Frequency Or Phase Modulation Patents (Class 455/205)
  • Patent number: 8412138
    Abstract: A multi-signal connector includes a first tuner, a first demodulator, a first radio frequency signal pin, a first ground signal pin and digital signal pins, and the first radio frequency signal pin transmits a first radio frequency signal. The first tuner receives the first radio frequency signal and outputs a first digital signal. The first demodulator receives the first digital signal and outputs an MPEG signal via the digital signal pins. The ground signal pin is disposed between the first radio frequency signal pin and the digital signal pins for reducing the interference and noise between the first radio frequency signal and the MPEG signal. A digital signal processing system is also disclosed.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: April 2, 2013
    Assignee: Wistron Corp.
    Inventors: Chia-Hsien Li, Kuo-Kun Lin, Chu-Chia Tsai, Te-Lung Wu
  • Patent number: 8406717
    Abstract: Systems and techniques for digital processing of FM stereo signals are described. In some implementations, a receiver system is provided. The receiver system can include a received signal input configured to receive a digital signal based on a received mono signal or a received stereo signal. The receiver system can also include a stereo detector coupled with the received signal input, the stereo detector configured to produce a stereo detection signal indicating either a received stereo signal or a received mono signal. The receiver system can further include a digital signal processor coupled with the stereo detector, the digital signal processor configured to process the digital signal based on stereo transmission when the stereo detection signal indicates a received stereo signal and process the digital signal based on mono transmission when the stereo detection signal indicates a received mono signal.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: March 26, 2013
    Assignee: Marvell International Ltd.
    Inventor: Hui-Ling Lou
  • Patent number: 8406707
    Abstract: Various embodiments of systems and methods for generating local oscillator (LO) signals for a harmonic rejection mixer are provided. One embodiment is a system for generating local oscillator (LO) signals for a harmonic rejection mixer. One such system comprises a local oscillator, a divide-by-N frequency divider, a divide-by-three frequency divider, and a harmonic rejection mixer. The local oscillator is configured to provide a reference frequency signal. The divide-by-N frequency divider is configured to divide the reference frequency signal by a value N and provide an output signal. The divide-by-three frequency divider is configured to receive the output signal of the divide-by-N frequency divider and divide the output signal into three phase-offset signals. The harmonic rejection mixer is configured to receive the three phase-offset signals and eliminate third frequency harmonics.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: March 26, 2013
    Assignee: Skyworks Solutions, Inc.
    Inventors: Rajasekhar Pullela, Dmitriy Rozenblit, Hamid Firouzkouhi
  • Patent number: 8385868
    Abstract: An antenna system for receiving an RF signal from a first antenna and a second antenna includes a phase shift circuit. The phase shift circuit shifts a phase of the RF signal from the second antenna by one of a plurality of possible phase shifts to produce a phase shifted signal. A combiner combines the RF signal from the first antenna and the phase shifted signal to produce a combined signal. A comparator circuit compares a signal quality of the combined signal with a minimum threshold value to determine if the signal quality of the combined signal is equal to or greater than the threshold value. The comparator circuit is in communicative control of the phase shift circuit and maintains the phase shift of the RF signal received by the second antenna in response to the signal quality of the combined signal being equal to or greater than the threshold value.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: February 26, 2013
    Assignee: AGC Automotive Americas R&D, Inc.
    Inventors: Ming Lee, Wladimiro Villarroel, Kwan-ho Lee, Yasutaka Horiki
  • Patent number: 8380140
    Abstract: A baseband signal processing unit changes the collector current of a transistor (20) formed by a bias control circuit (7) in accordance with a baseband transmission signal input from a baseband signal input terminal (18), changing the drain bias of a high-frequency transistor (1) to realize frequency modulation by changing the oscillation frequency, and the radiation wave thereof forms a transmit RF signal, whereby the transmission operation is performed. On the other hand, the oscillation signal is synchronized with a frequency modulated RF signal that arrives from outside, the change in frequency caused by the frequency modulation is generated as a change in the drain bias of the high-frequency transistor (1), and reception operation is performed by taking out that change as a voltage amplitude change from the baseband signal output terminal (14). As a result, it is possible to provide a microwave/millimeter wave communication apparatus that is simple in structure, low cost, and low power consumption.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: February 19, 2013
    Assignees: National Institute of Information and Communications Technology, Communications Research Laboratory, Inc.
