Silicide Patents (Class 438/581)
-
Patent number: 12136676Abstract: Schottky diode and method for fabricating the same disclosed. The Schottky diode includes a gallium oxide layer that is a semiconductor layer doped with a first-type dopant, a cathode in ohmic contact with the gallium oxide layer and an anode having a Schottky contact metal layer in Schottky contact with the gallium oxide layer. The gallium oxide layer is in contact with an interface with the Schottky contact metal layer, contains a second-type dopant of a conductivity opposite to that of the first-type dopant, and has an interlayer which is a region where a concentration of the second-type dopant decreases as it moves away from an interface with the Schottky contact metal layer.Type: GrantFiled: March 24, 2020Date of Patent: November 5, 2024Assignee: POWERCUBE SEMI INC.Inventors: You Seung Rim, Tai Young Kang, Sin Su Kyoung
-
Patent number: 11674797Abstract: Aspects of the embodiments are directed to non-contact systems, methods and devices for optical detection of objects in space at precise angles. This method involves the design and fabrication of photodiode arrays for measuring angular response using self-aligned Schottky platinum silicide (PtSi) PIN photodiodes (PN-diodes with an intrinsic layer sandwiched in between) that provide linear angular measurements from incident light in multiple dimensions. A self-aligned device is defined as one in which is not sensitive to photomask layer registrations. This design eliminates device offset between “left” and right” channels for normal incident light as compared to more conventional PIN diode constructions.Type: GrantFiled: March 22, 2020Date of Patent: June 13, 2023Assignee: Analog Devices, Inc.Inventors: Shrenik Deliwala, Paul W. Stevens, William Edward O'Mara
-
Patent number: 11551977Abstract: A method of forming a semiconductor structure is provided. The method includes forming a gate structure over an active region of a substrate, forming an epitaxial layer comprising first dopants of a first conductivity type over portions of the active region on opposite sides of the gate structure, applying a cleaning solution comprising ozone and deionized water to the epitaxial layer, thereby forming an oxide layer on the epitaxial layer, forming a patterned photoresist layer over the oxide layer and the gate structure to expose a portion of the oxide layer, forming a contact region including second dopants of a second conductivity type opposite the first conductivity type in the portion of the epitaxial layer not covered by the patterned photoresist layer, and forming a contact overlying the contact region.Type: GrantFiled: May 7, 2021Date of Patent: January 10, 2023Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Ke-Ming Chen, Ting-Jung Chang, Hsin-Chen Cheng, Chih-Tsang Tseng
-
Patent number: 10249542Abstract: Embodiments are directed to a method of forming a semiconductor device and resulting structures having reduced source/drain contact resistance. The method includes forming a first semiconductor fin in a first region of a substrate and a second semiconductor fin in a second region of the substrate. A first gate is formed over a first channel region of the first semiconductor fin and a second gate is formed over a first channel region of the second semiconductor fin. A first doped region is formed on the first semiconductor fin, adjacent to the first gate. A second doped region is formed in a top portion of the first doped region and a third doped region is formed in a top portion of the second semiconductor fin. The third doped region is removed to form a recess and the recess is filled with a fourth doped region.Type: GrantFiled: January 12, 2017Date of Patent: April 2, 2019Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Dechao Guo, Zuoguang Liu, Gen Tsutsui, Heng Wu
-
Patent number: 10083822Abstract: The invention relates to a physical vapor deposition coating device (1), comprising a process chamber (2) with an anode (3) and a consumable cathode (4) to be consumed by an electrical discharge for coating a substrate located within the process chamber (2). The coating device (1) further includes a first electrical energy source (5) being connected with its negative pole to said consumable cathode (4), and a second electrical energy source (6) being connected with its positive pole to said anode (3). According to the invention, a third electrical energy source (7) is provided being connected with its negative pole to a source cathode (8) which is different from the consumable cathode (4). In addition, the invention relates to a physical vapor deposition method for coating a substrate.Type: GrantFiled: August 19, 2009Date of Patent: September 25, 2018Assignee: OERLIKON SURFACE SOLUTIONS AG, PFAEFFIKONInventors: Jones Alami, Georg Erkens, Tariq Rasa, Jörg Vetter
-
Patent number: 9865535Abstract: A semiconductor device includes a planar interconnection layer formed on a substrate and made of a semiconductor, a first pillar-shaped semiconductor layer formed on the interconnection layer, a semiconductor-metal compound layer formed so as to cover the entire upper surface of the interconnection layer except for a bottom portion of the first pillar-shaped semiconductor layer, a first gate insulating film surrounding the first pillar-shaped semiconductor layer, a first gate electrode surrounding the first gate insulating film, and a first gate line connected to the first gate electrode.Type: GrantFiled: November 8, 2016Date of Patent: January 9, 2018Assignee: UNISANTIS ELECTRONICS SINGAPORE PTE. LTD.Inventors: Fujio Masuoka, Hiroki Nakamura, Nozomu Harada
