Organic Reactant Patents (Class 438/793)
-
Patent number: 11965239Abstract: Provided is improved methodology for the nucleation of certain metal nitride substrate surfaces utilizing certain silicon-containing halides, silicon-containing amides, and certain metal precursors, in conjunction with nitrogen-containing reducing gases. While utilizing a pretreatment step, the methodology shows greatly improved nucleation wherein a microelectronic device substrate having such a metal nitride film deposited thereon has a thickness of about 10 ? to about 15 ? and less than about 1% of void area. Once such nucleation has been achieved, traditional layer-upon-layer deposition can rapidly take place.Type: GrantFiled: January 28, 2021Date of Patent: April 23, 2024Assignee: ENTEGRIS, INC.Inventors: Gavin Richards, Thomas H. Baum, Han Wang, Bryan C. Hendrix
-
Patent number: 10964532Abstract: Methods of forming silicon nitride. Silicon nitride is formed on a substrate by atomic layer deposition at a temperature of less than or equal to about 275° C. The as-formed silicon nitride is exposed to a plasma. The silicon nitride may be formed as a portion of silicon nitride and at least one other portion of silicon nitride. The portion of silicon nitride and the at least one other portion of silicon nitride may be exposed to a plasma treatment. Methods of forming a semiconductor structure are also disclosed, as are semiconductor structures and silicon precursors.Type: GrantFiled: December 29, 2017Date of Patent: March 30, 2021Assignee: Micron Technology, Inc.Inventors: Sumeet C. Pandey, Brenda D. Kraus, Stefan Uhlenbrock, John A. Smythe, Timothy A. Quick
-
Patent number: 10636648Abstract: A film deposition method for depositing a silicon nitride film of selectively depositing on a flat surface of a substrate between minute recesses including a chlorine radical adsorbing step of supplying a chlorine containing gas that is activated onto a front surface of the substrate to cause the chlorine radical to be adsorbed entirely on the front surface of the substrate, a nitriding step of supplying a nitriding gas that is activated onto the substrate on which the chlorine radical adsorbs, causing the chlorine radical adsorbing on the flat surface, and nitride the flat surface from among the front surface of the substrate so as to form a silicon adsorption site, and a raw gas adsorbing step of supplying a raw gas that contains silicon and chlorine onto the substrate so as to cause the raw gas to adsorb onto the silicon adsorption site.Type: GrantFiled: November 21, 2018Date of Patent: April 28, 2020Assignee: Tokyo Electron LimitedInventors: Kazumi Kubo, Yutaka Takahashi, Hitoshi Kato
-
Publication number: 20150147893Abstract: Classes of liquid aminosilanes have been found which allow for the production of silicon carbo-nitride films of the general formula SixCyNz. These aminosilanes, in contrast, to some of the precursors employed heretofore, are liquid at room temperature and pressure allowing for convenient handling. In addition, the invention relates to a process for producing such films. The classes of compounds are generally represented by the formulas: and mixtures thereof, wherein R and R1 in the formulas represent aliphatic groups typically having from 2 to about 10 carbon atoms, e.g., alkyl, cycloalkyl with R and R1 in formula A also being combinable into a cyclic group, and R2 representing a single bond, (CH2)n, a ring, or SiH2.Type: ApplicationFiled: December 16, 2014Publication date: May 28, 2015Applicant: AIR PRODUCTS AND CHEMICALS, INC.Inventors: Manchao Xiao, Arthur Kenneth Hochberg
-
Publication number: 20150147871Abstract: Described herein are precursors and methods for forming silicon-containing films.Type: ApplicationFiled: June 2, 2014Publication date: May 28, 2015Applicant: AIR PRODUCTS AND CHEMICALS, INC.Inventors: Manchao Xiao, Xinjian Lei, Daniel P. Spence
-
Patent number: 9029171Abstract: The present disclosure relates to a structure and method to create a self-repairing dielectric material for semiconductor device applications. A porous dielectric material is deposited on a substrate, and exposed with treating agent particles such that the treating agent particles diffuse into the dielectric material. A dense non-porous cap is formed above the dielectric material which encapsulates the treating agent particles within the dielectric material. The dielectric material is then subjected to a process which creates damage to the dielectric material. A chemical reaction is initiated between the treating agent particles and the damage, repairing the damage. A gradient concentration resulting from the consumption of treating agent particles by the chemical reaction promotes continuous diffusion the treating agent particles towards the damaged region of the dielectric material, continuously repairing the damage.Type: GrantFiled: June 25, 2012Date of Patent: May 12, 2015Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Tsung-Min Huang, Chung-Ju Lee, Tien-I Bao
-
Publication number: 20150126045Abstract: Embodiments of the present invention generally provide methods for forming a silicon nitride layer on a substrate. In one embodiment, a method of forming a silicon nitride layer using remote plasma chemical vapor deposition (CVD) at a temperature that is less than 300 degrees Celsius is disclosed. The precursors for the remote plasma CVD process include tris(dimethylamino)silane (TRIS), dichlorosilane (DCS), trisilylamine (TSA), bis-t-butylaminosilane (BTBAS), hexachlorodisilane (HCDS) or hexamethylcyclotrisilazane (HMCTZ).Type: ApplicationFiled: October 22, 2014Publication date: May 7, 2015Inventors: Amit CHATTERJEE, Abhijit Basu MALLICK, Nitin K. INGLE