    Inventors: Hitoshi Utagawa, Toshiaki Matsui
  • Patent number: 8364073
    Abstract: A radio receiver receives a broadcast signal and generates an RF signal, generates an IF signal from the RF signal, detects the electric field intensity and the frequency of the IF signal, detects the IF signal and generates a detected signal, detects the intensity of a noise signal that is a harmonic component of a digital signal that exists in a certain specific frequency band from among the detected signals, determines that the broadcast signal includes a desired analog broadcast signal when the electric field intensity of the IF signal is equal to or larger than a predetermined electric field intensity, the frequency is within a predetermined frequency range, and also the signal intensity detected by the noise signal detection unit is equal to or smaller than a predetermined value, and then performs a control to stop a search.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: January 29, 2013
    Assignee: Mitsubishi Electric Corp.
    Inventor: Takashi Senoo
  • Publication number: 20130023223
    Abstract: Aspects of a method and system for sharing a single antenna for frequency modulation (FM) transmission or FM reception, and near field communication (NFC) are presented. Aspects of a system may include at least one circuit that enables, via a single antenna, simultaneous transmission of an FM signal and transmission of an NFC signal or reception of an NFC signal.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 24, 2013
    Applicant: BROADCOM CORPORATION
    Inventors: Ahmadreza Rofougaran, Maryam Rofougaran
  • Patent number: 8347121
    Abstract: A system and method for adjusting an energy efficient Ethernet (EEE) control policy using measured power savings. An EEE-enabled device can be designed to report EEE event data. This reported EEE event data can be used to quantify the actual EEE benefits of the EEE-enabled device, debug the EEE-enabled device, and adjust the EEE control policy.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: January 1, 2013
    Assignee: Broadcom Corporation
    Inventors: Brad Matthews, Puneet Agarwal, Bruce Kwan
  • Patent number: 8335483
    Abstract: A receiver device, A system and a method for reception of a signal having an amplitude that has been modulated with information, wherein a resistive element is provided that converts an electrical quantity into a physical parameter.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: December 18, 2012
    Inventor: Frank Schmidt
  • Patent number: 8331890
    Abstract: A FM receiver comprises an IF filter, a demodulator and a decoder. The IF filter generates an RSSI and a FM modulated signal in response to a FM signal. The demodulator comprises a duty-to-voltage amplifier for amplifying a peak of a MPX signal. The duty-to-voltage amplifier comprises a current source, a switch and a current splitter. The current source generates a current. The switch controls a flow of the first current in response to a PWM signal. The current splitter splits the flow of the current into a sub-flow in response to the RSSI. The peak of the MPX signal is proportional to the sub-flow. The decoder receives the MPX signal to generate an audio signal to play sound.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: December 11, 2012
    Assignee: MediaTek Inc.
    Inventors: Hsiang-Hui Chang, Chieh Hung Chen
  • Patent number: 8325794
    Abstract: An apparatus and a method for calibrating IQ mismatch to ensure that an in-phase oscillating signal and a quadrature-phase oscillating signal are orthogonal to each other. The apparatus includes a mixer for mixing the in-phase oscillating signal with the quadrature-phase oscillating signal to generate an output signal, a control module for determining a control signal according to a low-frequency component of the output signal, and a phase adjusting module for adjusting the phase of a specific oscillating signal to ensure that the in-phase oscillating signal and the quadrature-phase oscillating signal are orthogonal to each other. The specific oscillating signal may be the in-phase or the quadrature-phase oscillating signal. The apparatus does not require a digital signal-processing unit to perform complex calculations nor requires additional oscillating sources for calibration. Hence, the circuit design is much simplified, and the consumption of system resources is significantly reduced.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: December 4, 2012
    Assignee: Realtek Semiconductor Corp.