-
Patent number: 9337185Abstract: A semiconductor device includes a first doping region extending from a main surface of a semiconductor substrate into the semiconductor substrate. Further, the semiconductor device includes a second doping region arranged adjacent to the first doping region. The first doping region includes at least one low doping dose portion extending from the main surface of the semiconductor substrate to the second doping region. A doping dose within the low doping dose portion of the first doping region is less than 3 times a breakdown charge. Additionally, the semiconductor device includes a first electrode structure in contact with the first doping region at the main surface of the semiconductor substrate. The work function of the first electrode structure at the main surface of the semiconductor substrate is larger than 4.9 eV or lower than 4.4 eV.Type: GrantFiled: December 5, 2014Date of Patent: May 10, 2016Assignee: Infineon Technologies AGInventors: Frank Pfirsch, Dorothea Werber, Carsten Schaeffer
-
Patent number: 9093552Abstract: A method for making a microelectronic device with transistors, in which silicided source and drain zones are formed to apply a compressive strain on the channel, in some transistors.Type: GrantFiled: August 22, 2012Date of Patent: July 28, 2015Assignee: Commissariat à l'énergie atomique et aux énergies alternativesInventors: Fabrice Nemouchi, Patrice Gergaud, Thierry Poiroux, Bernard Previtali
-
Patent number: 8937343Abstract: A semiconductor device includes a gate pattern disposed on a semiconductor substrate, a bulk epitaxial pattern disposed in a recess region formed in the semiconductor substrate at a side of the gate pattern, an insert epitaxial pattern disposed on the bulk epitaxial pattern, and a capping epitaxial pattern disposed on the insert epitaxial pattern. The bulk epitaxial pattern has an upper inclined surface that is a {111} crystal plane, and the insert epitaxial pattern includes a specific element that promotes the growth rate of the insert epitaxial pattern on the upper inclined surface.Type: GrantFiled: September 9, 2013Date of Patent: January 20, 2015Assignee: Samsung Electronics Co., Ltd.Inventors: Dong Hyuk Kim, Dongsuk Shin, Hoi Sung Chung, Naein Lee
-
Patent number: 8895424Abstract: A process for forming a Schottky barrier to silicon to a barrier height selected at a value between 640 meV and 840 meV employs the deposition of a platinum or nickel film atop the silicon surface followed by the deposition of the other of a platinum or nickel film atop the first film. The two films are then exposed to anneal steps at suitable temperatures to cause their interdiffusion and an ultimate formation of Ni2Si and Pt2Si contacts to the silicon surface. The final silicide has a barrier height between that of the Pt and Ni, and will depend on the initial thicknesses of the Pt and Ni films and annealing temperature and time. Oxygen is injected into the system to form an SiO2 passivation layer to improve the self aligned process.Type: GrantFiled: July 6, 2010Date of Patent: November 25, 2014Assignee: Siliconix Technology C. V.Inventors: Rossano Carta, Carmelo Sanfilippo
-
Patent number: 8865556Abstract: Techniques for forming a smooth silicide without the use of a cap layer are provided. In one aspect, a FET device is provided. The FET device includes a SOI wafer having a SOI layer over a BOX and at least one active area formed in the wafer; a gate stack over a portion of the at least one active area which serves as a channel of the device; source and drain regions of the device adjacent to the gate stack, wherein the source and drain regions of the device include a semiconductor material selected from: silicon and silicon germanium; and silicide contacts to the source and drain regions of the device, wherein an interface is present between the silicide contacts and the semiconductor material, and wherein the interface has an interface roughness of less than about 5 nanometers.Type: GrantFiled: September 12, 2012Date of Patent: October 21, 2014Assignee: International Business Machines CorporationInventors: Joseph S. Newbury, Kenneth Parker Rodbell, Zhen Zhang, Yu Zhu
-
Patent number: 8859408Abstract: Generally, the present disclosure is directed to methods of stabilizing metal silicide contact regions formed in a silicon-germanium active area of a semiconductor device, and devices comprising stabilized metal silicides. One illustrative method disclosed herein includes performing an activation anneal to activate dopants implanted in an active area of a semiconductor device, wherein the active area comprises germanium. Additionally, the method includes, among other things, performing an ion implantation process to implant ions into the active area after performing the activation anneal, forming a metal silicide contact region in the active area, and forming a conductive contact element to the metal silicide contact region.Type: GrantFiled: April 14, 2011Date of Patent: October 14, 2014Assignee: GLOBALFOUNDRIES Inc.Inventors: Stefan Flachowsky, Clemens Fitz, Tom Herrmann
-
