Color Filter Patents (Class 438/70)
  • Patent number: 11925093
    Abstract: A color-converting substrate includes a color-converting part including a wavelength-converting particle configured to change a wavelength of an incident light to emit a light having a color different from the incident light, a color filter pattern filtering the light emitted from the color-converting part, and a light-reflective layer disposed between the color-converting part and the color filter pattern to selectively reflect a light having a wavelength same as the wavelength of the incident light.
    Type: Grant
    Filed: December 5, 2022
    Date of Patent: March 5, 2024
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyunbae Park, Seunghee Lee, Wal Jun Kim, Kiwan Ahn, Joosun Yoon
  • Patent number: 11888001
    Abstract: The present technology relates to a solid-state imaging device and an electronic apparatus capable of improving the accuracy of phase difference detection while suppressing degradation of a picked-up image. There is provided a solid-state imaging device including: a pixel array unit, a plurality of pixels being two-dimensionally arranged in the pixel array unit, a plurality of photoelectric conversion devices being formed with respect to one on-chip lens in each of the plurality of pixels, a part of at least one of an inter-pixel separation unit formed between the plurality of pixels and an inter-pixel light blocking unit formed between the plurality of pixels protruding toward a center of the corresponding pixel in a projecting shape to form a projection portion. The present technology is applicable to, for example, a CMOS image sensor including a pixel for detecting the phase difference.
    Type: Grant
    Filed: March 31, 2023
    Date of Patent: January 30, 2024
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Shouichirou Shiraishi, Takuya Maruyama, Shinichiro Yagi, Shohei Shimada, Shinya Sato
  • Patent number: 11869916
    Abstract: A method of fabricating a semiconductor device includes receiving a device substrate; forming an interconnect structure on a front side of the device substrate; and etching a recess into a backside of the device substrate until a portion of the interconnect structure is exposed. The recess has a recess depth and an edge of the recess is defined by a sidewall of the device substrate. A conductive bond pad is formed in the recess, and a first plurality of layers cover the conductive bond pad, extend along the sidewall of the device substrate, and cover the backside of the device substrate. The first plurality of layers collectively have a first total thickness that is less than the recess depth. A first chemical mechanical planarization is performed to remove portions of the first plurality of layers so remaining portions of the first plurality of layers cover the conductive bond pad.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: January 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chin-Wei Liang, Sheng-Chau Chen, Hsun-Chung Kuang, Sheng-Chan Li
  • Patent number: 11862654
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor, and a method for forming the image sensor, in which an inter-pixel trench isolation structure is defined by a low-transmission layer. In some embodiments, the image sensor comprises an array of pixels and the inter-pixel trench isolation structure. The array of pixels is on a substrate, and the pixels of the array comprise individual photodetectors in the substrate. The inter-pixel trench isolation structure is in the substrate. Further, the inter-pixel trench isolation structure extends along boundaries of the pixels, and individually surrounds the photodetectors, to separate the photodetectors from each other. The inter-pixel trench isolation structure is defined by a low-transmission layer with low transmission for incident radiation, such that the inter-pixel trench isolation structure has low transmission for incident radiation.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: January 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Keng-Yu Chou, Wei-Chieh Chiang, Chin-Chia Kuo, Wen-Hau Wu, Hua-Mao Chen, Chih-Kung Chang
  • Patent number: 11862652
    Abstract: An image pickup element includes: a semiconductor substrate including a photoelectric conversion section for each pixel; a pixel separation groove provided in the semiconductor substrate; and a fixed charge film provided on a light-receiving surface side of the semiconductor substrate, wherein the fixed charge film includes a first insulating film and a second insulating film, the first insulating film being provided contiguously from the light-receiving surface to a wall surface and a bottom surface of the pixel separation groove, and the second insulating film being provided on a part of the first insulating film, the part corresponding to at least the light-receiving surface.