    Inventors: Ying-Yao Lin, Fong-Ching Huang
  • Patent number: 8320862
    Abstract: When the first switching circuit outputs the output signal of the first selection filter, the receiver switches the output signal of the second switching circuit to the output signal of the delay compensator, and when the first switching circuit outputs the output signal of the second selection filter, the receiver switches the output signal of the second switching circuit to the output signal of the third selection filter.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: November 27, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kiyonori Takahashi
  • Patent number: 8300569
    Abstract: A method of processing broadcast data in a broadcast transmitter includes performing, by a Reed-Solomon (RS) encoder, RS encoding and Cyclic Redundancy Check (CRC) encoding on mobile service data and building at least primary RS frames belonging to a primary ensemble or secondary RS frames belonging to a secondary ensemble depending on RS frame mode information that indicates a single frame mode or a dual frame mode; mapping each of the built at least primary or secondary RS frames into groups, wherein each of the groups includes known data sequences, a fast information channel (FIC) segment, and transmission parameter channel (TPC) data; and transmitting a transmission frame containing the groups.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: October 30, 2012
    Assignee: LG Electronics Inc.
    Inventors: Jae Hyung Song, In Hwan Choi, Jong Yeul Suh, Jin Pil Kim, Chul Soo Lee
  • Publication number: 20120220250
    Abstract: A signal receiving device and signal receiving method to pass a desired frequency component of an intermediate frequency signal by using an IF filter without increasing a chip area. The signal receiving device comprises: a mixer to mix a received frequency signal with a local oscillation frequency signal to generate an intermediate frequency signal; an IF filter to pass a predetermined frequency component of the intermediate frequency signal; a controlling part which adjusts, according to a frequency band of the intermediate frequency signal, the frequency band of the IF filter, and adjust, according to a center frequency set in the IF filter that fluctuates with the adjustment, a center frequency of the intermediate frequency signal to be inputted in the IF filter; and a demodulating part to demodulate a frequency component of the intermediate frequency signal outputted after passing through the IF filter.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 30, 2012
    Applicant: LAPIS Semiconductor Co., Ltd.
    Inventor: Toshiyuki OCHIAI
  • Patent number: 8238903
    Abstract: A system and method for highly efficient constellations of satellites which give single, double, . . . k-fold redundant full earth imaging coverage, or k-fold coverage for latitudes greater than any selected latitude is given for remote sensing instruments in short periods of time, i.e., continuous coverage, as a function of the parameters of the satellite and the remote sensing instrument for many different types of orbits. A high data rate satellite communication system and method for use with small, mobile cell phone receiving and transmitting stations is also provided. Satellite instrument performance models, full and partial satellite constellation models, and satellite cost models are disclosed and used to optimize the design of satellite systems with vastly improved performance and lower cost over current major satellite systems.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: August 7, 2012
    Inventors: C. Laurence Korb, Andrew Robert Korb
  • Patent number: 8233451
    Abstract: A method and apparatus for reconfiguring a wireless transmit/receive unit (WTRU) are directed to receiving an active set update message indicating that a mode of operation allowing a certain modulation scheme is enabled or disabled and performing at least one of: performing a MAC reset procedure, updating a set of reference enhanced transport format combination indicators (E-TFCIs) and associated power offsets, determining actions related to E-DPCCH boosting, modifying information related to an enhanced dedicated channel (E-DCH), and modifying an index that indicates an E-DCH transport block size table. The update message includes at least one modified information element (IE).
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: July 31, 2012
    Assignee: InterDigital Patent Holdings, Inc.