Patent number: 8785310Abstract: A method is provided for forming a metal silicide layer on a substrate. According to one embodiment the method includes providing the substrate in a process chamber, exposing the substrate at a first substrate temperature to a plasma generated from a deposition gas containing a metal precursor, where the plasma exposure forms a conformal metal-containing layer on the substrate in a self-limiting process. The method further includes exposing the metal-containing layer at a second substrate temperature to a reducing gas in the absence of a plasma, where the exposing steps are alternatively performed at least once to form the metal silicide layer, and the deposition gas does not contain the reducing gas. The method provides conformal metal silicide formation in deep trenches with high aspect ratios.Type: GrantFiled: March 22, 2012Date of Patent: July 22, 2014Assignee: Tokyo Electron LimitedInventors: Toshio Hasegawa, Kunihiro Tada, Hideaki Yamasaki, David L. O'Meara, Gerrit J. Leusink
-
Patent number: 8748246Abstract: A transistor includes a semiconductor substrate includes having a gate hardmask over the gate electrode layer during the formation of transistor source/drain regions. An independent work function adjustment process implants Group IIIa series dopants into a gate polysilicon layer of a PMOS transistor and implants lanthanide series dopants into a gate polysilicon layer of a NMOS transistor.Type: GrantFiled: December 10, 2010Date of Patent: June 10, 2014Assignee: Texas Instruments IncorporatedInventors: Manfred Ramin, Michael Pas
-
Patent number: 8664057Abstract: When forming high-k metal gate electrode structures in transistors of different conductivity type while also incorporating an embedded strain-inducing semiconductor alloy selectively in one type of transistor, superior process uniformity may be accomplished by selectively reducing the thickness of a dielectric cap material of a gate layer stack above the active region of transistors which do not receive the strain-inducing semiconductor alloy. In this case, superior confinement and thus integrity of sensitive gate materials may be accomplished in process strategies in which the sophisticated high-k metal gate electrode structures are formed in an early manufacturing stage, while, in a replacement gate approach, superior process uniformity is achieved upon exposing the surface of a placeholder electrode material.Type: GrantFiled: August 3, 2012Date of Patent: March 4, 2014Assignee: GLOBALFOUNDRIES Inc.Inventors: Rohit Pal, Sven Beyer, Andy Wei, Richard Carter
-
Patent number: 8647971Abstract: An integrated circuit, including a junction barrier Schottky diode, has an N type well, a P-type anode region in the surface of the well, and an N-type Schottky region in the surface of the well and horizontally abutting the anode region. A first silicide layer is on and makes a Schottky contact to the Schottky region and is on an adjoining anode region. A second silicide layer of a different material than the first silicide is on the anode region. An ohmic contact is made to the second silicide on the anode region and to the well.Type: GrantFiled: January 23, 2012Date of Patent: February 11, 2014Assignee: Intersil Americas Inc.Inventors: Dev Alok Girdhar, Michael David Church, Alexander Kalnitsky
-
Patent number: 8610233Abstract: A method of forming a transistor device includes forming a patterned gate structure over a semiconductor substrate, forming a raised source region over the semiconductor substrate adjacent a source side of the gate structure, and forming silicide contacts on the raised source region, on the patterned gate structure, and on the semiconductor substrate adjacent a drain side of the gate structure. Thereby, a hybrid field effect transistor (FET) structure having a drain side Schottky contact and a raised source side ohmic contact is defined.Type: GrantFiled: March 16, 2011Date of Patent: December 17, 2013Assignee: International Business Machines CorporationInventors: Kangguo Cheng, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
-
Patent number: 8569827Abstract: Three-dimensional (3D) nonvolatile memory devices include a substrate having a well region of second conductivity type (e.g., P-type) therein and a common source region of first conductivity type (e.g., N-type) on the well region. A recess is provided, which extends partially (or completely) through the common source region. A vertical stack of nonvolatile memory cells are provided on the substrate. This vertical stack of nonvolatile memory cells includes a vertical stack of spaced-apart gate electrodes and a vertical active region, which extends on sidewalls of the vertical stack of spaced-apart gate electrodes and on a sidewall of the recess. Gate dielectric layers are provided, which extend between respective ones of the vertical stack of spaced-apart gate electrodes and the vertical active region.Type: GrantFiled: August 29, 2011Date of Patent: October 29, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Changhyun Lee, Byoungkeun Son, Hyejin Cho
-
Patent number: 8569837Abstract: A semiconductor structure includes a semiconductor substrate; a gate dielectric over the semiconductor substrate; a gate electrode over the gate dielectric; a deep source/drain region adjacent the gate electrode; a silicide region over the deep source/drain region; and an elevated metallized source/drain region between the silicide region and the gate electrode. The elevated metallized source/drain region adjoins the silicide region.Type: GrantFiled: May 7, 2007Date of Patent: October 29, 2013Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chih-Hsin Ko, Hung-Wei Chen, Chung-Hu Ke, Ta-Ming Kuan, Wen-Chin Lee