    Type: Grant
    Filed: November 21, 2022
    Date of Patent: January 2, 2024
    Assignee: SONY GROUP CORPORATION
    Inventors: Shuji Manda, Susumu Hiyama, Yasuyuki Shiga
  • Patent number: 11843017
    Abstract: An image sensor includes a substrate having a first surface and a second surface that are opposite to each other. The substrate including a plurality of unit pixel regions having photoelectric conversion regions and floating diffusion regions disposed adjacent to the first surface. A pixel isolation pattern is disposed in the substrate and is configured to define the plurality of unit pixel regions. An interconnection layer is disposed on the first surface of the substrate. The interconnection layer includes a conductive structure having a connection portion that extends parallel to the first surface of the substrate and is spaced apart from the first surface of the substrate. Contacts extend vertically from the connection portion towards the first surface of the substrate. Each of the contacts are spaced apart from each other with the pixel isolation pattern interposed therebetween. The contacts are coupled to the floating diffusion regions, respectively.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: December 12, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyoun-Jee Ha, Changhwa Kim
  • Patent number: 11843015
    Abstract: An image sensor includes a device isolation layer disposed in a substrate and defining pixel regions, and a grid pattern on a surface of the substrate. The grid pattern overlaps the device isolation layer between adjacent pixel regions in a direction perpendicular to the surface. The grid pattern has a width less than a width of the device isolation layer.
    Type: Grant
    Filed: March 3, 2022
    Date of Patent: December 12, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Min Jang, Jungchak Ahn, Junsung Park, Younggu Jin
  • Patent number: 11843013
    Abstract: The present disclosure is directed to a method of forming a polarization grating structure (e.g., polarizer) as part of a grid structure of a back side illuminated image sensor device. For example, the method includes forming a layer stack over a semiconductor layer with radiation-sensing regions. Further, the method includes forming grating elements of one or more polarization grating structures within a grid structure, where forming the grating elements includes (i) etching the layer stack to form the grid structure and (ii) etching the layer stack to form grating elements oriented to a polarization angle.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: December 12, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee
  • Patent number: 11769778
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming an image sensor. The method includes forming a photodetector in a substrate. A lower interconnect portion of an interconnect structure is formed over the photodetector. A removal process is performed to define a first opening overlying the photodetector in the lower interconnect portion. A lower etch stop layer is formed lining the first opening. The lower etch stop layer has a U-shape in the first opening. An upper interconnect portion of the interconnect structure is formed over the lower etch stop layer. A light pipe structure is formed overlying the photodetector. The U-shape of the lower etch stop layer extends continuously along sidewalls and a bottom surface of the light pipe structure.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: September 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsun-Kai Tsao, Jiech-Fun Lu, Shih-Pei Chou, Tzu-Ming Wang
  • Patent number: 11749698
    Abstract: An image sensor is provided to include: one or more first grid structures arranged in rows and columns of a pixel array including imaging pixels arranged in rows and columns, the first grid structures structured to separate the imaging pixels from one another and including a low refractive-index material or an air to provide an optical isolation between two adjacent imaging pixels; and a gap region disposed between the first grid structures and configured to physically isolate the first grid structures from each other, wherein the first grid structures comprise a first capping layer covering the low refractive-index material or the air.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: September 5, 2023
    Assignee: SK HYNIX INC.
    Inventors: Yun Hui Yang, Young Woong Do
  • Patent number: 11742371
    Abstract: An imaging device and electronic apparatus incorporating an imaging device are provided. The imaging device includes a substrate and a plurality of photoelectric conversion units formed in the substrate. Each photoelectric conversion unit in the plurality of photoelectric conversion units is associated with at least one corresponding color filter in the plurality of color filters. The imaging device further includes a plurality of infrared light filters, wherein at least some of the photoelectric conversion units in the plurality of photoelectric conversion units are associated with at least one corresponding infrared light filter in the plurality of infrared light filters.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: August 29, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventor: Yukihiro Sayama
  • Patent number: 11719867
