoseconds. Obtaining perfect optoelectronic monolayers opens the door for highly efficient light emitting diodes, lasers, and solar cells based on 2D materials.
    Type: Grant
    Filed: October 15, 2016
    Date of Patent: December 26, 2017
    Assignee: The Regents of the University of California
    Inventors: Matin Amani, Der-Hsien Lien, Daisuke Kiriya, James Bullock, Ali Javey
  • Patent number: 9752807
    Abstract: Disclosed is a reflector apparatus comprising a reflector and an array of thermoelectric heat pumps each having a first end proximal to and in thermal contact with the reflector and having a second end distal from the reflector, a lithography tool having such a reflector apparatus, and a method of using the same.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: September 5, 2017
    Assignee: ASML Netherlands B.V.
    Inventor: Andani Alhassan Osuman
  • Patent number: 9620699
    Abstract: An insulating substrate is prepared. In this substrate, plural via holes penetrating in a thickness direction are filled with a conductive paste. This paste is produced by adding an organic solvent to a powder of an, and by processing the power of the alloy to a paste. The substrate is then pressed from a front surface and a back surface of the substrate, while being heated. The conductive paste is solid-phase sintered and interlayer connecting members are formed. A front surface protective member is disposed on a front surface of the substrate and a back surface protective member is disposed on a back surface of the substrate, and a laminate is formed. The laminate is integrated by a lower pressure being applied while heating at a lower temperature, compared to the temperature and pressure in the process of forming the interlayer connecting members.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: April 11, 2017
    Assignee: DENSO CORPORATION
    Inventors: Eijirou Miyagawa, Keita Saitou, Yoshihiko Shiraishi, Yoshitaro Yazaki, Toshihisa Taniguchi, Atusi Sakaida
  • Patent number: 9543289
    Abstract: A manufacturing method of a semiconductor device includes: depositing a thin film semiconductor layer on a semiconductor substrate with an insulating film therebetween, the insulating film having been formed on a surface of the semiconductor substrate; ion-implanting first impurity ions into the thin film semiconductor layer under a condition where a range of the first impurity ions becomes smaller than a film thickness of the thin film semiconductor layer when being deposited; and selectively ion-implanting second impurity ions into the thin film semiconductor layer with a dose quantity more than a dose quantity of the first impurity ions, in which a diode for detecting temperature is formed by a region into which the first impurity ions have been implanted and a region into which the second impurity ions have been implanted in the thin film semiconductor layer.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: January 10, 2017
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Noriaki Yao, Hitoshi Abe
  • Patent number: 9437795
    Abstract: Provided are a thermoelectric device and a method of manufacturing the same. The method may include forming nanowires on a substrate, forming a barrier layer on the nanowires, forming a bulk layer on the barrier layer, forming a lower electrode under the substrate, and forming an upper electrode on the bulk layer.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: September 6, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Dong Suk Jun, Moon Gyu Jang, Won Chul Choi
  • Patent number: 9353445
    Abstract: Solid state thermoelectric energy conversion devices can provide electrical energy from heat flow, creating energy, or inversely, provide cooling through applying energy. Thick film methods are applied to fabricate thermoelectric device structures using microstructures formed through deposition and subsequent thermal processing conditions. An advantageous coincidence of material properties makes possible a wide variety of unique microstructures that are easily applied for the fabrication of device structures in general. As an example, a direct bond process is applied to fabricate thermoelectric semiconductor thick films on substrates by printing and subsequent thermal processing to form unique microstructures which can be densified. Bismuth and antimony telluride are directly bonded to flexible nickel substrates.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: May 31, 2016
    Assignee: BERKEN ENERGY LLC
    Inventor: Ronald R. Petkie
  • Patent number: 9212950