-
Patent number: 8551874Abstract: A MOSFET is described incorporating a common metal process to make contact to the source, drain and the metal gate respectively which may be formed concurrently with the same metal or metals.Type: GrantFiled: May 8, 2010Date of Patent: October 8, 2013Assignee: International Business Machines CorporationInventors: Soon-Cheon Seo, Bruce B. Doris, Chih-Chao Yang
-
Patent number: 8513765Abstract: A device and method for forming a semiconductor device include growing a raised semiconductor region on a channel layer adjacent to a gate structure. A space is formed between the raised semiconductor region and the gate structure. A metal layer is deposited on at least the raised semiconductor region. The raised semiconductor region is silicided to form a silicide into the channel layer which extends deeper into the channel layer at a position corresponding to the space.Type: GrantFiled: July 19, 2010Date of Patent: August 20, 2013Assignee: International Business Machines CorporationInventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Ghavam G. Shahidi
-
Patent number: 8466051Abstract: A method for fabricating a Schottky device includes the following sequences. First, a substrate with a first conductivity type is provided and an epitaxial layer with the first conductivity type is grown on the substrate. Then, a patterned dielectric layer is formed on the epitaxial layer, and a metal silicide layer is formed on a surface of the epitaxial layer. A dopant source layer with a second conductivity type is formed on the metal silicide layer, followed by applying a thermal drive-in process to diffuse the dopants inside the dopant source layer into the epitaxial layer. Finally, a conductive layer is formed on the metal silicide layer.Type: GrantFiled: December 28, 2011Date of Patent: June 18, 2013Assignee: Anpec Electronics CorporationInventors: Yung-Fa Lin, Shou-Yi Hsu, Meng-Wei Wu, Main-Gwo Chen, Chia-Hao Chang, Chia-Wei Chen
-
Patent number: 8450156Abstract: In a method for producing a thyristor, first and second connection regions are formed on or above a substrate; the first connection region is doped with dopant atoms of a first conductivity type and the second connection region is doped with dopant atoms of a second conductivity type; first and second body regions are formed between the connection regions, wherein the first body region is formed between the first connection region and second body region, and the second body region is formed between the first body region and second connection region; the first body region is doped with dopant atoms of the second conductivity type and the second body region is doped with dopant atoms of the first conductivity type, wherein the dopant atoms are in each case introduced into the respective body region using a Vt implantation method; a gate region is formed on or above the body regions.Type: GrantFiled: May 29, 2012Date of Patent: May 28, 2013Assignee: Infineon Technologies AGInventors: Harald Gossner, Thomas Schulz, Christian Russ, Gerhard Knoblinger
-
Publication number: 20130130485Abstract: A method for fabricating a Schottky device includes the following sequences. First, a substrate with a first conductivity type is provided and an epitaxial layer with the first conductivity type is grown on the substrate. Then, a patterned dielectric layer is formed on the epitaxial layer, and a metal silicide layer is formed on a surface of the epitaxial layer. A dopant source layer with a second conductivity type is formed on the metal silicide layer, followed by applying a thermal drive-in process to diffuse the dopants inside the dopant source layer into the epitaxial layer. Finally, a conductive layer is formed on the metal silicide layer.Type: ApplicationFiled: December 28, 2011Publication date: May 23, 2013Inventors: Yung-Fa Lin, Shou-Yi Hsu, Meng-Wei Wu, Main-Gwo Chen, Chia-Hao Chang, Chia-Wei Chen
-
Patent number: 8444728Abstract: A chemical mechanical polishing composition, comprising, as initial components: water; 0.1 to 20 wt % abrasive having an average particle size of 5 to 50 nm; and, 0.001 to 1 wt % of an adamantyl substance according to formula (II): wherein A is selected from N and P; wherein each R8 is independently selected from hydrogen, a saturated or unsaturated C1-15 alkyl group, C6-15 aryl group, C6-15 aralkyl group, C6-15 alkaryl group; and, wherein the anion in formula (II) can be any anion that balances the positive charge on the cation in formula (II).Type: GrantFiled: June 12, 2012Date of Patent: May 21, 2013Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.Inventors: Yi Guo, Zhendong Liu, Kancharla-Arun Kumar Reddy, Guangyun Zhang
-