    Abstract: Disclosed are an optical filter including a near infrared absorption layer on a polymer film. The polymer film has a* of about ?5.0 to about +5.0 and b* of about ?5.0 to about +5.0 in a color coordinate expressed by a CIE Lab color space. The near infrared absorption layer may be configured to transmit light in a visible region and to selectively absorb at least one part of light in a near infrared region. The near infrared absorption layer includes a first near infrared absorption material including a copper phosphate ester compound and a second near infrared absorption material including at least two different organic dyes. The second near infrared absorption material has a maximum absorption wavelength (?max) in a wavelength region of about 650 nm to about 1200 nm. An electronic device may include the optical filter.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: August 8, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong Hoon Won, Changki Kim, Hyung Jun Kim, Yong Joo Lee, Myungsup Jung
  • Patent number: 11686892
    Abstract: Disclosed are a combination structure including a nanostructure array including a plurality of nanostructures with a smaller dimension than the near-infrared wavelength are repeatedly arranged and a light absorption portion adjacent to the nanostructure array and including a near-infrared absorbing material configured to absorb light in at least a portion of near-infrared wavelength regions, an optical filter, an image sensor, a camera module, and an electronic device including the same.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: June 27, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Mi Jeong Kim, Sookyoung Roh, Seokho Yun, Ilhwan Kim, Hyung Jun Kim, Chung Kun Cho
  • Patent number: 11688747
    Abstract: There is provided a solid-state imaging device including: a pixel array unit, a plurality of pixels being two-dimensionally arranged in the pixel array unit, a plurality of photoelectric conversion devices being formed with respect to one on-chip lens in each of the plurality of pixels, a part of at least one of an inter-pixel separation unit formed between the plurality of pixels and an inter-pixel light blocking unit formed between the plurality of pixels protruding toward a center of the corresponding pixel in a projecting shape to form a projection portion.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: June 27, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Shouichirou Shiraishi, Takuya Maruyama, Shinichiro Yagi, Shohei Shimada, Shinya Sato
  • Patent number: 11670657
    Abstract: An image sensor includes; a photoelectric conversion element disposed on a substrate, a fence structure disposed on the substrate and including a low refractive index layer stacked on a barrier layer, wherein the barrier layer includes at least one metal, and a color filter disposed inwardly lateral with respect to a sidewall of the fence structure, wherein the barrier layer includes an inward lateral protrusion.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: June 6, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Min Hwan Jeon, Doo Won Kwon, Chan Ho Park, Kyung Rae Byun, Dong-Chul Lee, Chong Kwang Chang
  • Patent number: 11670651
    Abstract: A pixel array includes octagon-shaped pixel sensors and a combination of visible light pixel sensors (e.g., red, green, and blue pixel sensors) and near infrared (NIR) pixel sensors. The color information obtained by the visible light pixel sensors and the luminance obtained by the NIR pixel sensors may be combined to increase the low-light performance of the pixel array, and to allow for low-light color images in low-light applications. The octagon-shaped pixel sensors may be interspersed in the pixel array with square-shaped pixel sensors to increase the utilization of space in the pixel array, and to allow for pixel sensors in the pixel array to be sized differently. The capability to accommodate different sizes of visible light pixel sensors and NIR pixel sensors permits the pixel array to be formed and/or configured to satisfy various performance parameters.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: June 6, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Chien Hsieh, Yun-Wei Cheng, Kuo-Cheng Lee, Cheng-Ming Wu
  • Patent number: 11646336
    Abstract: Provided is an image sensor including a semiconductor substrate including a first surface and a second surface and a plurality of pixel regions spaced apart, the plurality of pixel regions including a first region including a plurality of image pixels configured to generate image data and a second region including a plurality of phase difference detection pixels configured to perform autofocusing, a first grid pattern including a plurality of groove portions disposed on the second surface, a plurality of first microlenses selectively disposed on bottom surfaces of the plurality of groove portions corresponding to at least one of the first region and the second region, a plurality of color filters filling the plurality of groove portions, respectively, a second grid pattern superimposed on the first grid pattern, and a plurality of second microlenses separated by the second grid pattern and disposed on the plurality of color filters, respectively.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: May 9, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jaekwan Seo, Boram Kim, Nosan Park, Jungkuk Park, Jinsu Park, Seunghwan Lee
  • Patent number: 11630252
    Abstract: An optical filter (1a) includes a light-absorbing layer (10). The light-absorbing layer absorbs light in at least a portion of the near-infrared region. When light with a wavelength of 300 nm to 1200 nm is incident on the optical filter (1a) at incident angles of 0°, 30°, and 40°, the optical filter (1a) satisfies given transmittance requirements. Nine differences each obtained as a difference between one and another of IE?xR, IE?yG, and IE?zB defined for incident angles ?° of 0°, 30°, and 40° satisfy given requirements, and ranges satisfy given requirements, each range being a difference obtained by subtracting the smallest value of three differences from the largest value of the three differences, the three differences obtained from IE?xR, IE?yG, and IE?zB collectively defined for the same pair selected from the incident angles ?°.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: April 18, 2023
