Utilizing Particulate Abradant Patents (Class 438/693)
  • Patent number: 10669449
    Abstract: Chemical Mechanical Planarization (CMP) polishing compositions comprising composite particles, such as ceria coated silica particles, offer low dishing, low defects, and high removal rate for polishing oxide films. Chemical Mechanical Planarization (CMP) polishing compositions have shown excellent performance using soft polishing pad.
    Type: Grant
    Filed: September 9, 2018
    Date of Patent: June 2, 2020
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Hongjun Zhou, Jo-Ann Theresa Schwartz, Malcolm Grief, Xiaobo Shi, Krishna P. Murella, Steven Charles Winchester, John Edward Quincy Hughes, Mark Leonard O'Neill, Andrew J. Dodd, Dnyanesh Chandrakant Tamboli, Reinaldo Mario Machado
  • Patent number: 10658196
    Abstract: A chemical-mechanical polishing slurry composition, comprising a polishing agent, an amine-based polishing activator, and a roughness adjusting agent, wherein the amine-based polishing activator is a tertiary or quaternary amine, and the roughness adjusting agent is a disaccharide. According to the slurry composition, the roughness of tungsten and silicon oxide films can be modified and the number of particles present on the wafer surface after polishing can be reduces so that defects of the wafer can be prevented.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: May 19, 2020
    Inventors: Hyeong Ju Lee, Seok Joo Kim, Kyung Il Park
  • Patent number: 10604678
    Abstract: A process and composition are disclosed for polishing tungsten containing select quaternary phosphonium compounds at low concentrations to at least reduce corrosion rate of tungsten. The process and composition include providing a substrate containing tungsten; providing a stable polishing composition, containing, as initial components: water; an oxidizing agent; select quaternary phosphonium compounds at low concentrations to at least reduce corrosion rate; a dicarboxylic acid, a source of iron ions; a colloidal silica abrasive; and, optionally a pH adjusting agent; providing a chemical mechanical polishing pad, having a polishing surface; creating dynamic contact at an interface between the polishing pad and the substrate; and dispensing the polishing composition onto the polishing surface at or near the interface between the polishing pad and the substrate; wherein some of the tungsten is polished away from the substrate, and corrosion rate of tungsten is reduced.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: March 31, 2020
    Assignee: Rohrn and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Lin-Chen Ho, Wei-Wen Tsai, Cheng-Ping Lee
  • Patent number: 10584266
    Abstract: The invention relates to a chemical-mechanical polishing composition comprising (a) ceria abrasive particles, (b) a cationic polymer, (c) a nonionic polymer comprising polyethylene glycol octadecyl ether, polyethylene glycol lauryl ether, polyethylene glycol oleyl ether, poly(ethylene)-co-poly(ethylene glycol), octylphenoxy poly(ethyleneoxy)ethanol, or a combination thereof, (d) a saturated monoacid, and (e) an aqueous carrier. The invention also relates to a method of polishing a substrate.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: March 10, 2020
    Assignee: Cabot Microelectronics Corporation
    Inventor: Sarah Brosnan
  • Patent number: 10508221
    Abstract: The present invention provides aqueous chemical mechanical planarization (CMP) polishing compositions comprising one or more dispersions of colloidal silica particles having a zeta potential of from +5 to +50 mV and having one or more aminosilane group, preferably, elongated, bent or nodular colloidal silica particles, or, more preferably, such particles which contain a cationic nitrogen atom, and at least one amine heterocycle carboxylic acid having an isolectric point (pI) of from 2.5 to 5, preferably, from 3 to 4. The compositions have a pH of from 2.5 to 5.3. Preferably, the amine heterocycle carboxylic acid is an amine-containing heterocyclic monocarboxylic acid, such as nicotinic acid, picolinic acid, or isonicotinic acid. The compositions enable enhanced oxide:nitride removal rate ratios.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: December 17, 2019
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Yi Guo, David Mosley, Naresh Kumar Penta
  • Patent number: 10465096
    Abstract: Provided are Chemical Mechanical Planarization (CMP) formulations that offer high and tunable Cu removal rates and low copper dishing for the broad or advanced node copper or Through Silica Via (TSV). The CMP compositions provide high selectivity of Cu film vs. other barrier layers, such as Ta, TaN, Ti, and TiN, and dielectric films, such as TEOS, low-k, and ultra low-k films. The CMP polishing formulations comprise water; abrasive; single chelator, dual chelators or tris chelators; morpholino family compounds as Cu dishing reducing agents. Additionally, organic quaternary ammonium salt, corrosion inhibitor, oxidizer, pH adjustor and biocide can be used in the formulations.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: November 5, 2019