Patent number: 8367508Abstract: A method for forming a field effect transistor includes forming a gate stack, a spacer adjacent to opposing sides of the gate stack, a silicide source region and a silicide drain region on opposing sides of the spacer, epitaxially growing silicon on the source region and the drain region; forming a liner layer on the gate stack and the spacer, removing a portion of the liner layer to expose a portion of the hardmask layer, removing the exposed portions of the hardmask layer to expose a silicon layer of the gate stack, removing exposed silicon to expose a portion of a metal layer of the gate stack, the source region, and the drain region; and depositing a conductive material on the metal layer of the gate stack, the silicide source region, and the silicide drain region.Type: GrantFiled: April 9, 2010Date of Patent: February 5, 2013Assignee: International Business Machines CorporationInventors: Dechao Guo, Wilfried E. Haensch, Xinhui Wang, Keith Kwong Hon Wong
-
Patent number: 8349718Abstract: According to certain embodiments, a silicide layer is formed after the fabrication of a functional gate electrode using a gate-last scheme. An initial semiconductor structure has at least one impurity regions formed on a semiconductor substrate, a sacrifice film formed over the impurity region, an isolation layer formed over the sacrifice film and a dielectric layer formed over the isolation film. A via is patterned into the dielectric layer of the initial semiconductor structure and through the thickness of the isolation layer such that a contact opening is formed in the isolation layer. The sacrifice film underlying the isolation layer is then removed leaving a void space underlying the isolation layer. Then, a metal silicide precursor is placed within the void space, and the metal silicide precursor is converted to a silicide layer through an annealing process.Type: GrantFiled: March 24, 2011Date of Patent: January 8, 2013Assignee: Kabushiki Kaisha ToshibaInventor: Yoshihiro Uozumi
-
Publication number: 20120292733Abstract: The present invention relates to the field of microelectronic technology. It discloses a mixed Schottky/P-N junction diode and a method of making the same. The mixed Schottky/P-N junction diode comprises a semiconductor substrate having a bulk region and a doped region, and a conductive layer on the semiconductor substrate. The doped region has opposite doping from that of the bulk region. A P-N junction is formed between the bulk region and the doped region, a Schottky junction is formed between the conductive layer and the semiconductor substrate, and an ohmic contact is formed between the conductive layer and the doped region. The mixed Schottky/P-N junction diode of the present invention has high operating current, fast switching speed, small leakage current, high breakdown voltage, ease of fabrication and other advantages.Type: ApplicationFiled: January 4, 2011Publication date: November 22, 2012Applicant: FUDAN UNIVERSITYInventors: Dongping Wu, Shi-Li Zhang, Yinghua Pu
-
Patent number: 8283244Abstract: A one-transistor dynamic random access memory (DRAM) cell includes a transistor which has a first source/drain region, a second source/drain region, a body region between the first and second source/drain regions, and a gate over the body region. The first source/drain region includes a Schottky diode junction with the body region and the second source/drain region includes an n-p diode junction with the body region.Type: GrantFiled: September 11, 2009Date of Patent: October 9, 2012Assignee: Freescale Semiconductor, Inc.Inventors: James D. Burnett, Brian A. Winstead
-
Patent number: 8278198Abstract: A method of producing a Schottky diode includes the steps of: forming a resist layer on the semiconductor substrate; performing a first exposure process on the resist layer; performing a first developing process for developing the resist layer to form a first Schottky diode having an excess region; performing a first cleaning process; performing a second exposure process on the first Schottky diode; performing a second developing process on the first Schottky diode to remove the excess region from the first Schottky diode so that a second Schottky diode corresponding to the specific Schottky diode is formed; and performing a second cleaning process.Type: GrantFiled: August 20, 2010Date of Patent: October 2, 2012Assignee: Oki Semiconductor Co., Ltd.Inventors: Yuuki Doi, Hirokazu Fujimaki
-
Patent number: 8263466Abstract: A process for forming a FET (e.g., an n-FET or a p-FET), in which during formation a metal which makes up a source or drain of the transistor is stressed so that stress is induced in a semiconductor channel of the transistor.Type: GrantFiled: October 17, 2008Date of Patent: September 11, 2012Assignee: Acorn Technologies, Inc.Inventors: Paul Clifton, Daniel J. Connelly
-
Patent number: 8247319Abstract: Techniques for silicide, germanide or germanosilicide formation in extremely small structures are provided. In one aspect, a method for forming a silicide, germanide or germanosilicide in a three-dimensional silicon, germanium or silicon germanium structure having extremely small dimensions is provided. The method includes the following steps. At least one element is implanted into the structure. At least one metal is deposited onto the structure. The structure is annealed to intersperse the metal within the silicon, germanium or silicon germanium to form the silicide, germanide or germanosilicide wherein the implanted element serves to prevent morphological degradation of the silicide, germanide or germanosilicide. The implanted element can include at least one of carbon, fluorine and silicon.Type: GrantFiled: February 7, 2011Date of Patent: August 21, 2012Assignee: International Business Machines CorporationInventors: Benjamin Luke Fletcher, Christian Lavoie, Siegfried Lutz Maurer, Zhen Zhang