    Abstract: A microbolometer includes a micro-bridge structure for uncooling infrared or terahertz detectors. The thermistor and light absorbing materials of the micro-bridge structure are the vanadium oxide-carbon nanotube composite film formed by one-dimensional carbon nanotubes and two-dimensional vanadium oxide film. The micro-bridge is a three-layer sandwich structure consisting of a layer of amorphous silicon nitride base film as the supporting and insulating layer of the micro-bridge, a layer or multi-layer of vanadium oxide-carbon nanotube composite film in the middle of the micro-bridge as the heat sensitive and light absorbing layer of the microbolometer, and a layer of amorphous silicon nitride top film as the stress control layer and passivation of the heat sensitive film. The microbolometer and method for manufacturing the same can overcome the shortcomings of the prior art, improve the performance of the device, reduce the cost of raw materials and is suitable for large-scale industrial production.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: December 15, 2015
    Assignee: University of Electronic Science and Technology of China
    Inventors: Xiangdong Xu, Yadong Jiang
  • Patent number: 9209378
    Abstract: Disclosed are methods for the manufacture of n-type and p-type filled skutterudite thermoelectric legs of an electrical contact. A first material of CoSi2 and a dopant are ball-milled to form a first powder which is thermo-mechanically processed with a second powder of n-type skutterudite to form a n-type skutterudite layer disposed between a first layer and a third layer of the doped-CoSi2. In addition, a plurality of components such as iron, and nickel, and at least one of cobalt or chromium are ball-milled form a first powder that is thermo-mechanically processed with a p-type skutterudite layer to form a p-type skutterudite layer “second layer” disposed between a first and a third layer of the first powder. The specific contact resistance between the first layer and the skutterudite layer for both the n-type and the p-type skutterudites subsequent to hot-pressing is less than about 10.0 ??·cm2.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: December 8, 2015
    Assignees: UNIVERSITY OF HOUSTON SYSTEM, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Qing Jie, Zhifeng Ren, Gang Chen
  • Patent number: 9190592
    Abstract: A method of fabricating a thermoelectric device includes providing a substrate having a plurality of inclined growth surfaces protruding from a surface thereof. Respective thermoelectric material layers are grown on the inclined growth surfaces, and the respective thermoelectric material layers coalesce to collectively define a continuous thermoelectric film. A surface of the thermoelectric film opposite the surface of the substrate may be substantially planar, and a crystallographic orientation of the thermoelectric film may be tilted at an angle of about 45 degrees or less relative to a direction along a thickness thereof. Related devices and fabrication methods are also discussed.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 17, 2015
    Assignee: Nextreme Thermal Solutions, Inc.
    Inventors: Robert P. Vaudo, Philip A. Deane, Thomas Peter Schneider, Christopher D. Holzworth, Joseph Robert Williamson
  • Publication number: 20150144171
    Abstract: As the first conductive paste, a paste is used which is made by adding an organic solvent to powder of alloy in which a plurality of atoms keep a given crystal structure constant. As the second conductive paste, a paste is used which is made by adding an organic solvent to powder of metal different in kind from the alloy. In a step of making the stack body, cavities are formed in the stack body. In a uniting step, the cavities work to facilitate flow of thermoplastic resin to absorb pressure acting in a direction different from a direction in which pressure exerted on the first conductive paste to unite the stack body, thereby resulting in an increase in pressure for the uniting to solid-state sinter the first conductive paste to make the first layer-to-layer connecting member.
    Type: Application
    Filed: April 26, 2013
    Publication date: May 28, 2015
    Inventors: Toshihisa Taniguchi, Yoshihiko Shiraishi, Atusi Sakaida, Keiji Okamoto, Eijirou Miyagawa
  • Publication number: 20150147842
    Abstract: A structure and method for at least one array of nanowires partially embedded in a matrix includes nanowires and one or more fill materials located between the nanowires. Each of the nanowires including a first segment associated with a first end, a second segment associated with a second end, and a third segment between the first segment and the second segment. The nanowires are substantially parallel to each other and are fixed in position relative to each other by the one or more fill materials. The third segment is substantially surrounded by the one or more fill materials. The first segment protrudes from the one or more fill materials.