-
Patent number: 9023700Abstract: Methods and apparatus for selective one-step nitridation of semiconductor substrates is provided. Nitrogen is selectively incorporated in silicon regions of a semiconductor substrate having silicon regions and silicon oxide regions by use of a selective nitridation process. Nitrogen containing radicals may be directed toward the substrate by forming a nitrogen containing plasma and filtering or removing ions from the plasma, or a thermal nitridation process using selective precursors may be performed. A remote plasma generator may be coupled to a processing chamber, optionally including one or more ion filters, showerheads, and radical distributors, or an in situ plasma may be generated and one or more ion filters or shields disposed in the chamber between the plasma generation zone and the substrate support.Type: GrantFiled: June 9, 2014Date of Patent: May 5, 2015Assignee: Applied Materials, Inc.Inventors: Udayan Ganguly, Theresa Kramer Guarini, Matthew Scott Rogers, Yoshitaka Yokota, Johanes S. Swenberg, Malcolm J. Bevan
-
Publication number: 20150099375Abstract: Described herein are methods for forming silicon nitride films. In one aspect, there is provided a method of forming a silicon nitride film comprising the steps of: providing a substrate in a reactor; introducing into the reactor an at least one organoaminosilane having a least one SiH3 group described herein wherein the at least one organoaminosilane reacts on at least a portion of the surface of the substrate to provide a chemisorbed layer; purging the reactor with a purge gas; introducing a plasma comprising nitrogen and an inert gas into the reactor to react with at least a portion of the chemisorbed layer and provide at least one reactive site wherein the plasma is generated at a power density ranging from about 0.01 to about 1.5 W/cm2.Type: ApplicationFiled: September 26, 2014Publication date: April 9, 2015Applicant: AIR PRODUCTS AND CHEMICALS, INC.Inventors: Chandra Haripin, Anupama Mallikarjunan, Xinjian Lei, Moo-Sung Kim, Kirk Scott Cuthill, Mark Leonard O'Neill
-
Publication number: 20150087139Abstract: Described herein are precursors and methods for forming silicon-containing films. In one aspect, the precursor comprises a compound represented by one of following Formulae A through E below: In one particular embodiment, the organoaminosilane precursors are effective for a low temperature (e.g., 350° C. or less), atomic layer deposition (ALD) or plasma enhanced atomic layer deposition (PEALD) of a silicon-containing film. In addition, described herein is a composition comprising an organoaminosilane described herein wherein the organoaminosilane is substantially free of at least one selected from the amines, halides (e.g., Cl, F, I, Br), higher molecular weight species, and trace metals.Type: ApplicationFiled: September 11, 2014Publication date: March 26, 2015Applicant: AIR PRODUCTS AND CHEMICALS, INC.Inventors: Mark Leonard O'Neill, Manchao Xiao, Xinjian Lei, Richard Ho, Haripin Chandra, Matthew R. MacDonald, Meiliang Wang
-
Patent number: 8940648Abstract: A method for depositing a silicon containing film on a substrate using an organoaminosilane is described herein. The organoaminosilanes are represented by the formulas: wherein R is selected from a C1-C10 linear, branched, or cyclic, saturated or unsaturated alkyl group with or without substituents; a C5-C10 aromatic group with or without substituents, a C3-C10 heterocyclic group with or without substituents, or a silyl group in formula C with or without substituents, R1 is selected from a C3-C10 linear, branched, cyclic, saturated or unsaturated alkyl group with or without substituents; a C6-C10 aromatic group with or without substituents, a C3-C10 heterocyclic group with or without substituents, a hydrogen atom, a silyl group with substituents and wherein R and R1 in formula A can be combined into a cyclic group and R2 representing a single bond, (CH2), chain, a ring, C3-C10 branched alkyl, SiR2, or SiH2.Type: GrantFiled: August 12, 2013Date of Patent: January 27, 2015Assignee: Air Products and Chemicals, Inc.Inventors: Manchao Xiao, Xinjian Lei, Heather Regina Bowen, Mark Leonard O'Neill
-
Patent number: 8889566Abstract: A method of forming a dielectric layer is described. The method deposits a silicon-containing film by chemical vapor deposition using a local plasma. The silicon-containing film is flowable during deposition at low substrate temperature. A silicon precursor (e.g. a silylamine, higher order silane or halogenated silane) is delivered to the substrate processing region and excited in a local plasma. A second plasma vapor or gas is combined with the silicon precursor in the substrate processing region and may include ammonia, nitrogen (N2), argon, hydrogen (H2) and/or oxygen (O2). The equipment configurations disclosed herein in combination with these vapor/gas combinations have been found to result in flowable deposition at substrate temperatures below or about 200° C. when a local plasma is excited using relatively low power.Type: GrantFiled: November 5, 2012Date of Patent: November 18, 2014Assignee: Applied Materials, Inc.Inventors: Amit Chatterjee, Abhijit Basu Mallick, Nitin K. Ingle, Brian Underwood, Kiran V. Thadani, Xiaolin Chen, Abhishek Dube, Jingmei Liang