    Assignee: NIPPON SHEET GLASS COMPANY, LIMITED
    Inventors: Tomitaka Takagi, Katsuhide Shimmo
  • Patent number: 11594563
    Abstract: The present technology relates to techniques of preventing intrusion of moisture into a chip. Various illustrative embodiments include image sensors that include: a substrate; a plurality of layers stacked on the substrate; the plurality of layers including a photodiode layer having a plurality of photodiodes formed on a surface of the photodiode layer; the plurality of layers including at least one layer having a groove formed such that a portion of the at least one layer is excavated; and a transparent resin layer formed above the photodiode layer and formed in the groove. The present technology can be applied to, for example, an image sensor.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: February 28, 2023
    Assignee: SONY CORPORATION
    Inventors: Atsushi Yamamoto, Shinji Miyazawa, Yutaka Ooka, Kensaku Maeda, Yusuke Moriya, Naoki Ogawa, Nobutoshi Fujii, Shunsuke Furuse, Masaya Nagata, Yuichi Yamamoto
  • Patent number: 11581349
    Abstract: Photosensors may be formed on a front side of a semiconductor substrate. An optical refraction layer having a first refractive index may be formed on a backside of the semiconductor substrate. A grid structure including openings is formed over the optical refraction layer. A masking material layer is formed over the grid structure and the optical refraction layer. The masking material layer may be anisotropically etched using an anisotropic etch process that collaterally etches a material of the optical refraction layer and forms non-planar distal surface portions including random protrusions on physically exposed portions of the optical refraction layer. An optically transparent layer having a second refractive index that is different from the first refractive index may be formed on the non-planar distal surface portions of the optical refraction layer. A refractive interface refracts incident light in random directions, and improves quantum efficiency of the photosensors.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: February 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Po-Han Chen, Kuo-Cheng Lee, Fu-Cheng Chang
  • Patent number: 11569308
    Abstract: A color-converting substrate includes a color-converting part including a wavelength-converting particle configured to change a wavelength of an incident light to emit a light having a color different from the incident light, a color filter pattern filtering the light emitted from the color-converting part, and a light-reflective layer disposed between the color-converting part and the color filter pattern to selectively reflect a light having a wavelength same as the wavelength of the incident light.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: January 31, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyunbae Park, Seunghee Lee, Wal Jun Kim, Kiwan Ahn, Joosun Yoon
  • Patent number: 11538838
    Abstract: Designs of image sensing devices by including a substrate layer including a plurality of photoelectric conversion elements, a plurality of grid structures disposed over the substrate layer, a plurality of color filter layers each of which is disposed between adjacent grid structures, a plurality of over-coating layers formed over the color filter layers, and a plurality of microlenses formed over the over-coating layers. Each of the grid structures includes an air layer, and a capping film formed to cap the air layer, and an upper portion of the air layer is formed to protrude upward from the over-coating layer.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: December 27, 2022
    Assignee: SK hynix Inc.
    Inventor: Min Su Cho
  • Patent number: 11489079
    Abstract: An optical sensor structure is provided. The optical sensor structure includes a substrate, a light sensing unit, a peripheral wall, and a reflective layer. The substrate includes a plurality of metal pads. The light sensing unit is disposed on the substrate and electrically connected to the plurality of metal pads. The peripheral wall is disposed on the substrate, and the peripheral wall and the substrate define an accommodating space. The metal pads and the light sensing unit are positioned in the accommodating space. The reflective layer is disposed in the accommodating space and surrounds the light sensing unit.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: November 1, 2022
    Assignees: LITE-ON OPTO TECHNOLOGY (CHANGZHOU) CO., LTD., LITE-ON TECHNOLOGY CORPORATION
    Inventors: Wei-Te Cheng, Kai-Chieh Liang, Jie-Ting Tsai, Bo-Jhih Chen, Zi-Jun Lin, Kuo-Ming Chiu
  • Patent number: 11469280
    Abstract: The present application provides an organic light-emitting diode display. The display includes a plurality of pixel defining units, the pixel defining unit includes a first portion formed on a switch array layer which is not covered by anode electrodes and a second portion formed on the anode electrode, a groove is defined at the first portion, and at least one opening is defined at the second portion; an organic light-emitting layer including a plurality of organic light-emitting units, the organic light-emitting layer is formed on the anode electrodes which are not covered by the second portion.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: October 11, 2022
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventor: Fan Tang
  • Patent number: 11417626
    Abstract: In a manufacturing method of a semiconductor device according to an embodiment, a first substrate having a first elastic modulus is joined onto a second substrate having a second elastic modulus higher than the first elastic modulus. A first semiconductor element is formed on the first substrate. The first substrate is detached from the second substrate.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: August 16, 2022