    Assignee: VERSUM MATERIALS US, LLC
    Inventors: Xiaobo Shi, Mark Leonard O'Neill
  • Patent number: 10457561
    Abstract: A liquid composition for forming a silica porous film of the invention is prepared by mixing a hydrolyzate of tetramethoxysilane or tetraethoxysilane as a silicon alkoxide with a silica sol in which fumed silica particles having primary particles having a mean particle diameter of 40 nm or less and secondary particles having a mean particle diameter of 20 nm to 400 nm, that is greater than the mean particle diameter of the primary particles, are dispersed in a liquid medium, in which the mass ratio (A/B) of the SiO2 content (B) of the silica sol to the SiO2 content (A) in the hydrolyzate is in a range of 1/99 to 60/40.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: October 29, 2019
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Koutaro Masuyama, Satoko Higano, Kazuhiko Yamasaki
  • Patent number: 10407594
    Abstract: A chemical-mechanical polishing (CMP) composition comprising (A) inorganic particles, organic particles, or a composite or mixture thereof, (B) a polymeric polyamine or a salt thereof comprising at least one type of pendant group (Y) which comprises at least one moiety (Z), wherein (Z) is a carboxylate (—COOR1), sulfonate (—SO3R2), sulfate (—O—SO3R3), phosphonate (—P(?O)(OR4)(OR5)), phosphate (—O—P(?O)(OR6)(OR7)), carboxylic acid (—COOH), sulfonic acid (—SO3H), sulfuric acid (—O—SO3—), phosphonic acid (—P(?O)(OH)2), phosphoric acid (—O—P(?O)(OH)2) moiety, or their deprotonated forms, R1 is alkyl, aryl, alkylaryl, or arylalkyl R2 is alkyl, aryl, alkylaryl, or arylalkyl, R3 is alkyl, aryl, alkylaryl, or arylalkyl, R4 is alkyl, aryl, alkylaryl, or arylalkyl, R5 is H, alkyl, aryl, alkylaryl, or arylalkyl, R6 is alkyl, aryl, alkylaryl, or arylalkyl, R7 is H, alkyl, aryl, alkylaryl, or arylalkyl, and (C) an aqueous medium.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: September 10, 2019
    Assignee: BASF SE
    Inventors: Bastian Marten Noller, Yuzhuo Li, Diana Franz, Kenneth Rushing, Michael Lauter, Daniel Kwo-Hung Shen, Yongqing Lan, Zhenyu Bao
  • Patent number: 10399205
    Abstract: Embodiments of the present invention provide systems, apparatus, and methods for chemical polishing a substrate using a fluid network platen assembly that includes a pad having a plurality of fluid openings; a network of a plurality of fluid channels, each channel in fluid communication with at least one fluid opening; a plurality of inlets, each inlet coupled to a different fluid channel; and an outlet coupled to one of the fluid channels not coupled to an inlet. Numerous additional aspects are disclosed.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: September 3, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Balasubramaniam C. Jaganathan, Rajeev Bajaj
  • Patent number: 10344185
    Abstract: Provided is a composition for polishing silicon wafers, having an excellent effect of reducing haze and having low agglomerating property. A composition for polishing silicon wafers provided here includes: an amido group-containing polymer A; and an organic compound B not containing an amido group. The amido group-containing polymer A has, on a main chain, a building block S derived from a monomer represented by General Formula (1). Molecular weight MA of the amido group-containing polymer A and molecular weight MB of the organic compound B have a relation satisfying 200?MB<MA.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: July 9, 2019
    Assignee: Fujimi Incorporated
    Inventors: Kohsuke Tsuchiya, Hisanori Tansho, Yusuke Suga
  • Patent number: 10325808
    Abstract: A method of forming a 3D crack-stop structure in, through, and wrapped around the edges of a substrate to prevent through-substrate cracks from propagating and breaking the substrate and the resulting device are provided. Embodiments include providing a substrate including one or more dies; forming a continuous first trench near an outer edge of the substrate; forming a continuous second trench parallel to and on an opposite side of the first trench from the outer edge; forming a continuous row of vias parallel to and on an opposite side of the second trench from the first trench, forming a continuous third trench parallel to and near an outer edge of each of the dies; forming a protective layer wrapping around the outer edge of the substrate and over and filling the trenches and vias; and patterning active areas of the substrate between the vias and the third trench.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: June 18, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ivan Huang, Elavarasan Pannerselvam, Vijay Sukumaran