    Type: Application
    Filed: December 11, 2014
    Publication date: May 28, 2015
    Inventors: Gabriel A. MATUS, Mingqiang YI, Matthew L. SCULLIN, Justin Tynes KARDEL
  • Patent number: 9040339
    Abstract: A method is disclosed of constructing a composite material structure, comprised of an aerogel precursor foundation, which is then overlaid throughout its interior with an even and continuous thin layer film of doped thermoelectric semiconductor such that electrical current is transmitted as a quantum surface phenomena, while the cross-section for thermal conductivity is kept low, with the aerogel itself dissipating that thermal conductivity. In one preferred embodiment this is achieved using a modified successive ionic layer adsorption and reaction in the liquid phase.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: May 26, 2015
    Inventor: The Pen
  • Patent number: 9040338
    Abstract: Method of manufacturing sinterable electrical components for jointly sintering with active components, the components in planar shape being provided with at least one planar lower face meant for sintering, and an electrical contact area on the face opposite to the sintering face being available in the form of a metallic contact face, whose upper side is contactable by means of a commonly known method of the group: wire bonding or soldering or sintering or pressure contacting, the component being a temperature sensor, whose lower face is provided with a sinterable metallization on a ceramic body, said ceramic body having two electrical contact faces for continued electrical connection.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: May 26, 2015
    Assignee: Danfoss Silicon Power GmbH
    Inventor: Ronald Eisele
  • Publication number: 20150137303
    Abstract: Embodiments of mechanisms for forming a micro-electro mechanical system (MEMS) device are provided. The MEMS device includes a substrate and a MEMS sensor over the substrate. The MEMS sensor includes a floating heater disposed over the substrate. The MEMS sensor further includes a heat sink disposed over the substrate and at a side of the floating heater, and the heat sink has an air gap with the floating heater. The MEMS sensor further includes a first plurality of vias formed through the heat sink and thermally connected to the first substrate.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 21, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Bruce C.S. CHOU, Yang-Che CHEN, Chen-Chih FAN
  • Patent number: 9035337
    Abstract: An object is to provide a light-emitting module in which a light-emitting element suffering a short-circuit failure does not cause wasteful electric power consumption. Another object is to provide a light-emitting panel in which a light-emitting element suffering a short-circuit failure does not allow the reliability of an adjacent light-emitting element to lower. Focusing on heat generated by a light-emitting element suffering a short-circuit failure, provided is a structure in which electric power is supplied to a light-emitting element through a positive temperature coefficient thermistor (PTC thermistor) thermally coupled with the light-emitting element.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: May 19, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masaaki Hiroki, Satoshi Seo, Yasuo Nakamura
  • Publication number: 20150130012
    Abstract: Provided are a thermoelectric device and a method of manufacturing the same. The method may include forming nanowires on a substrate, forming a barrier layer on the nanowires, forming a bulk layer on the barrier layer, forming a lower electrode under the substrate, and forming an upper electrode on the bulk layer.
    Type: Application
    Filed: July 11, 2014
    Publication date: May 14, 2015
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Dong Suk JUN, Moon Gyu JANG, Won Chul CHOI
  • Publication number: 20150130531
    Abstract: An integrated circuit die includes multiple temperature sensor units each for measuring the temperature of respective regions of a semiconductor substrate of the integrated circuit die. The temperature sensor units are each coupled to a multiplexer by respective groups of signal lines. The signal lines include resistance compensation areas for maintaining a particular ratio of resistances of the signal lines of each group.
    Type: Application
    Filed: November 13, 2013
    Publication date: May 14, 2015
    Applicant: STMicroelectronics International N.V.
    Inventors: Aswani Aditya Kumar TADINADA, Tanmoy SEN
  • Publication number: 20150129010
    Abstract: Provided is a thermoelectric device. The thermoelectric device includes a substrate; first and second electrodes disposed at one side of the substrate, wherein the first and second electrodes are apart from each other; a common electrode formed on the other side of the substrate, wherein the common electrode is separated from the first and second electrodes; first and second legs connecting the common electrode to the first electrode, and the common electrode to the second electrode, respectively; and first and second barrier patterns covering the first and second legs and the substrate between the common electrode and the first electrode and between the common electrode and the second electrode, wherein the first and second barrier patterns prevents the short between the first and second legs and the common electrode and between the first and second legs and the first and second electrodes.