    Assignee: Kioxia Corporation
    Inventors: Mie Matsuo, Hideshi Miyajima
  • Patent number: 11411040
    Abstract: Methods of fabricating multicolor, stacked detector devices and focal plane arrays are disclosed. In one embodiment, a method of fabricating a stacked multicolor device includes forming a first detector by depositing a first detector structure on a first detector substrate, and depositing a first ground plane on the first detector structure, wherein the first ground plane is transmissive to radiation in a predetermined spectral band. The method further includes bonding an optical carrier wafer to the first ground plane, removing the first detector substrate, and forming a second detector. The second detector is formed by depositing a second detector structure on a second detector substrate, and depositing a second ground plane on the second detector structure. The method further includes depositing a dielectric layer on one of the first detector structure and the second ground plane, bonding the first detector to the second detector, and removing the second detector substrate.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: August 9, 2022
    Assignee: L3 CINCINNATI ELECTRONICS CORPORATION
    Inventors: Yajun Wei, Daniel Chmielewski, Nansheng Tang, Darrel Endres, Michael Garter, Mark Greiner
  • Patent number: 11411035
    Abstract: The system-on-chip camera comprises a semiconductor body (1) with an integrated circuit (40), a sensor substrate (2), sensor elements (3) arranged in the sensor substrate according to an array of pixels, a light sensor (4) in the sensor substrate apart from the sensor elements, and a lens or an array of lenses (15) on a surface of incidence (30). Filter elements (11, 12, 13), which may especially be interference filters for red, green or blue, are arranged between the sensor elements and the surface of incidence.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: August 9, 2022
    Assignee: AMS AG
    Inventors: Martin Schrems, Thomas Stockmeier
  • Patent number: 11393886
    Abstract: Provided are a display panel and a manufacturing method thereof and a display device. The display panel includes a substrate and pixel units formed on the substrate, wherein, along a thickness direction of the display panel, at least one of the pixel units includes a driving and light filtering structure and a light emitting element formed at a side of the driving and light filtering structure facing away from the substrate, and wherein the driving and light filtering structure includes a driving part and a light filtering part, and the light filtering part is disposed in an accommodating hole penetrating through an insulating layer in the driving part along the thickness direction.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: July 19, 2022
    Assignees: HEFEI XINSHENG OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Jun Liu, Liangchen Yan, Bin Zhou, Yongchao Huang, Luke Ding, Wei Li, Biao Luo, Xuehai Gui
  • Patent number: 11251213
    Abstract: In some embodiments, the present disclosure relates to an integrated chip having an inter-layer dielectric (ILD) structure along a first surface of a substrate having a photodetector. An etch stop layer is over the ILD structure, and a reflector is surrounded by the etch stop layer and the ILD structure. The reflector has a curved surface facing the substrate at a location directly over the photodetector. The curved surface is coupled between a first sidewall and a second sidewall of the reflector. The reflector has larger thicknesses along the first sidewall and the second sidewall than at a center of the reflector between the first sidewall and the second sidewall.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: February 15, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Han Huang, Jiech-Fun Lu, Yu-Chun Chen
  • Patent number: 11227903
    Abstract: Disclosed are an organic light emitting display device to improve optical efficiency and prevent deterioration in reliability of thin film transistors, and a method of manufacturing the same. The organic light emitting display device includes a mirror wall which is disposed on a substrate such that the mirror wall surrounds a light emitting area of each sub-pixel where a light emitting element is disposed, thus preventing total reflection of light produced in the light emitting element and improving optical efficiency by reflecting light travelling toward a non-emitting area to be directed to the light emitting area.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: January 18, 2022
    Assignee: LG Display Co., Ltd.
    Inventors: Seong-Joo Lee, Jeong-Oh Kim, Jung-Sun Beak
  • Patent number: 11089201
    Abstract: The present disclosure discloses a dual-core focusing image sensor, a focusing control method for the same and an electronic device. The dual-core focusing image sensor includes an array of photosensitive pixels, an array of filter units arranged on the array of photosensitive pixels and an array of micro lenses arranged above the array of filter units. The array of micro lenses includes at least one first micro lens and a plurality of second micro lenses, each second micro lens is corresponding to one photosensitive pixel, each first micro lens is corresponding to one focusing photosensitive unit, each focusing photosensitive unit includes N*N photosensitive pixels, and at least a part of the focusing photosensitive unit is covered by a white filter unit, where N is an even number greater than or equal to 2.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: August 10, 2021
    Assignee: GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP., LTD.