  • Patent number: 10233356
    Abstract: The invention is an aqueous slurry useful for chemical mechanical polishing a semiconductor substrate having cobalt or cobalt alloy containing features containing Co0. The slurry includes 0.1 to 2 wt % hydrogen peroxide oxidizing agent (?), 0.5 to 3 wt % colloidal silica particles (?), a cobalt corrosion inhibitor, 0.5 to 2 wt % complexing agent (?) selected from at least one of L-aspartic acid, nitrilotriacetic acid, nitrilotri(methylphosphonic acid), ethylenediamine-N,N?-disuccinic acid trisodium salt, and ethylene glycol-bis (2aminoethylether)-N,N,N?,N?-tetraacetic acid, and balance water having a pH of 5 to 9. The total concentrations remain within the following formulae as follows: wt % (?)+wt % (?)=1 to 4 wt % for polishing the cobalt or cobalt alloy; wt % (?)?2*wt % (?) for limiting static etch of the cobalt or cobalt alloy; and wt % (?)+wt % (?)?3*wt % (?) for limiting static etch.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: March 19, 2019
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Murali G. Theivanayagam, Hongyu Wang
  • Patent number: 10221336
    Abstract: The present invention provides aqueous CMP polishing compositions comprising a from 0.5 to 30 wt. %, based on the total weight of the composition of a dispersion of a plurality of elongated, bent or nodular colloidal silica particles which contain a cationic nitrogen atom, and from 0.001 to 0.5 wt. %, preferably from 10 to 500 ppm, of a cationic copolymer of a diallyldimethylammonium salt, such as a diallyldimethylammonium halide, wherein the compositions have a pH of from 1 to 4.5. Preferably, the cationic copolymer of a diallyldimethylammonium salt comprises a copolymer of diallyldimethylammonium chloride (DADMAC) and sulfur dioxide. The slurry compositions demonstrate good oxide selectivity in the CMP polishing of pattern wafers having nitride and silicon patterns.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: March 5, 2019
    Assignee: Rohm and Hass Electronic Materials CMP Holdings, Inc.
    Inventors: Julia Kozhukh, David Mosley, Naresh Kumar Penta, Matthew Van Hanehem, Kancharla-Arun K. Reddy
  • Patent number: 10190024
    Abstract: Provided is a polishing composition capable of keeping a good polishing removal rate stably. The polishing composition includes silica particles as abrasives and a basic compound as a polishing removal accelerator. The silica particles have a density of silanol groups that is 1.5 to 6.0 pieces/nm2. The polishing composition has an adsorption ratio parameter A that is 1.2 or less, the adsorption ratio parameter representing concentration dependency of an amount of adsorption of the basic compound to the silica particles as the ratio of high-concentration adsorption amount/low-concentration adsorption amount.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: January 29, 2019
    Assignee: FUJIMI INCORPORATED
    Inventors: Shuhei Takahashi, Masatoshi Tomatsu
  • Patent number: 10144907
    Abstract: The purpose of the present invention is to provide a means to sufficiently remove impurities remaining on the surface of a polishing object after CMP. The polishing composition of the present invention is a polishing composition which is used after polishing has been performed by using a polishing composition (A) including abrasive grains or an organic compound (A), and is characterized by including an organic compound (B) which includes at least one atom selected from the group consisting of a fluorine atom, an oxygen atom, a nitrogen atom, and a chlorine atom and has a molecular weight of 100 or more, a pH adjusting agent, and 0 to 1% by mass of abrasive grains.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: December 4, 2018
    Assignee: FUJIMI INCORPORATED
    Inventors: Shuugo Yokota, Shota Suzuki, Tomohiko Akatsuka, Yasuyuki Yamato, Koichi Sakabe, Yoshihiro Izawa, Yukinobu Yoshizaki, Chiaki Saito
  • Patent number: 10138395
    Abstract: An abrasive particle-dispersion layer composite and a polishing slurry composition including the abrasive particle-dispersion layer composite are provided. The abrasive particle-dispersion layer composite includes abrasive particles, a first dispersant that is at least one anionic compound among a copolymer with a functional group of a resonance structure, a carboxyl group-containing polymer and a carboxyl group-containing organic acid, a second dispersant that is at least one cationic compound among an amino acid, an organic acid, polyalkylene glycol and a high-molecular polysaccharide coupled to a glucosamine compound, and a third dispersant that is a cationic polymer including at least two ionized cations in a molecular formula.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: November 27, 2018
    Assignee: KCTECH CO., LTD.