-
Publication number: 20140273477Abstract: Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).Type: ApplicationFiled: January 29, 2014Publication date: September 18, 2014Applicant: ASM IP HOLDING B.V.Inventors: Antti J. Niskanen, Shang Chen, Viljami Pore, Atsuki Fukazawa, Hideaki Fukuda, Suvi P. Haukka
-
Publication number: 20140273531Abstract: Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).Type: ApplicationFiled: October 24, 2013Publication date: September 18, 2014Applicant: ASM IP HOLDING B.V.Inventors: Antti J. Niskanen, Shang Chen, Viljami Pore, Atsuki Fukazawa, Hideaki Fukuda
-
Publication number: 20140073144Abstract: A method of forming a dielectric layer is described. The method deposits a silicon-containing film by chemical vapor deposition using a local plasma. The silicon-containing film is flowable during deposition at low substrate temperature. A silicon precursor (e.g. a silylamine, higher order silane or halogenated silane) is delivered to the substrate processing region and excited in a local plasma. A second plasma vapor or gas is combined with the silicon precursor in the substrate processing region and may include ammonia, nitrogen (N2), argon, hydrogen (H2) and/or oxygen (O2). The equipment configurations disclosed herein in combination with these vapor/gas combinations have been found to result in flowable deposition at substrate temperatures below or about 200° C. when a local plasma is excited using relatively low power.Type: ApplicationFiled: November 5, 2012Publication date: March 13, 2014Inventors: Amit Chatterjee, Abhijit Basu Mallick, Nitin K. Ingle, Brian Underwood, Kiran V. Thadani, Xiaolin Chen, Abhishek Dube, Jingmei Liang
-
Publication number: 20140065844Abstract: The present invention is a method to increase the intrinsic compressive stress in plasma enhanced chemical vapor deposition (PECVD) silicon nitride (SiN) and silicon carbonitride (SiCN) thin films, comprising depositing the film from an amino vinylsilane-based precursor. More specifically the present invention uses the amino vinylsilane-based precursor selected from the formula: [RR1N]xSiR3y(R2)z, where x+y+z=4, x=1-3, y=0-2, and z=1-3; R, R1 and R3 can be hydrogen, C1 to C10 alkane, alkene, or C4 to C12 aromatic; each R2 is a vinyl, allyl or vinyl-containing functional group.Type: ApplicationFiled: November 4, 2013Publication date: March 6, 2014Inventors: Vasil Vorsa, Andrew David Johnson, Manchao Xiao
-
Patent number: 8637396Abstract: A method is provided for depositing a dielectric barrier film including a precursor with silicon, carbon, oxygen, and hydrogen with improved barrier dielectric properties including lower dielectric constant and superior electrical properties. This method will be important for barrier layers used in a damascene or dual damascene integration for interconnect structures or in other dielectric barrier applications. In this example, specific structural properties are noted that improve the barrier performance.Type: GrantFiled: November 23, 2009Date of Patent: January 28, 2014Assignee: Air Products and Chemicals, Inc.Inventors: Laura M. Matz, Raymond Nicholas Vrtis, Mark Leonard O'Neill, Dino Sinatore
-
Publication number: 20130319290Abstract: Described herein are precursors and methods for forming silicon-containing films. In one aspect, there is a precursor of following Formula I: wherein R1 and R3 are independently selected from linear or branched C3 to C10 alkyl group, a linear or branched C3 to C10 alkenyl group, a linear or branched C3 to C10 alkynyl group, a C1 to C6 dialkylamino group, an electron withdrawing and a C6 to C10 aryl group; R2 and R4 are independently selected from hydrogen, a linear or branched C3 to C10 alkyl group, a linear or branched C3 to C10 alkenyl group, a linear or branched C3 to C10 alkynyl group, a C1 to C6 dialkylamino group, an electron withdrawing, and a C6 to C10 aryl group; and wherein any one, all, or none of R1 and R2, R3 and R4, R1 and R3, or R2 and R4 are linked to form a ring.Type: ApplicationFiled: May 24, 2013Publication date: December 5, 2013Applicant: AIR PRODUCTS AND CHEMICALS, INC.Inventors: Manchao Xiao, Xinjian Lei, Daniel P. Spence, Haripin Chandra, Mark Leonard O'Neill
-
Patent number: 8580697Abstract: The present invention meets these needs by providing improved methods of filling gaps. In certain embodiments, the methods involve placing a substrate into a reaction chamber and introducing a vapor phase silicon-containing compound and oxidant into the chamber. Reactor conditions are controlled so that the silicon-containing compound and the oxidant are made to react and condense onto the substrate. The chemical reaction causes the formation of a flowable film, in some instances containing Si—OH, Si—H and Si—O bonds. The flowable film fills gaps on the substrates. The flowable film is then converted into a silicon oxide film, for example by plasma or thermal annealing. The methods of this invention may be used to fill high aspect ratio gaps, including gaps having aspect ratios ranging from 3:1 to 10:1.Type: GrantFiled: February 18, 2011Date of Patent: November 12, 2013Assignee: Novellus Systems, Inc.Inventors: Chi-I Lang, Judy H. Huang, Michael Barnes, Sunil Shanker