    Inventor: Dan Ouyang
  • Patent number: 11037966
    Abstract: Various embodiments are directed to an image sensor that includes a first sensor portion and a second sensor portion. The second sensor portion may be positioned relative to the first sensor portion such that the second sensor portion may initially detect light entering the image sensor, and some of that light passes through the second sensor portion and may be detected by the first sensor portion. In some embodiments, one more optical filters may be disposed within the image sensor. The one or more optical filters may include at least one of a dual bandpass filter disposed above the second photodetector or a narrow bandpass filter disposed between the first photodetector and the second photodetector.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: June 15, 2021
    Assignee: QUALCOMM Incorporated
    Inventors: Biay-Cheng Hseih, Todor Georgiev Georgiev, Jian Ma, Sergiu Goma
  • Patent number: 11009634
    Abstract: The present disclosure provides a structural color filter comprising: a substrate; a metal layer disposed on the substrate; and semiconductor gratings disposed on the metal layer, wherein each of the semiconductor gratings is elongated in a first direction, wherein the semiconductor gratings are arranged to be spaced apart from each other in a second direction perpendicular to the first direction, wherein the semiconductor gratings have the same thickness, wherein the thickness is smaller than a wavelength of visible-light.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: May 18, 2021
    Assignee: INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY
    Inventors: Hui Joon Park, Kyu Tae Lee, Ji Yun Jang
  • Patent number: 11004885
    Abstract: The present disclosure relates to a solid-state image capture element and an electronic device which are enabled to eliminate asymmetry of a light reception amount in accordance with an incident angle of light incident on a pixel. A solid-state image capture element includes: a pixel including a light-receiving portion that receives light incident from a rear-surface side of a semiconductor substrate; and a wiring layer laminated on a front-surface of the semiconductor substrate. The pixel includes a symmetrical wiring that is formed symmetrically with respect to a center of the pixel in a plane view of the pixel. The symmetrical wiring is arranged in a layer closest to the light-receiving portion, of a plurality of layers of wiring formed in the wiring layer. For example, the present technology can be applied to a rear-surface irradiation type solid-state image capture element.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: May 11, 2021
    Assignee: Sony Semiconductor Solutions Corporation
    Inventor: Hiroaki Seko
  • Patent number: 10964586
    Abstract: A semiconductor structure includes a substrate having a first region and a second region defined thereon, a first isolation in the first region, a second isolation in the second region, and a region surrounding the first isolation in the substrate. The substrate includes a first material, and the region includes the first material and a second material. The first isolation has a first width, the second isolation has a second width, and the first width is greater than the second width. A bottom and sidewalls of the first isolation are in contact with the region, and a bottom and sidewalls of the second isolation are in contact with the substrate.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: March 30, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Wen-Shun Lo, Yu-Chi Chang, Felix Ying-Kit Tsui
  • Patent number: 10804308
    Abstract: An image sensing device including a noise blocking structure is disclosed. The image sensing device includes a semiconductor substrate structured to support a plurality of image pixels producing signals response to received incident light, a logic circuit configured to process the signals read out from the image pixels, and a noise blocking structure coupled to the logic circuit to reduce a noise generated by the logic circuit. The noise blocking structure formed to extend in a straight line without any bending portion in a first direction, and to pass through the semiconductor substrate in a second direction that is perpendicular to the first direction.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: October 13, 2020
    Assignee: SK hynix Inc.