    Inventors: Jang Kuk Kwon, Sung Pyo Lee, Chang Gil Kwon, Jun Ha Hwang
  • Patent number: 9932497
    Abstract: A polishing liquid comprising an abrasive grain, an additive, and water, wherein the abrasive grain includes a hydroxide of a tetravalent metal element, produces absorbance of 1.00 or more and less than 1.50 for light having a wavelength of 400 nm in an aqueous dispersion having a content of the abrasive grain adjusted to 1.0 mass %, and produces a liquid phase having a content of a non-volatile component of 300 ppm or more when centrifuging an aqueous dispersion having a content of the abrasive grain adjusted to 1.0 mass % for 50 minutes at a centrifugal acceleration of 1.59×105 G.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: April 3, 2018
    Assignee: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Tomohiro Iwano, Hisataka Minami, Toshiaki Akutsu, Koji Fujisaki
  • Patent number: 9896604
    Abstract: Described herein are compositions, kits and methods for polishing sapphire surfaces using compositions having colloidal aluminosilicate particles in an aqueous acidic solution. In some aspects, the methods for polishing a sapphire surface may include abrading a sapphire surface with a rotating polishing pad and a polishing composition. The polishing composition may include an amount of a colloidal aluminosilicate and may have a pH of about 2.0 to about 7.0.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: February 20, 2018
    Assignee: ECOLAB USA INC.
    Inventors: Kim Marie Long, Michael A. Kamrath, Sean McCue
  • Patent number: 9892971
    Abstract: A method of forming a 3D crack-stop structure in, through, and wrapped around the edges of a substrate to prevent through-substrate cracks from propagating and breaking the substrate and the resulting device are provided. Embodiments include providing a substrate including one or more dies; forming a continuous first trench near an outer edge of the substrate; forming a continuous second trench parallel to and on an opposite side of the first trench from the outer edge; forming a continuous row of vias parallel to and on an opposite side of the second trench from the first trench, forming a continuous third trench parallel to and near an outer edge of each of the dies; forming a protective layer wrapping around the outer edge of the substrate and over and filling the trenches and vias; and patterning active areas of the substrate between the vias and the third trench.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: February 13, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ivan Huang, Elavarasan Pannerselvam, Vijay Sukumaran
  • Patent number: 9828574
    Abstract: The invention provides a composition for cleaning contaminants from semiconductor wafers following chemical-mechanical polishing. The cleaning composition contains one or more quaternary ammonium hydroxides, one or more organic amines, one or more metal inhibitors, and water. The invention also provides methods for using the cleaning composition.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: November 28, 2017
    Assignee: Cabot Microelectronics Corporation
    Inventors: Roman Ivanov, Fernando Hung, Cheng-Yuan Ko, Fred Sun
  • Patent number: 9803108
    Abstract: The present invention provides aqueous chemical mechanical planarization (CMP) polishing compositions have excellent heat aging and shelf stability in the form of concentrates comprising a mixture of a compound containing two quaternary ammonium groups, such as hexabutyl C1-C8 alkanediammonium dihydroxides or salts thereof, preferably N,N,N,N?,N?,N?-hexabutyl-1,4-butanediammonium dihydroxide (HBBAH), and aminosilane group containing silica particles in the amount of from 1 to 30 wt. % or, preferably, from 15 to 22 wt. %, as solids based on the total weight of the composition, the composition having a pH ranging from 3 to 5 or, preferably, from 3.5 to 4.5 wherein the composition is stable against visible precipitation or sedimentation at a 15 wt. % solids content after heat aging at a temperature of 45° C. for at least 6 days.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: October 31, 2017
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Yi Guo, David Mosley, David L. Thorsen
  • Patent number: 9803107
    Abstract: The present invention relates to a polishing agent including: cerium oxide particles; a water-soluble polyamine; potassium hydroxide; at least one selected from an organic acid and a salt thereof; and water, in which the polishing agent has a pH of 10 or more, a polishing method using the polishing agent, and a method for manufacturing a semiconductor integrated circuit device.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: October 31, 2017
    Assignee: ASAHI GLASS COMPANY, LIMITED
    Inventors: Masaru Suzuki, Toshihiko Otsuki
  • Patent number: 9803161
    Abstract: A cleaning agent is provided for a semiconductor substrate superior in corrosion resistance of a tungsten wiring or a tungsten alloy wiring, and superior in removal property of polishing fines (particle) such as silica or alumina, remaining at surface of the semiconductor substrate, in particular, at surface of a silicon oxide film such as a TEOS film, after a chemical mechanical polishing process; and a method for processing a semiconductor substrate surface. A cleaning agent for a semiconductor substrate is to be used in a post process of a chemical mechanical polishing process of the semiconductor substrate having a tungsten wiring or a tungsten alloy wiring, and a silicon oxide film, comprising (A) a phosphonic acid-based chelating agent, (B) a primary or secondary monoamine having at least one alkyl group or hydroxyalkyl group in a molecule and (C) water, wherein a pH is over 6 and below 7.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: October 31, 2017
    Assignee: WAKO PURE CHEMICAL INDUSTRIES, LTD.