    Type: Application
    Filed: May 29, 2014
    Publication date: May 14, 2015
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Dong Suk JUN, Moon Gyu JANG, Soojung KIM
  • Patent number: 9029180
    Abstract: A method of producing a temperature sensing device is provided. The method includes forming at least one silicon layer and at least one electrode or contact to define a thermistor structure. At least the silicon layer is formed by printing, and at least one of the silicon layer and the electrode or contact is supported by a substrate during printing thereof. Preferably, the electrodes or contacts are formed by printing, using an ink comprising silicon particles having a size in the range 10 nanometers to 100 micrometers, and a liquid vehicle composed of a binder and a suitable solvent. In some embodiments the substrate is an object the temperature of which is to be measured. Instead, the substrate may be a template, may be sacrificial, or may be a flexible or rigid material. Various device geometries are disclosed.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: May 12, 2015
    Assignee: PST Sensors (Proprietary) Limited
    Inventors: David Thomas Britton, Margit Harting
  • Publication number: 20150122303
    Abstract: The present invention provides a thermoelectric conversion material having a low thermal conductivity and having an improved figure of merit, and a method for producing it. The thermoelectric conversion material has, as formed on a substrate having a nano-level microporous nanostructure, a thermoelectric semiconductor layer prepared by forming a thermoelectric semiconductor material into a film, wherein the substrate is a block copolymer substrate formed of a block copolymer that comprises a polymethyl methacrylate unit and a polyhedral oligomeric silsesquioxane-containing polymethacrylate unit, and the thermoelectric semiconductor material is a p-type bismuth telluride or an n-type bismuth telluride. The production method comprises a substrate formation step of forming the nanostructure-having block copolymer substrate, and a film formation step of forming a p-type bismuth telluride or an n-type bismuth telluride into a film to thereby provide a thermoelectric semiconductor layer.
    Type: Application
    Filed: February 19, 2013
    Publication date: May 7, 2015
    Applicants: KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, LINTEC CORPORATION
    Inventors: Kunihisa Kato, Chihaya Adachi, Koji Miyazaki, Teruaki Hayakawa
  • Publication number: 20150107640
    Abstract: A thermoelectric material and methods of manufacturing thereof are disclosed. In general, the thermoelectric material comprises a Group V-VI host, or matrix, material and Group III-V or Group IV-VI nanoinclusions within the Group V-VI host material. By incorporating the Group III-V or Group IV-VI nanoinclusions into the Group V-VI host material, the performance of the thermoelectric material can be improved.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 23, 2015
    Inventors: James Christopher Caylor, Ian Patrick Wellenius, William O. Charles, Pablo Cantu, Allen L. Gray
  • Publication number: 20150107641
    Abstract: According to an embodiment, a thermoelectric conversion material made of a polycrystalline material represented by a composition formula (1) shown below and having an MgAgAs type crystal structure is provided. An insulating coat is provided on at least one surface of the polycrystalline material. General formula: (Aa1Tib1)xDyX100-x-y??Composition formula (1) In the composition formula (1) shown above, 0.2?a1?0.7, 0.3?b1?0.8, a1+b1=1, 30?x?35, and 30?y?35 hold. A is at least one element selected from the group consisting of Zr and Hf, D is at least one element selected from the group consisting of of Ni, Co, and Fe, and X is at least one element selected from the group consisting of Sn and Sb.
    Type: Application
    Filed: December 26, 2014
    Publication date: April 23, 2015
    Inventor: Takao SAWA
  • Publication number: 20150107639
    Abstract: A thread has an extent and at least partly includes a thermoelectric material. A method for producing a component for a thermoelectric module includes at least providing at least one thread having an extent, providing a tubular receptacle having an outer circumferential surface and winding the at least one thread around the tubular receptacle in such a way that at least one annular component for a thermoelectric module is formed on the outer circumferential surface. A tubular thermoelectric module is also provided.