    Inventors: Paul Marinier, Benoit Pelletier, Diana Pani
  • Publication number: 20120178392
    Abstract: An I/Q imbalance compensation block of a RF receiver for compensating an imbalance between an in-phase component and a quadrature component of an RF signal is disclosed. The compensation block includes a conjugation block; an adaptive finite impulse response (FIR) filter; and an adder. The filter use filter coefficients iteratively updated at least partly in response to a compensated digital signal. The filter can have a complex number for at least one, but not all of filter taps, and real numbers for other filter taps. The filter can be provided with adaptation step sizes different from filter tap to filter tap. The filter can also be provided with an adaptation step size(s) varying over time. The filter can also be provided with an adaptation step size(s) divided by the square norm of the compensated signal.
    Type: Application
    Filed: January 6, 2011
    Publication date: July 12, 2012
    Applicant: Analog Devices, Inc.
    Inventor: Raju Hormis
  • Publication number: 20120171977
    Abstract: A vehicle or other host station includes first and second antennas, a fast semiconductor switch, a switching controller, and an RF receiver. The controller toggles the switch at a calibrated switching rate to selectively and alternately connect the first antenna to one of the RF receiver and a load having a calibrated impedance value. The first antenna may be a parasitic element in any embodiment using the load. The semiconductor switch may be a CMOS device or a Gallium Arsenide semiconductor switch. A switching control method for use in a vehicle or other host station having the first antenna, the second antenna, and the RF receiver includes transmitting a switching signal from the controller to the switch, and toggling the switch at a calibrated switching rate in response to the switching signal to selectively and alternately connect the first antenna to one of the RF receiver and the load.
    Type: Application
    Filed: December 1, 2011
    Publication date: July 5, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Timothy J. Talty, James H. Schaffner, Hyok Jae Song, Joseph S. Colburn, Duane S. Carper
  • Patent number: 8213892
    Abstract: A FM-AM demodulator includes a FM signal amplifier, a local oscillator, an image oscillator, a first selector, a first orthogonal mixer, an AM signal amplifier, a first frequency divider, a second frequency divider, a second selector, a second orthogonal mixer, a third selector, a first filter, a first amplifier, a fourth selector, a second filter, a second amplifier, a first gain controller, an I/Q compensation unit, an IF oscillator, a third orthogonal mixer, an adder, a channel filter configured to extract a signal with a predetermined frequency band output from the adder, a third amplifier, a second gain controller, a demodulator, and an I/Q compensation controller configured to generate an I/Q compensation signal to use for adjusting phase and gain of the I signal used in an I/Q compensation unit by detecting amplitude of the output signal from the demodulator, and output the generated signal to the I/Q compensation unit.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: July 3, 2012
    Assignee: Ricoh Company, Ltd.
    Inventor: Nobunari Tsukamoto
  • Patent number: 8195465
    Abstract: A technique is described for use in a decoder configured to decode a series of frames representing an encoded audio signal. The technique is for transitioning between a lost frame and one or more received frames following the lost frame in the series of frames. In accordance with the technique, an output audio signal associated with the lost frame is synthesized. An extrapolated signal is generated based on the synthesized output audio signal. A time lag is calculated between the extrapolated signal and a decoded audio signal associated with the received frame(s), wherein the time lag represents a phase difference between the extrapolated signal and the decoded audio signal. The decoded audio signal is time-warped based on the time lag, wherein time-warping the decoded audio signal comprises stretching or shrinking the decoded audio signal in the time domain.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: June 5, 2012
    Assignee: Broadcom Corporation
    Inventors: Robert W. Zopf, Juin-Hwey Chen, Jes Thyssen
  • Patent number: 8185798
    Abstract: A technique for joint detection of channel-coded signals in a multiple-input multiple-output system includes detecting, when a decoded signal associated with a first symbol stream passes a cyclic redundancy check, channel-coded signals in the first symbol stream and a second symbol stream using minimum mean squared error with ordered successive interference cancellation (MMSE-OSIC) based detection. When the decoded signal associated with the first symbol stream fails the cyclic redundancy check, the channel-coded signals in the first and second symbol streams are detected using neighbor search algorithm (NSA) based detection.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: May 22, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Oghenekome F. Oteri, Leo G. Dehner, Jayesh H. Kotecha, Hoojin Lee
  • Patent number: 8179857
    Abstract: A method of transmitting a scheduling request which is used to request a radio resource for uplink transmission includes configuring an uplink control channel for transmission of a scheduling request in a subframe, the subframe comprising two consecutive slots, a slot comprising a plurality of single carrier-frequency division multiple access (SC-FDMA) symbols, the scheduling request being carried by presence or absence of transmission of the uplink control channel, and transmitting the scheduling request on the uplink control channel.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: May 15, 2012
    Assignee: LG Electronics Inc.