    Inventors: Hiromi Kawada, Hironori Mizuta, Tsuneaki Maesawa
  • Patent number: 9799532
    Abstract: The CMP polishing liquid of the invention comprises a metal salt containing at least one type of metal selected from the group consisting of metals of Groups 8, 11, 12 and 13, 1,2,4-triazole, a phosphorus acid, an oxidizing agent and abrasive grains. The polishing method of the invention comprises a step of polishing at least a palladium layer with an abrasive cloth while supplying a CMP polishing liquid between the palladium layer of a substrate having the palladium layer and the abrasive cloth, wherein the CMP polishing liquid comprises a metal salt containing at least one type of metal selected from the group consisting of metals of Groups 8, 11, 12 and 13, 1,2,4-triazole, a phosphorus acid, an oxidizing agent and abrasive grains.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: October 24, 2017
    Assignee: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Hisataka Minami, Jin Amanokura, Sou Anzai
  • Patent number: 9761454
    Abstract: A method of polishing a SiC substrate by supplying a polishing liquid and bringing a polishing pad into contact with the SiC substrate is provided. The polishing liquid contains a permanganate, inorganic salts having an oxidizing ability, and water. The method includes: a first polishing step of polishing the SiC substrate by use of a first polishing pad; and a second polishing step of polishing the SiC substrate by use of a second polishing pad softer than the first polishing pad after the first polishing step.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: September 12, 2017
    Assignee: DISCO CORPORATION
    Inventors: Katsuyoshi Kojima, Takeshi Sato
  • Patent number: 9752057
    Abstract: A chemical mechanical polishing (CMP) method for removal of a metal layer deposited over a titanium nitride (TiN) or titanium/titanium nitride (Ti/TiN) barrier layer is described herein. The method comprises abrading the metal layer with an acidic CMP composition to expose the underlying TiN or Ti/TiN layer, wherein the TiN or Ti/N layer is polished at a low rate due to the presence of a surfactant inhibitor. The acidic CMP composition comprises a particulate abrasive (e.g., silica, alumina) suspended in a liquid carrier containing a surfactant selected from the group consisting of an anionic surfactant, a nonionic surfactant, cation surfactants, and a combination thereof.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: September 5, 2017
    Assignee: Cabot Microelectronics Corporation
    Inventors: Hui-Fang Hou, William Ward, Ming-Chih Yeh, Chih-Pin Tsai
  • Patent number: 9662763
    Abstract: Provided is a polishing composition containing at least aluminum oxide abrasive grains and water, and having a pH of 8.5 or higher. The aluminum oxide abrasive grains have a specific surface area of 20 m2/g or less. It is preferable for the aluminum oxide abrasive grains to have an average secondary particle size of 0.1 ?m or more and 20 ?m or less. The polishing composition is used for polishing hard and brittle materials having a Vickers hardness of 1,500 Hv or higher, such as sapphire, silicon carbide, and gallium nitride.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: May 30, 2017
    Assignee: FUJIMI INCORPORATED
    Inventors: Hiroshi Asano, Kazusei Tamai, Yasunori Okada
  • Patent number: 9574110
    Abstract: A barrier chemical mechanical planarization polishing composition is provided that includes suitable chemical additives. The suitable chemical additives are organic polymer molecules containing ethylene oxide repeating units having the general molecular structure of where n refers to the total numbers of the repeating unit giving the molecular weights of polyethylene oxide ranging from 100,000 to 8,000,000. There is also provided a chemical mechanical polishing method using the barrier chemical mechanical planarization polishing composition.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: February 21, 2017
    Assignee: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Maitland Gary Graham, James Allen Schlueter, Xiaobo Shi
  • Patent number: 9534148
    Abstract: A process for chemical mechanical polishing of a substrate is provided, comprising: providing the substrate, wherein the substrate has an exposed silicon dioxide; providing a chemical mechanical polishing composition, consisting of, as initial components: water, a colloidal silica abrasive; optionally, a substance according to formula (I); a substance according to formula (II); and, optionally, a pH adjusting agent; wherein a pH of the chemical mechanical polishing composition is ?6; providing a chemical mechanical polishing pad with a polishing surface; dispensing the chemical mechanical polishing composition onto the polishing surface in proximity to an interface between the chemical mechanical polishing pad and the substrate; and, creating dynamic contact at the interface between the chemical mechanical polishing pad and the substrate with a down force of 0.69 to 34.5 kPa; wherein the substrate is polished; wherein some of the exposed silicon dioxide is removed from the substrate.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: January 3, 2017
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Yi Guo, David Mosley
  • Patent number: 9487675