    Type: Application
    Filed: December 24, 2014
    Publication date: April 23, 2015
    Inventors: ROLF BRUECK, WILFRIED MUELLER
  • Patent number: 9006857
    Abstract: An IR sensor includes a suspended micro-platform having a support layer and a device layer disposed thereon. IR absorbers are disposed in or on the device layer. IR radiation received by the IR absorbers heats an on-platform junction of each of a plurality of series-connected thermoelectric devices operating in a Seebeck mode, the devices producing a voltage indicative of the received IR. Other thermoelectric devices are used to cool the platform, and a pressure sensing arrangement is used to detect loss of vacuum or pressure leaks.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: April 14, 2015
    Inventor: William N. Carr
  • Publication number: 20150093850
    Abstract: A method is disclosed of constructing a composite material structure, comprised of an aerogel precursor foundation, which is then overlaid throughout its interior with an even and continuous thin layer film of doped thermoelectric semiconductor such that electrical current is transmitted as a quantum surface phenomena, while the cross-section for thermal conductivity is kept low, with the aerogel itself dissipating that thermal conductivity. In one preferred embodiment this is achieved using a modified successive ionic layer adsorption and reaction in the liquid phase.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 2, 2015
    Inventor: The Pen
  • Patent number: 8993965
    Abstract: An infrared sensor array with interconnection type, comprises a substrate, a plurality of circuit units, and a plurality of infrared sensing modules. The substrate defines several sensing segments. Each sensing segment has a base portion, a connecting portion, and a testing portion. The connecting portion is arranged between the base portion and the testing portion. The circuit units are respectively formed on the sensing segments. Each circuit unit has a base circuit, a connecting circuit, and a testing circuit. The connecting circuit electrically connects to the base circuit and the testing circuit. Each base circuit is formed on each base portion, each connecting circuit is formed on each connecting portion, and each testing circuit is formed on each testing portion. The infrared sensing modules are respectively disposed on the base portions and electrically connected to the base circuits.
    Type: Grant
    Filed: January 13, 2013
    Date of Patent: March 31, 2015
    Assignee: Unimems Manufacturing Co., Ltd.
    Inventor: Tzong-Sheng Lee
  • Patent number: 8993363
    Abstract: In one aspect, optoelectronic devices are described herein. In some embodiments, an optoelectronic device comprises a fiber core, a radiation transmissive first electrode surrounding the fiber core, at least one photosensitive inorganic layer surrounding the first electrode and electrically connected to the first electrode, and a second electrode surrounding the inorganic layer and electrically connected to the inorganic layer. In some embodiments, the device comprises a photovoltaic cell.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: March 31, 2015
    Assignee: Wake Forest University
    Inventor: David L Carroll
  • Publication number: 20150083178
    Abstract: Significant phonon migration restraint is achieved within a relatively homogeneous polycrystalline doped semiconductor bulk by purposely creating in the crystal lattice of the semiconductor hydrocarbon bonds with the semiconductor, typically Si or Ge, constituting effective organic group substituents of semiconductor atoms in the crystalline domains. An important enhancement of the factor of merit Z of such a modified electrically conductive doped semiconductor is obtained without resorting to nanometric cross sectional dimensions in order to rely on surface scattering eventually enhanced by making the surface highly irregular and/or creating nanocavities within the bulk of the conductive material. A determinant scattering of phonons migrating under the influence and in the direction of a temperature gradient in the homogeneous semiconductor takes place at the organic groups substituents in the crystalline doped semiconductor bulk.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 26, 2015
    Applicant: Consorzio Delta Ti Research
    Inventor: Elena Lonati
  • Publication number: 20150076650
    Abstract: A semiconductor device includes a semiconductor substrate. The semiconductor substrate includes a first doping region arranged at a main surface of the semiconductor substrate, an emitter layer arranged at a back side surface of the semiconductor substrate, at least one first conductivity type area separated from the first doping region by a second doping region of the semiconductor substrate and at least one temperature-stabilizing resistance area. The first doping region has a first conductivity type and the emitter layer has at least mainly a second conductivity type. The second doping region has the second conductivity type and the at least one first conductivity type area has the first conductivity type. The at least one temperature-stabilizing resistance area is located within the second doping region and adjacent to the at least one first conductivity type area.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 19, 2015
    Inventor: Hans-Joachim Schulze
  • Publication number: 20150075578
    Abstract: The present invention provides a thermoelectric conversion material having a reduced thermal conductivity and having an improved figure of merit, and a method for producing the material. The thermoelectric conversion material has, as formed on a resin substrate having recesses, a thermoelectric semiconductor layer formed of a thermoelectric semiconductor material, wherein the resin substrate comprises one formed by curing a resin layer of a curable resin composition. The production method for the thermoelectric conversion material comprises a resin substrate formation step of transcribing a protruding structure from an original plate having the protruding structure onto a resin layer of a curable resin composition and curing the layer, and a film formation step of forming a thermoelectric semiconductor layer of a thermoelectric semiconductor material on the resin substrate.