    Inventors: Yeong Hyeon Kwon, Seung Hee Han, Hyun Woo Lee, Jae Hoon Chung, Jin Sam Kwak, Dong Cheol Kim, Min Seok Noh
  • Patent number: 8175280
    Abstract: A headphone down mix signal can be efficiently derived from a parametric down mix of a multi-channel signal, when modified HRTFs (head related transfer functions) are derived from HRTFs of a multi-channel signal using a level parameter having information on a level relation between two channels of the multi-channel signals such that a modified HRTF is stronger influenced by the HRTF of a channel having a higher level than by the HRTF of a channel having a lower level. Modified HRTFs are derived within the decoding process taking into account the relative strength of the channels associated to the HRTFs. The HRTFs are thus modified such that a down mix signal of a parametric representation of a multi-channel signal can directly be used to synthesize the headphone down mix signal without the need of an intermediate full parametric multi-channel reconstruction of the parametric down mix.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: May 8, 2012
    Assignee: Dolby International AB
    Inventors: Lars Villemoes, Kristofer Kjoerling, Jeroen Breebaart
  • Patent number: 8170512
    Abstract: A wireless transmitter that includes a phase rotating unit which adds phase rotation to signals which are respectively input to antennas and adds first phase rotation for controlling the maximum delay time between the antennas and a second phase rotation for controlling the phases of arbitrary antennas among the antennas, wherein scheduling of users is performed on a per-chunk basis where a region defined in a frequency domain and in a time domain is divided into chunks in the frequency domain and in the time domain, and in the case in which the frequency bandwidth of the chunk is Fc, the phase rotating unit adds the first phase rotation so that the maximum delay time between the antennas is set to either a predetermined first value which is smaller than 1/Fc or a predetermined second value which is larger than 1/Fc.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: May 1, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Kimihiko Imamura
  • Patent number: 8170151
    Abstract: A receiver includes a band-pass filter that limits a passband of an IF (Intermediate Frequency) signal, an FSK detector that detects the IF signal passing through the band-pass filter to generate a detection signal, and a control block that controls a modulation sensitivity of the FSK detector and a pass bandwidth of the band-pass filter, in which the control block controls the modulation sensitivity of the FSK detector according to the pass bandwidth of the band-pass filter.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: May 1, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Shigeya Suzuki
  • Patent number: 8165538
    Abstract: Various embodiments of systems and methods for generating local oscillator (LO) signals for a harmonic rejection mixer are provided. One embodiment is a system for generating local oscillator (LO) signals for a harmonic rejection mixer. One such system comprises a local oscillator, a divide-by-N frequency divider, a divide-by-three frequency divider, and a harmonic rejection mixer. The local oscillator is configured to provide a reference frequency signal. The divide-by-N frequency divider is configured to divide the reference frequency signal by a value N and provide an output signal. The divide-by-three frequency divider is configured to receive the output signal of the divide-by-N frequency divider and divide the output signal into three phase-offset signals. The harmonic rejection mixer is configured to receive the three phase-offset signals and eliminate third frequency harmonics.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: April 24, 2012
    Assignee: Skyworks Solutions, Inc.