    Abstract: A chemical mechanical polishing (CMP) composition comprising: (A) inorganic particles, organic particles, or a mixture or composite thereof, (B) at least one type of an organic polymeric compound as a dispersing agent or charge reversal agent comprising a phosphonate (P(?O)(OR1)(OR2) or phosphonic acid (P(?O)(OH)2) moiety or their deprotonated forms as pendant groups, wherein R1 is alkyl, aryl, alkylaryl, or arylalkyl, R2 is H, alkyl, aryl, alkylaryl, or arylalkyl, and (C) an aqueous medium.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: November 8, 2016
    Assignee: BASF SE
    Inventors: Vijay Immanuel Raman, Yuzhuo Li, Christian Schade, Shyam Sundar Venkataraman, Eason Yu-Shen Su, Sheik Ansar Usman Ibrahim
  • Patent number: 9396945
    Abstract: A method that includes at least a CMP step of subjecting both a Si surface (1a) and a C surface (1b) of an SiC substrate (1) to double-sided polishing using a CMP (Chemical Mechanical Polishing) method with a C surface/Si surface processing selectivity ratio of 3.0 or greater.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: July 19, 2016
    Assignee: SHOWA DENKO K.K.
    Inventor: Yuzo Sasaki
  • Patent number: 9362119
    Abstract: The present disclosure provides a method of patterning a target material layer over a semiconductor substrate. The method includes steps of: forming a plurality of first features over the target material layer using a first sub-layout, with each first feature having sidewalls; forming a plurality of spacer features, with each spacer feature conforming to the sidewalls of one of the first features and having a spacer width; and forming a plurality of second features over the target material layer using a second sub-layout. The method further includes steps of removing the plurality of spacer features from around each first feature and patterning the target material layer using the plurality of first features and the plurality of second features. Other methods and associated patterned semiconductor wafers are also provided herein.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: June 7, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsong-Hua Ou, Ken-Hsien Hsieh, Shih-Ming Chang, Wen-Chun Huang, Chih-Ming Lai, Ru-Gun Liu, Tsai-Sheng Gau
  • Patent number: 9318369
    Abstract: A semiconductor device including a plurality of active patterns, a plurality of first isolation layer patterns and a plurality of second isolation layer patterns may be provided. In particular, the active patterns may be arranged both in a first direction and in a second direction, and may protrude from a substrate and have a length in the first direction. The first isolation layer patterns may fill a first space, the first space provided between the active patterns and arranged in the first direction, and support two opposing sidewalls of neighboring active patterns. The second isolation layer patterns may fill a second space between the active patterns and the first isolation layer patterns. Accordingly, the active patterns of the semiconductor device may not collapse or incline because the first isolation layer patterns support the active patterns.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: April 19, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Je-Min Park
  • Patent number: 9312141
    Abstract: A method for polishing a carbon overcoat of a magnetic media that results in a smooth surface free of carbon cluster debris. The method involves forming a magnetic disk having a carbon overcoat formed thereon. The carbon overcoat is then polished in the presence of ozone (O3). The heat from the polishing process along with the presence of the ozone, cause any carbon particles removed by the polishing to form CO2 gas so that there is no remaining carbon particle debris on the surface of the disk.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: April 12, 2016
    Assignee: HGST Netherlands B.V.
    Inventors: Thomas E. Karis, Bruno Marchon, Bala K. Pathem, Franck D. Rose dit Rose, Kurt A. Rubin, Erhard Schreck
  • Patent number: 9287132
    Abstract: Provided are a multi-selective polishing slurry composition and a semiconductor element production method using the same. A silicon film provided with element patterns is formed on the uppermost part of a substrate having a first region and a second region. The element pattern density on the first region is higher than the element pattern density on the second region. Formed in sequence on top of the element patterns are a first silicon oxide film, a silicon nitride film and a second silicon oxide film. The substrate is subjected to chemical-mechanical polishing until the silicon film is exposed, by using a polishing slurry composition containing a polishing agent, a silicon nitride film passivation agent and a silicon film passivation agent.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: March 15, 2016
    Assignee: Industry-University Cooperation Foundation Hanyang University
    Inventors: Jea-Gun Park, Un-Gyu Paik, Jin-Hyung Park, Hao Cui, Jong-Young Cho, Hee-Sub Hwang, Jae-Hyung Lim, Ye-Hwan Kim
  • Patent number: 9275899
    Abstract: A composition and method for tungsten is provided comprising: a metal oxide abrasive; an oxidizer; a tungsten removal rate enhancing substance according to formula I; and, water; wherein the polishing composition exhibits an enhanced tungsten removal rate and a tungsten removal rate enhancement.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: March 1, 2016
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Yi Guo, Raymond L. Lavoie, Jr.