    Type: Application
    Filed: April 17, 2013
    Publication date: March 19, 2015
    Applicant: LINTEC CORPORATION
    Inventors: Kunihisa Kato, Tsuyoshi Mutou
  • Publication number: 20150076651
    Abstract: An infrared ray sensor includes a thermopile. The thermopile includes a first semiconductor material part and a second semiconductor material part, the first semiconductor material part and the second semiconductor material part are laminated, and a dielectric film is provided between the first semiconductor material part and the second semiconductor material part.
    Type: Application
    Filed: March 12, 2014
    Publication date: March 19, 2015
    Applicant: RICOH COMPANY, LTD.
    Inventor: Hidetaka Noguchi
  • Publication number: 20150070540
    Abstract: An image sensor includes a substrate having a first conductivity type. A first well in the substrate has an opposite conductivity type and is doped with opposite conductivity type dopant. A second well in the first well has the opposite conductivity type and is doped with opposite conductivity type dopant. A first region in the second well has the opposite conductivity type and is doped with opposite conductivity type dopant. A second region in the first region has the first conductivity type and is doped with first conductivity type dopant. A third region in the second well adjacent the first region is of the opposite conductivity type and is doped with opposite conductivity type dopant. A temperature sensor is disposed between, and is connected to each of, the second region and the third region.
    Type: Application
    Filed: September 9, 2013
    Publication date: March 12, 2015
    Applicant: Semiconductor Components Industries, LLC
    Inventor: Shen Wang
  • Publication number: 20150064830
    Abstract: A method includes preparing a thermoelectric material including p-type or n-type material and first and second caps including transition metal(s). A powder precursor of the first cap can be loaded into a sintering die, punches assembled thereto, and a pre-load applied to form a first pre-pressed structure including a first flat surface. A punch can be removed, a powder precursor of the p-type or n-type material loaded onto that surface, the punch assembled to the die, and a second pre-load applied to form a second pre-pressed structure including a second substantially flat surface. The punch can be removed, a powder precursor of the second cap loaded onto that surface, the first punch assembled to the die, and a third pre-load applied to form a third pre-pressed structure. The third pre-pressed structure can be sintered to form the thermoelectric material; the first or second cap can be coupled to an electrical connector.
    Type: Application
    Filed: August 26, 2014
    Publication date: March 5, 2015
    Inventors: John REIFENBERG, Lindsay MILLER, Matthew L. SCULLIN, Adam LORIMER, Sravan Kumar R. SURA, Sasi Bhushan BEERA, Douglas CRANE
  • Publication number: 20150047685
    Abstract: The invention relates to a method for producing a thermoelectric component or at least a semifinished version thereof, in which at least one thermoelectric active material in dry powder form is introduced into at least some of the holes of a perforated template. It addresses the problem of specifying a method which can be conducted in a particularly economically viable manner. The problem is solved by virtue of the active material remaining in the holes of the template, and the template filled with active material becoming a constituent of the thermoelectric component produced.
    Type: Application
    Filed: March 26, 2013
    Publication date: February 19, 2015
    Applicant: Evonik Industries AG
    Inventors: Patrik Stenner, Mareike Giesseler, Thorsten Schultz, Sascha Hoch, Jens Busse, Ann-Kathrin Kraemer, Ruediger Schuette
  • Publication number: 20150048283
    Abstract: The present invention provides a thermoelectric conversion material excellent in thermoelectric performance and flexibility and capable of being produced in a simplified manner and at a low cost, and a method for producing the material. The thermoelectric conversion material has, on a support, a thin film of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles and a conductive polymer, and the method for producing a thermoelectric conversion material includes a step of applying the thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles and a conductive polymer onto the support and drying it to forma thin film thereon.