    Inventors: Rajasekhar Pullela, Dmitriy Rozenblit, Hamid Firouzkouhi
  • Patent number: 8160491
    Abstract: A method and system for GPS (Geographical Positioning System) synchronization of a femtocell, as defined in the application, in a wireless telecommunications network, the system including a Base Transceiver Station (a “sync-BTS”) for transmitting synchronization signals, a module for GPS synchronization coupled to the sync-BTS, at least one femtocell, and a processor in each femtocell for performing time and frequency synchronization on the sync-BTS over an air interface.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: April 17, 2012
    Assignee: Designart Networks Ltd
    Inventors: Assaf Touboul, Oz Barak
  • Patent number: 8155618
    Abstract: A waveform shaping circuit wave-shapes a demodulated signal after FM demodulation to generate a binary value. A smoothing circuit smoothes the demodulated signal to generate a reference voltage. A comparator compares the reference voltage with the demodulated signal to output the binary value. A potential difference limiting circuit determines whether a potential difference between the demodulated signal and the reference voltage exceeds a set voltage. When the potential difference exceeds the set voltage, the potential difference is controlled to a value less than the set voltage. At the initiation of signal reception or after a jamming signal stops, the reference voltage follows the demodulated signal, thus allowing data reception to rapidly begin.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: April 10, 2012
    Assignee: Denso Corporation
    Inventors: Hironori Kato, Gorou Inoue, Takatoshi Sekizawa
  • Patent number: 8155610
    Abstract: In one embodiment, the present invention provide a method for detecting signal quality metrics of a constant modulo (CM) signal received in two different signal paths, and combining the signal from the two signal paths based at least in part on the detected first and second signal quality metrics. Such method may be implemented in a radio receiver such as an automobile receiver.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: April 10, 2012
    Assignee: Silicon Laboratories Inc.
    Inventor: Javier Elenes
  • Patent number: 8140034
    Abstract: A method and systems for a frequency locked feedback loop for wireless communications are provided. The method includes applying dither modulation from a harmonic modulator to modulated data at a transmit source, and mixing the dither modulation at a dither modulation frequency with the modulated data at a wireless carrier frequency to produce a modulated signal. The method also includes filtering and splitting the modulated signal using a bandpass filter to produce a wireless output signal and a feedback signal. The method further includes determining a frequency error in the feedback signal as a function of alignment of the wireless carrier frequency to a target frequency in a frequency response of the bandpass filter. The method additionally includes adjusting the wireless carrier frequency in response to the frequency error to establish a frequency lock between the wireless carrier frequency and the target frequency.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: Casimer M. DeCusatis, Lawrence Jacobowitz
  • Patent number: 8140037
    Abstract: A wireless transmission apparatus that can accurately select an optimal modulation scheme on a per block basis in a multi-carrier communication system in which block division of subcarriers and adaptive modulation are performed. In this wireless transmission apparatus, a propagation path characteristics acquisition section acquires the average SNR and SNR variance for each block, which are estimated by a wireless reception apparatus, using received signals inputted from a reception RF section and outputs these to an assignment section. The assignment section selects a modulation scheme for each block based on the average SNR and SNR variance of each block inputted from the propagation path characteristics acquisition section and modulation sections modulate multi-carrier signals included in each block, with the modulation scheme for each block selected by the assignment section.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: March 20, 2012
    Assignee: Panasonic Corporation
    Inventors: Jun Cheng, Kenichi Miyoshi
  • Patent number: 8135362
    Abstract: A method of communicating using evolutionary synthesis for band-limited voice and data channels.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: March 13, 2012
    Assignee: Symstream Technology Holdings Pty Ltd
    Inventor: Christoph Karl LaDue
  • Patent number: 8121570