  • Patent number: 9260643
    Abstract: The present invention is directed to a method for producing a slurry used in a wire saw, including: re-pulverizing with a jet mill part or all of the abrasive grains pulverized with a roller mill or a ball mill such that the abrasive grains have an average circularity of 0.900 or more; and blending the abrasive grains whose the average circularity is 0.900 or more with a coolant to produce the slurry, and to a slurry including blended abrasive grains having an average circularity of 0.900 or more. The invention enables suppression of reduction in slicing capability due to reduction in abrasive-grains concentration and of increased costs due to reduction in slicing quality and in productivity, even when abrasive grains having a grain diameter smaller than that of #2000-size abrasive grains are used to reduce a kerf loss.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: February 16, 2016
    Assignee: SHIN-ETSU HANDOTAI CO., LTD.
    Inventor: Koji Kitagawa
  • Patent number: 9193032
    Abstract: A supplying system of adding gas into the polishing slurry and method thereof are described. The supplying system includes a slurry container, a gas-mixed container, an adjusting device, a first flow controller, and a second flow controller. The supplying system utilizes the adjusting device to mix the polishing slurry with gas for forming the gas-mixed polishing slurry. The supplying system of adding the gas into the polishing slurry and method thereof are capable of increasing the material removal rate of the surface of the substrate in order to improve the processing quality of the substrate.
    Type: Grant
    Filed: April 13, 2014
    Date of Patent: November 24, 2015
    Assignee: NATIONAL TAIWAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Chao-Chang Chen, Ping-Shen Chou, Wei-Kang Tu
  • Patent number: 9163162
    Abstract: A polishing agent according to one embodiment of the present invention contains a liquid medium, an abrasive grain including a hydroxide of a tetravalent metal element, a polymer compound having an aromatic ring and a polyoxyalkylene chain, and a cationic polymer, wherein a weight average molecular weight of the polymer compound is 1000 or more.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: October 20, 2015
    Assignee: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Toshiaki Akutsu, Hisataka Minami, Tomohiro Iwano, Koji Fujisaki
  • Patent number: 9157012
    Abstract: Provided is a process for the manufacture of semiconductor devices comprising the chemical mechanical polishing of borophosphosilicate glass (BPSG) material in the presence of a chemical mechanical polishing (CMP) composition which comprises: (A) inorganic particles, organic particles, or a mixture or composite thereof, (B) at least one type of anionic phosphate or phosphonate as dispersing agent or charge reversal agent, (C) at least one type of surfactant, and (D) an aqueous medium.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: October 13, 2015
    Assignee: BASF SE
    Inventors: Shyam Sundar Venkataraman, Eason Yu-Shen Su
  • Patent number: 9059194
    Abstract: Partial removal of organic planarizing layer (OPL) material forms a plug of OPL material within an aperture that protects underlying material or electronic device such as a deep trench capacitor during other manufacturing processes. The OPL plug thus can absorb any differences or non-uniformity in, for example, etch rates across the chip or wafer and preserve recess dimensions previously formed. Control of a lateral component of later removal of the OPL plug by etching also can increase tolerance of overlay error in forming connections and thus avoid loss in manufacturing yield.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Colin J. Brodsky, Anne C. Friedman, Herbert Lei Ho, Byeong Yeol Kim, Dan Mihai Mocuta, Garrett W. Oakley, Chienfan Yu
  • Publication number: 20150147884
    Abstract: The present invention provides a slurry for chemical mechanical polishing, containing abrasive grain (a), compound (b) having an amino group having a pKa of more than 9, and not less than 3 hydroxyl groups, and water.
    Type: Application
    Filed: May 27, 2013
    Publication date: May 28, 2015
    Applicant: KURARAY CO., LTD.