    Type: Application
    Filed: March 11, 2013
    Publication date: February 19, 2015
    Applicants: LINTEC CORPORATION, KYUSHU INSTITUTE OF TECHNOLOGY
    Inventors: Kunihisa Kato, Tsuyoshi Mutou, Koji Miyazaki
  • Patent number: 8956905
    Abstract: Solid state thermoelectric energy conversion devices can provide electrical energy from heat flow, creating energy, or inversely, provide cooling through applying energy. Thick film methods are applied to fabricate thermoelectric device structures using microstructures formed through deposition and subsequent thermal processing conditions. An advantageous coincidence of material properties makes possible a wide variety of unique microstructures that are easily applied for the fabrication of device structures in general. As an example, a direct bond process is applied to fabricate thermoelectric semiconductor thick films on substrates by printing and subsequent thermal processing to form unique microstructures which can be densified. Bismuth and antimony are directly bonded to flexible nickel substrates.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: February 17, 2015
    Assignee: Berken Energy LLC
    Inventor: Ronald R Petkie
  • Patent number: 8952480
    Abstract: An electronic device may include a temperature sensing semiconductor substrate, that may include a thermal sensor at an upper surface thereof, and a cooling semiconductor substrate having an upper surface coupled to a lower surface of the temperature sensing semiconductor substrate. The cooling semiconductor substrate may include a Peltier cooler. At least one of the temperature sensing semiconductor substrate and the cooling semiconductor substrate may have a cavity therein beneath the thermopile and aligned therewith.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: February 10, 2015
    Assignee: STMicroelectronics Asia Pacific Pte. Ltd.
    Inventor: PraveenKumar Radhakrishnan
  • Publication number: 20150035110
    Abstract: A MEMS sensor for detecting electromagnetic waves in a particular frequency range is provided. In a preferred embodiment, the MEMS sensor comprises a bottom substrate layer; a first electrode layer over the substrate layer; a pyroelectric layer over the first electrode layer; and a second electrode layer over the pyroelectric layer; wherein a top electrode layer is patterned with a periodic structure that has a periodicity less than or equal to target infrared wavelength.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 5, 2015
    Inventors: Albert Pisano, David Horsley, Kansho Yamamoto
  • Publication number: 20150034140
    Abstract: A thermoelectric element having high thermal resistance and requiring less semiconductor material than a conventional thermoelectric element with comparable performance comprises a substrate having a substrate front side and a substrate rear side opposite the substrate front side, a first contact, applied as a layer to the substrate front side, a second contact, applied as a layer to the substrate front side, a cut-off between the first and second contact which thermally and electrically separates the first and second contact from one another, and a thermoelectrically active layer having a top side and a bottom side, which are connected to one another by lateral delimiting surfaces, wherein the thermoelectrically active layer is arranged in the cut-off in such a way that the bottom side is on the substrate front side, and one of the lateral delimiting surfaces is against the first contact and one of the lateral delimiting surfaces is against the second contact.
    Type: Application
    Filed: January 17, 2013
    Publication date: February 5, 2015
    Inventors: Gerhard Span, Arwed Siegloch, Juergen Haferkamp, Nikolay Iosad
  • Patent number: 8940571
    Abstract: P-type semiconductor sheets and n-type semiconductor sheets formed by mixing a powder of semiconductor material, a binder resin, a plasticizer, and a surfactant are prepared. In addition, separator sheets formed by mixing a resin such as PMMA and a plasticizer are prepared. Through holes are formed in each of the separator sheets and then filled with a conductive material. Thereafter, the p-type semiconductor sheet, the separator sheet, the n-type semiconductor sheet and the separator sheet are stacked. The resultant laminated body is cut into a predetermined size and then subjected to a baking process.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: January 27, 2015
    Assignee: Fujitsu Limited
    Inventors: Kazuaki Kurihara, Masaharu Hida, Kazunori Yamanaka
  • Publication number: 20150020861
    Abstract: A thermoelectric device and method based on creating a structure of nanoclusters in a composite metal and insulator material by co-depositing the metal and insulator material and irradiating the composite material to create nanoclusters of metal within the composite material. In one variation, the composite material may be continuously deposited and concurrently irradiated. A further variation based on a multilayer structure having alternate layers of metal/material mixture. The alternate layers have differing metal content. The layer structure is irradiated with ionizing radiation to produce nanoclusters in the layers. The differing metal content serves to quench the nanoclusters to isolate nanoclusters along the radiation track. The result is a thermoelectric device with a high figure of merit. In one embodiment, the multilayer structure is fabricated and then irradiated with high energy radiation penetrating the entire layer structure.
    Type: Application
    Filed: September 22, 2014
    Publication date: January 22, 2015
    Inventor: Daryush ILA
  • Publication number: 20150004733
    Abstract: Disclosed are methods of exfoliating a thermoelectric material, such as bismuth telluride or antimony telluride, using one or more ionic liquids. Also disclosed is the exfoliated thermoelectric material provided by the disclosed methods. Further disclosed are compositions comprising the exfoliated thermoelectric material and methods of making and using the compositions. Additionally disclosed are exfoliated transition metal dichalcogenide compositions, methods of making and using such compositions.