    Inventors: Jong Eun Kim, Ho Young Kwak
  • Patent number: 10714519
    Abstract: Provided is a solid-state imaging device including a lamination-type backside illumination CMOS (Complementary Metal Oxide Semiconductor) image sensor having a global shutter function. The solid-state imaging device includes a separation film including one of a light blocking film and a light absorbing film between a memory and a photo diode.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: July 14, 2020
    Assignee: Sony Corporation
    Inventors: Nanako Kato, Toshifumi Wakano
  • Patent number: 10674601
    Abstract: A printed wiring board for camera module includes: first and second mounting regions for first and second image pickup devices respectively provided on one and the other sides in a front surface of the printed wiring board, the first and second mounting regions respectively provided with first and second conductive patterns configured to be electrically connected to the first and second image pickup devices, respectively, and a component mounting region provided between the first mounting region and the second mounting region, the component mounting region provided with a third conductive pattern, the third conductive pattern configured to be electrically connected to a signal processing component, amounting density of the third conductive pattern in the component mounting region being higher than that of the first conductive pattern in the first mounting region or a mounting density of the second conductive pattern in the second mounting region, in a plan view.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: June 2, 2020
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Yuichi Sugiyama, Masashi Miyazaki, Hiroyuki Kobayashi
  • Patent number: 10672823
    Abstract: An image sensor includes a semiconductor substrate including a pixel region and a pad region, a plurality of photoelectric conversion regions in the pixel region, an interconnect structure on a front surface of the semiconductor substrate, a pad structure in the pad region and on a rear surface of the semiconductor substrate, a through via structure in the pad region and electrically connected to the interconnect structure through the semiconductor substrate, and an isolation structure at least partially extending through the pad region of the semiconductor substrate from the rear surface of the semiconductor substrate. The isolation structure surrounds the pad structure and the through via structure in a plane extending parallel to the rear surface of the semiconductor substrate.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: June 2, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-hun Shin, Duk-seo Park
  • Patent number: 10644072
    Abstract: Provided is an image sensor including an organic photoelectric layer capable of enhancing color reproduction. An image sensor includes a semiconductor substrate including a plurality of pixel regions spaced apart from each other and an isolation region therebetween. Each of the plurality of pixel regions has a unit pixel. The image sensor also includes a device isolation layer in the isolation region and surrounding the unit pixel, a first transparent electrode layer, an organic photoelectric layer, and a second transparent electrode layer. The image sensor further includes a via plug electrically connected to the first transparent electrode layer, and arranged between the device isolation layers in the isolation region. The via plug passes through the isolation region. The first transparent electrode layer, the organic photoelectric layer and the second transparent electrode layer are sequentially arranged over the semiconductor substrate.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: May 5, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Gwi-deok Ryan Lee, Kwang-min Lee, Tae-yon Lee, Masaru Ishii
  • Patent number: 10586810
    Abstract: A semiconductor on insulator type substrate, comprising at least: a support layer; a semiconductor surface layer; a buried dielectric layer located between the support layer and the semiconductor surface layer; a trap rich layer located between the buried dielectric layer and the support layer, and comprising at least one polycrystalline semiconductor material and/or a phase change material; in which the trap rich layer comprises at least one first region and at least one second region adjacent to each other in the plane of the trap rich layer, the material of the at least one first region being in an at least partially recrystallized state and having an electrical resistivity less than that of the material in the at least one second region.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: March 10, 2020
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Yann Lamy, Lamine Benaissa, Etienne Navarro
  • Patent number: 10293518
    Abstract: There is provided a forming mold 40 made on the basis of a standard more reliable than an average roughness of a surface of a metal film that generates surface plasmon resonance, the forming mold being capable of improving an S/N ratio of an optical element 20. A forming mold 40 for a substrate 21 of an optical element 20 used for measurements utilizing surface plasmon, wherein an Spc value of a molding surface 51t for transferring a shape onto a surface 21a of the substrate 21 on a side facing an object to be measured is equal to or less than 100 [1/mm].
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: May 21, 2019
    Assignee: KONICA MINOLTA, INC.
    Inventors: Takehiko Goshima, Yoshihiro Okumura
  • Patent number: 10269850
    Abstract: An image sensor includes a plurality of photodiodes disposed in a semiconductor material, and a through-semiconductor-via coupled to a negative voltage source. Deep trench isolation structures are disposed between individual photodiodes in the plurality of photodiodes to electrically and optically isolate the individual photodiodes. The deep trench isolation structures include a conductive material coupled to the through-semiconductor-via, and a dielectric material disposed on sidewalls of the deep trench isolation structures between the semiconductor material and the conductive material.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: April 23, 2019
    Assignee: OmniVision Technologies, Inc.