    Inventors: Mitsuru Kato, Chihiro Okamoto, Shinya Kato
  • Publication number: 20150132956
    Abstract: Provided are novel chemical mechanical polishing (CMP) slurry compositions for polishing copper substrates and method of using the CMP compositions. The CMP slurry compositions deliver superior planarization with high and tunable removal rates and low defects when polishing bulk copper layers of the nanostructures of IC chips. The CMP slurry compositions also offer the high selectivity for polishing copper relative to the other materials (such as Ti, TiN, Ta, TaN, and Si), suitable for through-silicon via (TSV) CMP process which demands high copper film removal rates.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 14, 2015
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Xiaobo Shi, Krishna Murella, James Allen Schlueter, Jae Ouk Choo
  • Publication number: 20150132958
    Abstract: The invention relates to a contact release capsule comprising a particle, a chemical payload, and a polymer coating, wherein the particle is impregnated with the chemical payload, and the chemical payload is held inside the particle by the polymer coating until the contact release capsule contacts a surface and a shearing force removes the polymer coating allowing the chemical payload to release outside the particle. The contact release capsule is useful in chemical mechanical planarization slurries. Particularly, the contact release capsule may comprise a glycine impregnated silica nanoparticle coated with a polymer, wherein the contact release capsule is dispersed in an aqueous solution and used in the copper chemical mechanical planarization process. Use of the contact release capsule in a slurry for copper chemical mechanical planarization may significantly improve planarization efficiency, decrease unwanted etching and corrosion, and improve dispersion stability.
    Type: Application
    Filed: January 20, 2015
    Publication date: May 14, 2015
    Inventor: Robin Ihnfeldt
  • Publication number: 20150132957
    Abstract: The present disclosure is directed to a highly dilutable chemical mechanical polishing concentrate comprising an abrasive, an acid, a stabilizer, and water with a point-of-use pH ranging from 2.2-3.5 for planarizing current and next generation semiconductor integrated circuit FEOL/BEOL substrates.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 14, 2015
    Inventors: Bin Hu, Abhiskek Singh, Gert Moyaerts, Deepak Mahulikar, Richard Wen
  • Patent number: 9023734
    Abstract: A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with a nitrogen-and-hydrogen-containing precursor. Reactants thereby produced etch the patterned heterogeneous structures with high silicon oxide selectivity while the substrate is at high temperature compared to typical Siconi™ processes. The etch proceeds without producing residue on the substrate surface. The methods may be used to remove silicon oxide while removing little or no silicon, polysilicon, silicon nitride or titanium nitride.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 5, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Zhijun Chen, Jingchun Zhang, Ching-Mei Hsu, Seung Park, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20150118845
    Abstract: A chemical-mechanical polishing (“CMP”) composition (P) comprising (A) inorganic particles, organic particles, or a mixture or composite thereof, (B) at least one type of A/-heterocyclic compound as corrosion inhibitor, (C) at least one type of a further corrosion inhibitor selected from the group consisting of: (C1) an acetylene alcohol, and (C2) a salt or an adduct of (C2a) an amine, and (C2b) a carboxylic acid comprising an amide moiety, (D) at least one type of an oxidizing agent, (E) at least one type of a complexing agent, and (F) an aqueous medium.
    Type: Application
    Filed: March 19, 2012
    Publication date: April 30, 2015
    Applicant: BASF SE
    Inventor: Ning Gao
  • Patent number: 9018023
    Abstract: An efficient method of detecting defects in metal patterns on the surface of wafers. Embodiments include forming a metal pattern on each of a plurality of wafers, polishing each wafer, and analyzing the surface of the metal pattern on each polished wafer for the presence of defects in the metal pattern by analyzing an optical across-wafer endpoint signal, generated at the endpoint of polishing. Embodiments include determining the location of defects in the metal pattern by determining the position of non-uniformities in the optical-across-wafer endpoint signal.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: April 28, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Mike Schlicker
  • Publication number: 20150111383
    Abstract: A polishing liquid composition for a silicon wafer, wherein the composition comprises silica particles (component A), at least one kind of nitrogen-containing basic compound (component B) selected from an amine compound and an ammonium compound, and a water-soluble macromolecular compound (component C) that contains 10 wt % or more of a constitutional unit I represented by a general formula (1) below and has a weight average molecular weight of 50,000 or more and 1,500,000 or less; and the pH at 25° C. is 8.0 to 12.0. In the general formula (1), R1 and R2 each independently represents a hydrogen, a C1 to C8 alkyl group, or a C1 to C2 hydroxyalkyl group, and R1 and R2 are never both hydrogens.
    Type: Application
    Filed: April 16, 2013
    Publication date: April 23, 2015
    Applicant: KAO CORPORATION
    Inventors: Joji Miura, Yoshiaki Matsui, Yuki Kato, Yuki Kotaka
  • Patent number: 9012327
    Abstract: A low defect chemical mechanical polishing composition for polishing silicon oxide containing substrates is provided comprising, as initial components: water, a colloidal silica abrasive; and, an additive according to formula I.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: April 21, 2015
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventor: Yi Guo