    Type: Application
    Filed: June 27, 2014
    Publication date: January 1, 2015
    Inventors: Hung-Ta Wang, Rachel M. Frazier, Lingling Guo, Haiyu Quan, Parker D. McCrary, Robin D. Rogers
  • Publication number: 20140373888
    Abstract: A method for forming a thermoelectric element for use in a thermoelectric device comprises providing a mask adjacent to a substrate, the mask comprising a polymeric mixture, and bringing a template having a first pattern in contact with the mask to define a second pattern in the mask. The first pattern comprises one of holes and rods, and the second pattern comprises the other of holes and rods. Holes or rods of the second pattern expose portions of the substrate. Next, an etching layer is deposited adjacent to exposed portions of the substrate. The etching layer is configured to aid in etching the substrate. The substrate is subsequently etched with the aid of the etching layer.
    Type: Application
    Filed: January 17, 2013
    Publication date: December 25, 2014
    Applicant: SILICIUM ENERGY, INC.
    Inventors: Akram I. Boukai, Douglas W. Tham
  • Publication number: 20140374597
    Abstract: An infrared (IR) detector may include a substrate, circuitry carried by the substrate, and a metal-black layer over the thermometric element. The circuitry may include a thermometric element with a measureable thermometric property. The IR detector may include a dielectric layer covering the metal-black layer, and the circuitry provides a value for IR radiation absorbed by the metal-black layer.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 25, 2014
    Inventor: Deep PANJWANI
  • Publication number: 20140377901
    Abstract: Disclosed are methods for the manufacture of n-type and p-type filled skutterudite thermoelectric legs of an electrical contact. A first material of CoSi2 and a dopant are ball-milled to form a first powder which is thermo-mechanically processed with a second powder of n-type skutterudite to form a n-type skutterudite layer disposed between a first layer and a third layer of the doped-CoSi2. In addition, a plurality of components such as iron, and nickel, and at least one of cobalt or chromium are ball-milled form a first powder that is thermo-mechanically processed with a p-type skutterudite layer to form a p-type skutterudite layer “second layer” disposed between a first and a third layer of the first powder. The specific contact resistance between the first layer and the skutterudite layer for both the n-type and the p-type skutterudites subsequent to hot-pressing is less than about 10.0 ??·cm2.
    Type: Application
    Filed: June 20, 2014
    Publication date: December 25, 2014
    Inventors: Qing Jie, Zhifeng Ren, Gang Chen
  • Publication number: 20140370639
    Abstract: The present invention provides a MEMS and a sensor having the MEMS which can be formed without a process of etching a sacrifice layer. The MEMS and the sensor having the MEMS are formed by forming an interspace using a spacer layer. In the MEMS in which an interspace is formed using a spacer layer, a process for forming a sacrifice layer and an etching process of the sacrifice layer are not required. As a result, there is no restriction on the etching time, and thus the yield can be improved.
    Type: Application
    Filed: August 29, 2014
    Publication date: December 18, 2014
    Inventors: Mayumi Yamaguchi, Konami Izumi, Fuminori Tateishi
  • Publication number: 20140366924
    Abstract: A thermoelectric composition comprising tin (Sn), tellurium (Te) and at least one dopant that comprises a peak dimensionless figure of merit (ZT) of 1.1 and a Seebeck coefficient of at least 50 ?V/K and a method of manufacturing the thermoelectric composition. A plurality of components are disposed in a ball-milling vessel, wherein the plurality of components comprise tin (Sn), tellurium (Te), and at least one dopant such as indium (In). The components are subsequently mechanically and thermally processed, for example, by hot-pressing. In response to the mechanical-thermally processing, a thermoelectric composition is formed, wherein the thermoelectric composition comprises a dimensionless figure of merit (ZT) of the thermoelectric composition is at least 0.8, and wherein a Seebeck coefficient of the thermoelectric composition is at least 50 ?V/K at any temperature.
    Type: Application
    Filed: June 17, 2014
    Publication date: December 18, 2014
    Inventors: Zhifeng Ren, Qian Zhang