-
Patent number: 8563443Abstract: A method of forming a dielectric film having at least Si—N, Si—C, or Si—B bonds on a semiconductor substrate by atomic layer deposition (ALD), includes: supplying a precursor in a pulse to adsorb the precursor on a surface of a substrate; supplying a reactant gas in a pulse over the surface without overlapping the supply of the precursor; reacting the precursor and the reactant gas on the surface; and repeating the above steps to form a dielectric film having at least Si—N, Si—C, or Si—B bonds on the substrate. The precursor has at least one Si—C or Si—N bond, at least one hydrocarbon, and at least two halogens attached to silicon in its molecule.Type: GrantFiled: August 3, 2012Date of Patent: October 22, 2013Assignee: ASM Japan K.K.Inventor: Atsuki Fukazawa
-
Patent number: 8541318Abstract: This invention relates to silicon precursor compositions for forming silicon-containing films by low temperature (e.g., <550° C.) chemical vapor deposition processes for fabrication of ULSI devices and device structures. Such silicon precursor compositions comprise at least a silane or disilane derivative that is substituted with at least one alkylhydrazine functional groups and is free of halogen substitutes.Type: GrantFiled: February 9, 2012Date of Patent: September 24, 2013Assignee: Advanced Technology Materials, Inc.Inventors: Ziyun Wang, Chongying Xu, Thomas H. Baum
-
Patent number: 8530361Abstract: A method for depositing a silicon containing film on a substrate using an organoaminosilane is described herein. The organoaminosilanes are represented by the formulas: wherein R is selected from a C1-C10 linear, branched, or cyclic, saturated or unsaturated alkyl group with or without substituents; a C5-C10 aromatic group with or without substituents, a C3-C10 heterocyclic group with or without substituents, or a silyl group in formula C with or without substituents, R1 is selected from a C3-C10 linear, branched, cyclic, saturated or unsaturated alkyl group with or without substituents; a C6-C10 aromatic group with or without substituents, a C3-C10 heterocyclic group with or without substituents, a hydrogen atom, a silyl group with substituents and wherein R and R1 in formula A can be combined into a cyclic group and R2 representing a single bond, (CH2)n chain, a ring, C3-C10 branched alkyl, SiR2, or SiH2.Type: GrantFiled: December 22, 2010Date of Patent: September 10, 2013Assignee: Air Products and Chemicals, Inc.Inventors: Manchao Xiao, Xinjian Lei, Heather Regina Bowen, Mark Leonard O'Neill
-
Publication number: 20130183835Abstract: Methods and apparatus for forming conformal silicon nitride films at low temperatures on a substrate are provided. The methods of forming a silicon nitride layer include performing a deposition cycle including flowing a processing gas mixture into a processing chamber having a substrate therein, wherein the processing gas mixture comprises precursor gas molecules having labile silicon to nitrogen, silicon to carbon, or nitrogen to carbon bonds, activating the precursor gas at a temperature between about 20° C. to about 480° C. by preferentially breaking labile bonds to provide one or more reaction sites along a precursor gas molecule, forming a precursor material layer on the substrate, wherein the activated precursor gas molecules bond with a surface on the substrate at the one or more reaction sites, and performing a plasma treatment process on the precursor material layer to form a conformal silicon nitride layer.Type: ApplicationFiled: January 18, 2012Publication date: July 18, 2013Applicant: APPLIED MATERIALS, INC.Inventors: Victor Nguyen, Mihaela Balseanu, Li-Qun Xia, Derek R. Witty
-
Publication number: 20130181331Abstract: Provided are silicon-containing films with a refractive index suitable for antireflection, articles having a surface comprising the films, and atmospheric-pressure plasma-enhanced chemical vapor deposition (AE-PECVD) processes for the formation of surface films and coatings. The processes generally include providing a substrate, providing a precursor comprising silicon, and reacting the precursor with a gas comprising nitrogen (N2) in a low-temperature plasma at atmospheric pressure, wherein the products of the reacting form a film on the substrate. An antireflection coating made by the process can have a refractive index of about 1.5 to about 2.2. Articles are provided having a surface that includes the antireflection coating.Type: ApplicationFiled: September 28, 2011Publication date: July 18, 2013Applicant: NDSU RESEARCH FOUNDATIONInventors: Guruvenket Srinivasan, Robert Sailer
-
Patent number: 8329599Abstract: A method of forming a dielectric film having at least Si—N, Si—C, or Si—B bonds on a semiconductor substrate by atomic layer deposition (ALD), includes: adsorbing a precursor on a surface of a substrate; supplying a reactant gas over the surface; reacting the precursor and the reactant gas on the surface; and repeating the above steps to form a dielectric film having at least Si—N, Si—C, or Si—B bonds on the substrate. The precursor has at least one Si—C or Si—N bond, at least one hydrocarbon, and at least one halogen attached to silicon in its molecule.Type: GrantFiled: February 18, 2011Date of Patent: December 11, 2012Assignee: ASM Japan K.K.Inventors: Atsuki Fukazawa, Noboru Takamure