-
Patent number: 8232197Abstract: An insulating film formed on a conducting layer is dry-etched so as to make a connection hole in the insulating film to expose the conducting layer. Plasma is supplied onto the exposed conducting layer to dry-clean a damage layer produced in the connection hole. A product produced in the connection hole as a result of the dry cleaning is removed by a wet process. An oxide film formed in the connection hole as a result of the wet process is etched by a chemical dry process using a gas including either NF3 or HF. A thermally decomposable reaction product produced as a result of the etching is removed by heat treatment.Type: GrantFiled: September 9, 2009Date of Patent: July 31, 2012Assignee: Kabushiki Kaisha ToshibaInventors: Makoto Honda, Kaori Yomogihara, Kazuhiro Murakami, Masanori Numano, Takahito Nagamatsu, Hideaki Harakawa, Hideto Matsuyama, Hirokazu Ezawa, Hisashi Kaneko
-
Patent number: 8202799Abstract: A method of manufacturing a microelectronic device including forming a dielectric layer surrounding a dummy feature located over a substrate, removing the dummy feature to form an opening in the dielectric layer, and forming a metal-silicide layer conforming to the opening. The metal-silicide layer may then be annealed.Type: GrantFiled: July 9, 2010Date of Patent: June 19, 2012Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chen-Tung Lin, Chih-Wei Chang, Chii-Ming Wu, Mei-Yun Wang, Chaing-Ming Chuang, Shau-Lin Shue
-
Patent number: 8158483Abstract: A semiconductor device manufacturing method includes, forming isolation region having an aspect ratio of 1 or more in a semiconductor substrate, forming a gate insulating film, forming a silicon gate electrode and a silicon resistive element, forming side wall spacers on the gate electrode, heavily doping a first active region with phosphorus and a second active region and the resistive element with p-type impurities by ion implantation, forming salicide block at 500° C. or lower, depositing a metal layer covering the salicide block, and selectively forming metal silicide layers. The method may further includes, forming a thick and a thin gate insulating films, and performing implantation of ions of a first conductivity type not penetrating the thick gate insulating film and oblique implantation of ions of the opposite conductivity type penetrating also the thick gate insulating film before the formation of side wall spacers.Type: GrantFiled: March 30, 2011Date of Patent: April 17, 2012Assignee: Fujitsu Semiconductor LimitedInventors: Taiji Ema, Hideyuki Kojima, Toru Anezaki
-
Patent number: 8148262Abstract: A method of manufacturing a semiconductor device includes forming a gate electrode, a source region and a drain region, forming a first metal layer, forming silicide layers by first annealing, removing a remainder of the first metal layer after the first annealing, performing a second annealing, forming a second metal layer, performing a third annealing, and removing a remainder of the second metal layer.Type: GrantFiled: June 3, 2010Date of Patent: April 3, 2012Assignee: Fujitsu Semiconductor LimitedInventors: Shinichi Akiyama, Kazuya Okubo, Yusuke Morisaki, Youichi Momiyama
-
Patent number: 8143152Abstract: A semiconductor device 100 includes: a silicon substrate 102; a first gate 114a including a gate electrode 108 formed on the silicon substrate 102 and sidewalls 112 formed on the sidewalls of the gate electrode 108; a silicide layer 132 formed lateral to the sidewalls 112 of the first gate 114a on a surface of the silicon substrate 102; and a contact 164 which overlaps at least partially in plan view with the first gate 114a and reaches to the silicide layer 132 of the surface of the silicon substrate 102; wherein an insulator film is located between the contact 164 and the gate electrode 108 of the first gate 114a.Type: GrantFiled: July 15, 2009Date of Patent: March 27, 2012Assignee: Renesas Electronics CorporationInventor: Masashige Moritoki
-
Patent number: 8105946Abstract: A method of forming the conductive lines of a semiconductor memory device comprises forming a first polysilicon layer over an underlying layer, forming first polysilicon patterns by patterning the first polysilicon layer, filling the space between the first polysilicon patterns with an insulating layer, etching a top portion of the first polysilicon patterns to form recess regions, forming spacers on the sidewalls of the recess regions, filling the recess regions with a second polysilicon layer to form second polysilicon patterns, and performing a metal silicidation process to convert the second polysilicon patterns to metal silicide patterns.Type: GrantFiled: December 17, 2010Date of Patent: January 31, 2012Assignee: Hynix Semiconductor Inc.Inventor: Won Sic Woo
-
Patent number: 8101511Abstract: An integrated circuit, including a junction barrier Schottky diode, has an N type well, a P-type anode region in the surface of the well, and an N-type Schottky region in the surface of the well and horizontally abutting the anode region. A first silicide layer is on and makes a Schottky contact to the Schottky region and is on an adjoining anode region. A second silicide layer of a different material than the first silicide is on the anode region. An ohmic contact is made to the second silicide on the anode region and to the well.Type: GrantFiled: May 6, 2010Date of Patent: January 24, 2012Assignee: Intersil Americas Inc.Inventors: Dev Alok Girdhar, Michael David Church, Alexander Kalnitsky