    Inventors: Yuanwei Zheng, Gang Chen, Duli Mao, Dyson H. Tai, Yi Ma
  • Patent number: 9893110
    Abstract: A method of manufacturing a solid-state image sensor is provided. The method comprises preparing a structure which is covered by a protective film, depositing a first material by using a first color filter material on the protective film, forming a first color filter from the first material, depositing a second material by using a second color filter material after the forming the first color filter and forming a second color filter from the second material. An upper surface of the protective film has a concave portion. A part of the first material enters the concave portion in the depositing the first material, the first material is patterned so as to form a member in the concave portion from the first material in the forming the first color filter and the second material covers the member in the depositing the second material.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: February 13, 2018
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Takayuki Sumida, Masao Ishioka, Kei Aoki, Yasuhiro Kawabata, Naoki Inatani, Masaki Kurihara
  • Patent number: 9847253
    Abstract: A semiconductor package-on-package (PoP) device includes a first die incorporating a through-hole via (THV) disposed along a peripheral surface of the first die. The first die is disposed over a substrate or leadframe structure. A first semiconductor package is electrically connected to the THV of the first die, or electrically connected to the substrate or leadframe structure. An encapsulant is formed over a portion of the first die and the first semiconductor package.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: December 19, 2017
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: Byung Tai Do, Heap Hoe Kuan, Seng Guan Chow
  • Patent number: 9711556
    Abstract: An image sensor structure includes a region of semiconductor material having a first major surface and a second major surface. A pixel structure is within the region of semiconductor material and includes a plurality of doped regions and a plurality of conductive structures. A metal-filled trench structure extends from the first major surface to the second major surface. A first contact structure is electrically connected to a first surface of the conductive trench structure, and a second contact structure electrically connected to a second surface of the conductive trench structure. In one embodiment, the second major surface is configured to receive incident light.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: July 18, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Rick Jerome, David T. Price, Sungkwon C. Hong, Gordon M. Grivna
  • Patent number: 9683894
    Abstract: A spectroscopic sensor has plural angle limiting filters that limit incident angles of incident lights, plural light band-pass filters that transmit specific wavelengths, and plural photodiodes to which corresponding transmitted lights are input. The spectroscopic sensor is a semiconductor device in which the angle limiting filters, the light band-pass filters, and the photodiodes are integrated, and, assuming that the surface on which impurity regions for the photodiodes are formed is a front surface of a semiconductor substrate, holes for receiving lights are formed in the impurity regions from the rear surface side.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: June 20, 2017
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Akira Uematsu, Noriyuki Nakamura, Akira Komatsu, Kunihiko Yano
  • Patent number: 9671334
    Abstract: An analyte-detection system has an optical waveguide with first and second cladding layers adjacent a core; a light source coupled to provide light to the waveguide; a photodetector such as a metal-semiconductor-metal, vertical PIN, or horizontal PIN photodetectors, the photodetector having an absorber configured to detect light escaping from the waveguide through the first cladding layer; multiple, separate, photocurrent collectors, where each photocurrent collector collects current from a separate portion of the photodetector absorber; and at least one current-sensing amplifier for receiving photocurrent. The photodetector absorber is an undivided absorber region for multiple photocurrent collectors. Either separate amplifiers are provided for each of the multiple photocurrent collection lines, or multiplexing logic couples selected photocurrent collectors to amplifiers, while coupling unselected photocurrent collectors to a bias generator.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: June 6, 2017
    Assignee: COLORADO STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Kevin L. Lear, Timothy A. Erickson
  • Patent number: 9615041
    Abstract: Provided are an image sensor and a method of manufacturing the same. The method may include forming a photo-electric conversion region and a charge storage region in a semiconductor layer; forming a transistor on a front surface of the semiconductor layer; forming a recess by etching a portion of the semiconductor layer between the charge storage region and a rear surface of the semiconductor layer; and forming on a bottom surface of the recess a shield film that blocks light incident on the charge storage region.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: April 4, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Sik Kim, Young-Chan Kim, Tae-Han Kim, Eun-Sub Shim, Dong-Joo Yang, Min-Seok Oh, Moo-Sup Lim
  • Patent number: 9577016
    Abstract: The present invention provides a TFT that has a channel length particularly longer than that of an existing one, specifically, several tens to several hundreds times longer than that of the existing one, and thereby allowing turning to an on-state at a gate voltage particularly higher than the existing one and driving, and allowing having a low channel conductance gd. According to the present invention, not only the simple dispersion of on-current but also the normalized dispersion thereof can be reduced, and other than the reduction of the dispersion between the individual TFTs, the dispersion of the OLEDs themselves and the dispersion due to the deterioration of the OLED can be reduced.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: February 21, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Makoto Udagawa, Masahiko Hayakawa, Jun Koyama, Mitsuaki Osame, Aya Anzai