-
Patent number: 8242032Abstract: This invention relates to silicon precursor compositions for forming silicon-containing films by low temperature (e.g., <550° C.) chemical vapor deposition processes for fabrication of ULSI devices and device structures. Such silicon precursor compositions comprise at least a silane or disilane derivative that is substituted with at least one alkylhydrazine functional groups and is free of halogen substitutes.Type: GrantFiled: January 4, 2011Date of Patent: August 14, 2012Assignee: Advanced Technology Materials, Inc.Inventors: Ziyun Wang, Chongying Xu, Thomas H. Baum
-
Patent number: 8227358Abstract: Novel silicon precursors for low temperature deposition of silicon films are described herein. The disclosed precursors possess low vaporization temperatures, preferably less than about 500° C. In addition, embodiments of the silicon precursors incorporate a —Si—Y—Si— bond, where Y may comprise an amino group, a substituted or unsubstituted hydrocarbyl group, or oxygen. In an embodiment a silicon precursor has the formula: where Y is a hydrocarbyl group, a substituted hydrocarbyl group, oxygen, or an amino group; R1, R2, R3, and R4 are each independently a hydrogen group, a hydrocarbyl group, a substituted hydrocarbyl group, a heterohydrocarbyl group, wherein R1, R2, R3, and R4 may be the same or different from one another; X1, X2, X3, and X4 are each independently, a hydrogen group, a hydrocarbyl group, a substituted hydrocarbyl group, or a hydrazine group, wherein X1, X2, X3, and X4 may be the same or different from one another.Type: GrantFiled: March 28, 2011Date of Patent: July 24, 2012Assignee: Air Liquide Electronics U.S. LPInventors: Ziyun Wang, Ashutosh Misra, Ravi Laxman
-
Patent number: 8119545Abstract: Provided is a plasma CVD device. In the plasma CVD device, in producing a silicon nitride film while controlling the size of a band gap by CVD, microwaves are introduced into a treatment vessel by a flat antenna having a plurality of holes. The plasma CVD is carried out under a given treatment pressure selected from a pressure range of not less than 0.1 Pa and not more than 1333 Pa at a flow ratio between a silicon-containing compound gas and a nitrogen gas (silicon-containing compound gas flow rate/nitrogen gas flow rate) selected from a range of not less than 0.005 and not more than 0.2, whereby the Si/N ratio in the film is controlled to form a silicon nitride film having a band gap size of not less than 2.5 eV and not more than 7 eV.Type: GrantFiled: March 30, 2009Date of Patent: February 21, 2012Assignee: Tokyo Electron LimitedInventors: Minoru Honda, Toshio Nakanishi, Masayuki Kohno, Tatsuo Nishita, Junya Miyahara
-
Patent number: 7998882Abstract: When forming dielectric materials of reduced dielectric constant in sophisticated metallization systems, the creation of defect particles on the dielectric material may be reduced during a plasma enhanced deposition process by inserting an inert plasma step after the actual deposition step.Type: GrantFiled: June 25, 2009Date of Patent: August 16, 2011Assignee: GLOBALFOUNDRIES Inc.Inventors: Ulrich Mayer, Hartmut Ruelke
-
Publication number: 20110195582Abstract: A method of producing silicon containing thin films by the thermal polymerization of a reactive gas mixture bisaminosilacyclobutane and source gas selected from a nitrogen providing gas, an oxygen providing gas and mixtures thereof. The films deposited may be silicon nitride, silicon carbonitride, silicon dioxide or carbon doped silicon dioxide. These films are useful as dielectrics, passivation coatings, barrier coatings, spacers, liners and/or stressors in semiconductor devices.Type: ApplicationFiled: August 11, 2009Publication date: August 11, 2011Inventor: Xiaobing Zhou
-
Patent number: 7985188Abstract: Methods for processing a vessel, for example to provide a gas barrier or lubricity, are disclosed. First and second PECVD or other vessel processing stations or devices and a vessel holder comprising a vessel port are provided. An opening of the vessel can be seated on the vessel port. The interior surface of the seated vessel can be processed via the vessel port by the first and second processing stations or devices. Vessel barrier, lubricity and hydrophobic coatings and coated vessels, for example syringes and medical sample collection tubes are disclosed. A vessel processing system and vessel inspection apparatus and methods are also disclosed.Type: GrantFiled: May 12, 2010Date of Patent: July 26, 2011Assignee: CV Holdings LLCInventors: John T. Felts, Thomas E. Fisk, Robert S. Abrams, John Ferguson, Johathan R. Freedman, Robert J. Pangborn, Peter J. Sagona
-
Patent number: 7951730Abstract: Methods for forming silicon nitride hard masks are provided. The silicon nitride hard masks include carbon-doped silicon nitride layers and undoped silicon nitride layers. Carbon-doped silicon nitride layers that are deposited from a mixture comprising a carbon source compound, a silicon source compound, and a nitrogen source in the presence of RF power are provided. Also provided are methods of UV post-treating silicon nitride layers to provide silicon nitride hard masks. The carbon-doped silicon nitride layers and UV post-treated silicon nitride layers have desirable wet etch rates and dry etch rates for hard mask layers.Type: GrantFiled: February 4, 2009Date of Patent: May 31, 2011Assignee: Applied Materials, Inc.Inventors: Ritwik Bhatia, Li-Qun Xia, Chad Peterson, Hichem M'Saad