-
Publication number: 20120009771Abstract: A method for formation of a segregated interfacial dopant layer at a junction between a semiconductor material and a silicide layer includes depositing a doped metal layer over the semiconductor material; annealing the doped metal layer and the semiconductor material, wherein the anneal causes a portion of the doped metal layer and a portion of the semiconductor material to react to form the silicide layer on the semiconductor material, and wherein the anneal further causes the segregated interfacial dopant layer to form between the semiconductor material and the silicide layer, the segregated interfacial dopant layer comprising dopants from the doped metal layer; and removing an unreacted portion of the doped metal layer from the silicide layer.Type: ApplicationFiled: July 9, 2010Publication date: January 12, 2012Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Cyril Cabral, JR., John M. Cotte, Dinesh R. Koli, Laura L. Kosbar, Mahadevaiyer Krishnan, Christian Lavoie, Stephen M. Rossnagel, Zhen Zhang
-
Patent number: 8084342Abstract: A CMOS device and method of manufacture is provided for producing an integrated circuit that is not susceptible to various soft errors such as single-event upsets, multi-bit upsets or single-event latchup. The CMOS device and method utilizes a new and novel well architecture in conjunction with metal source/drain electrodes to eliminate soft errors. In one embodiment, the CMOS device uses a first metal source/drain material for the NMOS device and a second metal source/drain material for the PMOS device. The CMOS device further uses a multi-layered well-structure with a shallow N-well and a buried P-well for the PMOS device and a shallow P-well and a buried N-well for the NMOS device.Type: GrantFiled: October 20, 2010Date of Patent: December 27, 2011Assignee: Avolare 2, LLCInventors: John P. Snyder, John M. Larson
-
Patent number: 8043912Abstract: A semiconductor device is provided with a semiconductor substrate comprising element isolation regions and an element region surrounded by the element isolation regions, a first polysilicon layer formed in the element region of the semiconductor substrate, an element-isolating insulation film formed in the element isolation region of the semiconductor substrate, a second polysilicon layer formed on the element-isolating insulation film, a first silicide layer formed on the first polysilicon layer. And the device further comprising a second silicide layer formed on the second polysilicon layer and being thicker than the first silicide layer.Type: GrantFiled: October 25, 2007Date of Patent: October 25, 2011Assignee: Kabushiki Kaisha ToshibaInventor: Satoshi Matsuda
-
Patent number: 8030154Abstract: In one embodiment, a method of forming a semiconductor device is provided that includes providing a gate structure on a semiconductor substrate. Sidewall spacers may be formed adjacent to the gate structure. A metal semiconductor alloy may be formed on the upper surface of the gate structure and on an exposed surface of the semiconductor substrate that is adjacent to the gate structure. An upper surface of the metal semiconductor alloy is converted to an oxygen-containing protective layer. The sidewall spacers are removed using an etch that is selective to the oxygen-containing protective layer. A strain-inducing layer is formed over the gate structure and the semiconductor surface, in which at least a portion of the strain-inducing layer is in direct contact with the sidewall surface of the gate structure. In another embodiment, the oxygen-containing protective layer of the metal semiconductor alloy is provided by a two stage annealing process.Type: GrantFiled: August 3, 2010Date of Patent: October 4, 2011Assignees: International Business Machines Corporation, GLOBALFOUNDRIES, Inc.Inventors: Ahmet S. Ozcan, Christian Lavoie, Zhen Zhang, Bin Yang
-
Patent number: 8021971Abstract: An integrated circuit is provided including a narrow gate stack having a width less than or equal to 65 nm, including a silicide region comprising Pt segregated in a region of the silicide away from the top surface of the silicide and towards an lower portion defined by a pulldown height of spacers on the sidewalls of the gate conductor. In a preferred embodiment, the spacers are pulled down prior to formation of the silicide. The silicide is first formed by a formation anneal, at a temperature in the range 250° C. to 450° C. Subsequently, a segregation anneal at a temperature in the range 450° C. to 550° C. The distribution of the Pt along the vertical length of the silicide layer has a peak Pt concentration within the segregated region, and the segregated Pt region has a width at half the peak Pt concentration that is less than 50% of the distance between the top surface of the silicide layer and the pulldown spacer height.Type: GrantFiled: November 4, 2009Date of Patent: September 20, 2011Assignee: International Business Machines CorporationInventors: Anthony G. Domenicucci, Christian Lavoie, Ahmet S. Ozcan
-