-
Patent number: 7923378Abstract: A silicon-containing insulating film is formed on a target substrate by CVD, in a process field to be selectively supplied with a first process gas including di-iso-propylaminosilane gas and a second process gas including an oxidizing gas or nitriding gas. The film is formed by performing a plurality of times a cycle alternately including first and second steps. The first step performs supply of the first process gas, thereby forming an adsorption layer containing silicon on a surface of the target substrate. The second performs supply of the second process gas, thereby oxidizing or nitriding the adsorption layer on the surface of the target substrate. The second step includes an excitation period of supplying the second process gas to the process field while exciting the second process gas by an exciting mechanism.Type: GrantFiled: January 28, 2009Date of Patent: April 12, 2011Assignee: Tokyo Electron LimitedInventors: Kazuhide Hasebe, Shigeru Nakajima, Jun Ogawa
-
Patent number: 7875556Abstract: Classes of liquid aminosilanes have been found which allow for the production of silicon carbo-nitride films of the general formula SixCyNz. These aminosilanes, in contrast, to some of the precursors employed heretofore, are liquid at room temperature and pressure allowing for convenient handling. In addition, the invention relates to a process for producing such films. The classes of compounds are generally represented by the formulas: and mixtures thereof, wherein R and R1 in the formulas represent aliphatic groups typically having from 2 to about 10 carbon atoms, e.g., alkyl, cycloalkyl with R and R1 in formula A also being combinable into a cyclic group, and R2 representing a single bond, (CH2)n, a ring, or SiH2.Type: GrantFiled: May 16, 2005Date of Patent: January 25, 2011Assignee: Air Products and Chemicals, Inc.Inventors: Manchao Xiao, Arthur Kenneth Hochberg
-
Patent number: 7863203Abstract: This invention relates to silicon precursor compositions for forming silicon-containing films by low temperature (e.g., <550° C.) chemical vapor deposition processes for fabrication of ULSI devices and device structures. Such silicon precursor compositions comprise at least a silane or disilane derivative that is substituted with at least one alkylhydrazine functional groups and is free of halogen substitutes.Type: GrantFiled: January 24, 2008Date of Patent: January 4, 2011Assignee: Advanced Technology Materials, Inc.Inventors: Ziyun Wang, Chongying Xu, Thomas H. Baum
-
Patent number: 7858294Abstract: Silica dielectric films, whether nanoporous foamed silica dielectrics or nonporous silica dielectrics are readily damaged by fabrication methods and reagents that reduce or remove hydrophobic properties from the dielectric surface. The invention provides for methods of imparting hydrophobic properties to such damaged silica dielectric films present on a substrate. The invention also provides plasma-based methods for imparting hydrophobicity to both new and damaged silica dielectric films. Semiconductor devices prepared by the inventive processes are also provided.Type: GrantFiled: April 5, 2007Date of Patent: December 28, 2010Assignee: Honeywell International Inc.Inventors: Nigel P. Hacker, Michael Thomas, James S. Drage
-
Patent number: 7807586Abstract: A method for forming a stressed passivation film. In one embodiment, the method includes depositing a silicon nitride film over an integrated circuit structure on a substrate and embedding oxygen into a surface of the silicon nitride film by exposing the silicon nitride film to a process gas containing oxygen radicals formed by non-ionizing electromagnetic radiation induced dissociation of an oxygen-containing gas or an oxygen- and nitrogen-containing gas. The method further includes heat-treating the oxygen-embedded silicon nitride film to form a stressed silicon oxynitride film.Type: GrantFiled: March 28, 2008Date of Patent: October 5, 2010Assignee: Tokyo Electron LimitedInventor: Robert D Clark
-
Patent number: 7790635Abstract: A method for forming a compressive stress carbon-doped silicon nitride layer is provided. The method includes forming an initiation layer and a bulk layer thereon, wherein the bulk layer has a compressive stress of between about ?0.1 GPa and about ?10 GPa. The initiation layer is deposited from a gas mixture that includes a silicon and carbon-containing precursor and optionally a nitrogen and/or source but does not include hydrogen gas. The bulk layer is deposited from a gas mixture that includes a silicon and carbon-containing precursor, a nitrogen source, and hydrogen gas. The initiation layer is a thin layer that allows good transfer of the compressive stress of the bulk layer therethrough to an underlying layer, such as a channel of a transistor.Type: GrantFiled: December 14, 2006Date of Patent: September 7, 2010Assignee: Applied Materials, Inc.Inventors: Mihaela Balseanu, Victor T. Nguyen, Li-Qun Xia, Vladimir Zubkov, Derek R. Witty, Hichem M'Saad
-