Patent number: 8008177Abstract: A method for fabricating a semiconductor device is provided using a nickel salicide process. The method includes forming a gate pattern and a source/drain region on a silicon substrate, forming a Ni-based metal layer for silicide on the silicon substrate where the gate pattern and the source/drain region are formed, and forming an N-rich titanium nitride layer on the Ni-based metal layer for silicide. Next, a thermal treatment is applied to the silicon substrate where the Ni-based metal layer for silicide and the N-rich titanium nitride layer are formed, thereby forming a nickel silicide on each of the gate pattern and the source/drain region. Then, the Ni-based metal layer for silicide and the N-rich titanium nitride layer are selectively removed to expose a top portion of a nickel silicide layer formed on the gate pattern and the source/drain region.Type: GrantFiled: July 17, 2003Date of Patent: August 30, 2011Assignee: Samsung Electronics Co., Ltd.Inventors: Min-chul San, Ja-hum Ku, Chul-sung Kim, Kwan-jong Roh, Min-joo Kim
-
Patent number: 7981784Abstract: Isolation regions are formed on a substrate to define an active region. A gate electrode is formed on the active region. A spacer structure is formed on a sidewall of the gate electrode. A gate silicide layer is formed on the gate electrode and a source/drain silicide layer is formed on the active region adjacent to the gate electrode. An upper portion of the gate silicide layer and a portion of the spacer structure are simultaneously removed to form a spacer structure pattern and a gate silicide layer pattern. A stress layer is formed to cover the gate electrode and spacer structure pattern.Type: GrantFiled: March 9, 2009Date of Patent: July 19, 2011Assignee: Samsung Electronics Co., Ltd.Inventors: Dong-Suk Shin, Ki-Chul Kim, Jung-Deog Lee
-
Patent number: 7981735Abstract: Provided are a Schottky barrier tunnel transistor and a method of manufacturing the same that are capable of minimizing leakage current caused by damage to a gate sidewall of the Schottky barrier tunnel transistor using a Schottky tunnel barrier naturally formed at a semiconductor-metal junction as a tunnel barrier. The method includes the steps of: forming a semiconductor channel layer on an insulating substrate; forming a dummy gate on the semiconductor channel layer; forming a source and a drain at both sides of the dummy gate on the insulating substrate; removing the dummy gate; forming an insulating layer on a sidewall from which the dummy gate is removed; and forming an actual gate in a space from which the dummy gate is removed. In manufacturing the Schottky barrier tunnel transistor using the dummy gate, it is possible to form a high-k dielectric gate insulating layer and a metal gate, and stable characteristics in silicidation of the metal layer having very strong reactivity can be obtained.Type: GrantFiled: May 4, 2009Date of Patent: July 19, 2011Assignee: Electronics and Telecommunications Research InstituteInventors: Yark Yeon Kim, Seong Jae Lee, Moon Gyu Jang, Chel Jong Choi, Myung Sim Jun, Byoung Chul Park
-
Publication number: 20110159675Abstract: A process for forming a Schottky barrier to silicon to a bather height selected at a value between 640 meV and 840 meV employs the deposition of a platinum or nickel film atop the silicon surface followed by the deposition of the other of a platinum or nickel film atop the first film. The two films are then exposed to anneal steps at suitable temperatures to cause their interdiffusion and a ultimate formation of Ni2Si and Pt2Si contacts to the silicon surface. The final silicide has a barrier height between that of the Pt and Ni, and will depend on the initial thicknesses of the Pt and Ni films and annealing temperature and time. Oxygen is injected into the system to form an SiO2 passivation layer to improve the self aligned process.Type: ApplicationFiled: July 6, 2010Publication date: June 30, 2011Applicant: VISHAY-SILICONIXInventors: Rossano Carta, Carmelo Sanfilippo
-
Patent number: 7947560Abstract: A method for forming silicide includes the steps of: forming a nickel film on a silicon layer (or a silicon substrate); introducing nitrogen into at least one of the nickel film and the interface between the nickel film and the silicon layer (or the silicon substrate); and after the introduction of the nitrogen, applying heat treatment to the nickel film and the silicon layer (or the silicon substrate) under predetermined conditions to form a nickel disilicide layer.Type: GrantFiled: February 21, 2007Date of Patent: May 24, 2011Assignees: Seiko Epson Corporation, Renesas Technology CorporationInventors: Yukimune Watanabe, Nobuyuki Mise, Shinji Migita
-
Patent number: 7943499Abstract: A method for making a transistor 20 that includes using a transition metal nitride layer 200 and/or a SOG layer 220 to protect the source/drain regions 60 from silicidation during the silicidation of the gate electrode 90. The SOG layer 210 is planarized to expose the transition metal nitride layer 200 or the gate electrode 93 before the gate silicidation process. If a transition metal nitride layer 200 is used, then it is removed from the top of the gate electrode 93 before the full silicidation of the gate electrode 90.Type: GrantFiled: October 21, 2009Date of Patent: May 17, 2011Assignee: Texas Instruments IncorporatedInventors: Jiong-Ping Lu, Yaw S. Obeng, Ping Jiang, Joe G. Tran