Patent number: 7790634Abstract: Methods of making a silicon oxide layer on a substrate are described. The methods may include forming the silicon oxide layer on the substrate in a reaction chamber by reacting an atomic oxygen precursor and a silicon precursor and depositing reaction products on the substrate. The atomic oxygen precursor is generated outside the reaction chamber. The methods also include heating the silicon oxide layer at a temperature of about 600° C. or less, and exposing the silicon oxide layer to an induced coupled plasma. Additional methods are described where the deposited silicon oxide layer is cured by exposing the layer to ultra-violet light, and also exposing the layer to an induced coupled plasma.Type: GrantFiled: May 25, 2007Date of Patent: September 7, 2010Assignee: Applied Materials, IncInventors: Jeffrey C. Munro, Srinivas D. Nemani
-
Patent number: 7781352Abstract: A method of forming an inorganic silazane-based dielectric film includes: introducing a gas constituted by Si and H and a gas constituted by N and optionally H into a reaction chamber where an object is placed; controlling a temperature of the object at ?50° C. to 50° C.; and depositing by plasma reaction a film constituted by Si, N, and H containing inorganic silazane bonds.Type: GrantFiled: June 6, 2007Date of Patent: August 24, 2010Assignee: ASM Japan K.K.Inventors: Atsuki Fukazawa, Nobuo Matsuki, Jeongseok Ha
-
Publication number: 20100120262Abstract: The present invention is a method to increase the intrinsic compressive stress in plasma enhanced chemical vapor deposition (PECVD) silicon nitride (SiN) and silicon carbonitride (SiCN) thin films, comprising depositing the film from an amino vinylsilane-based precursor. More specifically the present invention uses the amino vinylsilane-based precursor selected from the formula: [RR1N]xSiR3y(R2)z, where x+y+z=4, x=1-3, y=0-2, and z=1-3; R, R1 and R3 can be hydrogen, C1 to C10 alkane, alkene, or C4 to C12 aromatic; each R2 is a vinyl, allyl or vinyl-containing functional group.Type: ApplicationFiled: October 30, 2009Publication date: May 13, 2010Applicant: AIR PRODUCTS AND CHEMICALS, INC.Inventors: Vasil Vorsa, Andrew David Johnson, Manchao Xiao
-
Patent number: 7662730Abstract: A method for fabricating an ultra-high tensile-stressed nitride film is disclosed. A PECVD process is first performed to deposit a transitional silicon nitride film over a substrate. The transitional silicon nitride film has a first concentration of hydrogen atoms. The transitional silicon nitride film is subjected to UV curing process for reducing the first concentration of hydrogen atoms to a second concentration of hydrogen atoms.Type: GrantFiled: November 24, 2005Date of Patent: February 16, 2010Assignee: United Microelectronics Corp.Inventors: Neng-Kuo Chen, Teng-Chun Tsai, Chien-Chung Huang, Tsai-Fu Chen, Wen-Han Hung
-
Patent number: 7651961Abstract: A method for forming a strained SiN film and a semiconductor device containing the strained SiN film. The method includes exposing the substrate to a gas including a silicon precursor, exposing the substrate to a gas containing a nitrogen precursor activated by a plasma source at a first level of plasma power and configured to react with the silicon precursor with a first reactivity characteristic, and exposing the substrate to a gas containing the nitrogen precursor activated by the plasma source at a second level of plasma power different from the first level and configured to react with the silicon precursor with a second reactivity characteristic such that a property of the silicon nitride film formed on the substrate changes to provide the strained silicon nitride film.Type: GrantFiled: March 30, 2007Date of Patent: January 26, 2010Assignee: Tokyo Electron LimitedInventor: Robert D. Clark
-
Patent number: 7601619Abstract: A method and an apparatus for plasma processing which can accurately monitor an ion current applied to the surface of a sample. Predetermined gas is exhausted via an exhaust port by a turbo-molecular pump while introducing the gas within the vacuum chamber from a gas supply device, and the pressure within the vacuum chamber is kept at a predetermined value by a pressure regulating valve. A high-frequency power supply for a plasma source supplies a high-frequency power to a coil provided near a dielectric window to generate inductively coupled plasma within the vacuum chamber. A high-frequency power supply for the sample electrode for supplying the high-frequency power to the sample electrode is provided. A matching circuit for the sample electrode and a high-frequency sensor are provided between the sample electrode high-frequency power supply and the sample electrode. An ion current applied to the surface of a sample can be accurately monitored buy using the high-frequency sensor and an arithmetic device.Type: GrantFiled: April 4, 2006Date of Patent: October 13, 2009Assignee: Panasonic CorporationInventors: Tomohiro Okumura, Yuichiro Sasaki, Katsumi Okashita, Hiroyuki Ito, Bunji Mizuno, Cheng-Guo Jin, Ichiro Nakayama
-
Patent number: 7592273Abstract: A method of forming a semiconductor device comprises providing a portion of a semiconductor device structure, wherein the portion includes a region susceptible to hydrogen incorporation due to subsequent device processing. For example, the subsequent device processing can include one or more of (i) forming a layer over the region, wherein the layer includes hydrogen and (ii) using gases containing hydrogen in a plasma for the subsequent device processing, wherein the semiconductor device is subject to an undesirable device characteristic alteration by hydrogen incorporation into the region. The method further comprises forming a hydrogen barrier layer overlying the region, wherein the hydrogen barrier layer prevents substantial migration of hydrogen made available due to the subsequent device processing into the underlying region. The method further includes performing the subsequent device processing.Type: GrantFiled: April 19, 2007Date of Patent: September 22, 2009Assignee: Freescale Semiconductor, Inc.Inventors: Stanley M. Filipiak, Zhi-Xiong Jiang, Mehul D. Shroff
-
Patent number: 7585790Abstract: A method of forming a semiconductor device. The method comprises steps of providing a substrate having a first transistor, a second transistor and non-salicide device formed thereon and the conductive type of the first transistor is different from that of the second transistor. A buffer layer is formed over the substrate and a tensile material layer is formed over the buffer layer. A portion of the tensile material layer over the second transistor is thinned and a spike annealing process is performed. The tensile material layer is removed to expose the buffer layer over the substrate and a patterned salicide blocking layer is formed over the non-salicide device. A salicide process is performed for forming a salicide layer on a portion of the first transistor and the second transistor.Type: GrantFiled: July 20, 2006Date of Patent: September 8, 2009Assignee: United Microelectronics Corp.Inventors: Wen-Han Hung, Cheng-Tung Huang, Kun-Hsien Lee, Shyh-Fann Ting, Li-Shian Jeng, Tzyy-Ming Cheng, Chia-Wen Liang, Neng-Kuo Chen
-
Patent number: 7541234Abstract: Integrated circuit transistors may be fabricated by simultaneously removing a photoresist layer on a first active area of an integrated circuit substrate and a carbon-containing layer on a second active area of the integrated circuit substrate, to expose a nitride stress-generating layer on the second active area. A single mask may be used to define the second active area for removal of the photoresist layer on the first active area and for implanting source/drain regions into the second active area.Type: GrantFiled: November 3, 2005Date of Patent: June 2, 2009Assignees: Samsung Electronics Co., Ltd., Chartered Semiconductor Manufacturing Ltd., Infineon Technologies AGInventors: Chong Kwang Chang, Haoren Zhuang, Matthias Lipinski, Shailendra Mishra, O Sung Kwon, Tjin Tjin Tjoa, Young Gun Ko
-
Patent number: 7510984Abstract: A method of forming a silicon nitride film comprises: forming a silicon nitride film by applying first gas containing silicon and nitrogen and second gas containing nitrogen and hydrogen to catalyst heated in a reduced pressure atmosphere. A method of manufacturing a semiconductor device comprising the steps of: forming a silicon nitride film by the method as claimed in claim 1 on a substrate having the semiconductor layer, a gate insulation film selectively provided on a principal surface of the semiconductor layer, and a gate electrode provided on the gate insulation film; and removing the silicon nitride film on the semiconductor layer and the gate electrode and leaving a sidewall comprising the silicon nitride film on a side surface of the gate insulation film and the gate electrode by etching the silicon nitride film in a direction generally normal to the principal surface of the semiconductor layer.Type: GrantFiled: February 15, 2005Date of Patent: March 31, 2009Assignee: Ulvac, Inc.Inventors: Tsuyoshi Saito, Hiromi Itoh, Makiko Kitazoe
-
Patent number: 7501355Abstract: Methods for forming silicon nitride hard masks are provided. The silicon nitride hard masks include carbon-doped silicon nitride layers and undoped silicon nitride layers. Carbon-doped silicon nitride layers that are deposited from a mixture comprising a carbon source compound, a silicon source compound, and a nitrogen source in the presence of RF power are provided. Also provided are methods of UV post-treating silicon nitride layers to provide silicon nitride hard masks. The carbon-doped silicon nitride layers and UV post-treated silicon nitride layers have desirable wet etch rates and dry etch rates for hard mask layers.Type: GrantFiled: June 29, 2006Date of Patent: March 10, 2009Assignee: Applied Materials, Inc.Inventors: Ritwik Bhatia, Li-Qun Xia, Chad Peterson, Hichem M'Saad
-
Patent number: 7473655Abstract: Embodiments of the invention generally provide a method for depositing silicon-containing films. In one embodiment, a method for depositing silicon-containing material film on a substrate includes flowing a nitrogen and carbon containing chemical into a deposition chamber, flowing a silicon-containing source chemical having silicon-nitrogen bonds into the processing chamber, and heating the substrate disposed in the chamber to a temperature less than about 550 degrees Celsius. In another embodiment, the silicon containing chemical is trisilylamine and the nitrogen and carbon containing chemical is (CH3)3—N.Type: GrantFiled: June 17, 2005Date of Patent: January 6, 2009Assignee: Applied Materials, Inc.Inventors: Yaxin Wang, Yuji Maeda, Thomas C. Mele, Sean M. Seutter, Sanjeev Tandon, R. Suryanarayanan Iyer