    Abstract: A system for processing signals is disclosed and may include a single chip having an integrated Bluetooth radio and an integrated FM radio. The single chip may include at least one processor that enables selecting from a range of FM channels, a particular frequency for one of the FM channels based on an intermediate frequency (IF). The particular frequency may be selected so that it is an integer multiple of a channel spacing between neighboring allocated FM channels within the range of FM channels, and may be offset by at most one-half the channel spacing. The at least one processor may enable determining a frequency error of the selected particular frequency for the one of the FM channels. The at least one processor may also enable determining, whether the particular frequency includes an on-frequency channel based on the determined frequency error.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: February 21, 2012
    Assignee: Broadcom Corporation
    Inventors: Brima Ibrahim, Bojko Marholev, Lijun Zhang
  • Patent number: 8116709
    Abstract: A microwave receiver measures the frequency F of a microwave signal in a band of frequencies whose maximum frequency is Fmax. The receiver has N frequency measuring digital stages E1, E2, . . . Ek, . . . EN providing N ambiguous frequency measurements Fm1, Fm2, . . . Fmk, . . . FmN of the signal received, the signal received being sampled, in each digital stage, at a respective sampling frequency Fe1, Fe2, . . . Fek, . . . FeN. The receiver further includes an ambiguity resolving device (40) receiving the N frequency measurements and providing the frequency F of the signal received. Each frequency measuring digital stage Ek has a one-bit analog/digital converter (50) fed directly with the microwave signal received by the receiver, means for performing a discrete Fourier transform on the basis of the samples output by the one-bit converter, and at least one detector (60, 62) of spectral line maximum of the discrete Fourier transform providing a frequency measurement Fmk of the signal received.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: February 14, 2012
    Assignee: Thales
    Inventors: Thierry Briand, Gilles Guerbeur
  • Patent number: 8116708
    Abstract: A wireless receiver that includes a reception unit which, in the case in which the frequency bandwidth of the chunk is Fc, receives a) data to which phase rotation for controlling the maximum delay time between the plurality of transmission antennas is added so that the maximum delay time is set to either a predetermined first value which is smaller than 1/Fc or a predetermined second value which is larger than 1/Fc depending on whether transmission is performed using frequency diversity or transmission is performed using multi-user diversity and b) pilot channels corresponding to the plurality of transmission antennas which are orthogonal to each other; and a demodulating unit which demodulates the data based on transfer functions calculated using the pilot channels.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: February 14, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Kimihiko Imamura
  • Patent number: 8112051
    Abstract: Method and system for false lock free autonomous scan in a receiver is disclosed. The method includes identifying a presence of a desired signal to avoid false frequency lock in a Frequency Modulation receiver. The method includes receiving a signal. The method further includes identifying the desired signal, if a first energy is above a first threshold. The method also includes identifying the desired signal, if an Intermediate Frequency count is below a second threshold. The method includes identifying the desired signal, if a second energy of the signal is above a third threshold. The method includes identifying the desired signal, if an absolute difference between a first Received Signal Strength Indication (RSSI) value and a second RSSI value of the signal is below a fourth threshold. The method includes determining a third energy. The method includes identifying the desired signal, if the third energy is below a fifth threshold.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: February 7, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Jaiganesh Balakrishnan, Aravind Ganesan, Sriram Murali, Bijoy Bhukania
  • Patent number: 8090575
    Abstract: A radio-to-SIP adapter is shown to include a voice detection algorithm processor as well as other circuitry to provide an interface between a radio and SIP adapter to accommodate a transition from half duplex to full duplex and to cause a radio to transmit when human speech is present in an audio signal from a telephony network.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: January 3, 2012
    Assignee: JPS Communications, Inc.
    Inventors: Douglas Hall, Daniel Floyd
  • Publication number: 20110319042
    Abstract: An integrated RF front-end circuit comprising a balun, a receiver amplifier, a power amplifier, and a selector circuit is provided. The balun comprises a center-tapped inductor having a first node, a center-tap switchlessly coupled to a fixed voltage, and a second node. The balun receives a single-ended signal through the first node to produce a differential signal at the first and second nodes. The differential signal is provided to balanced input lines of the receiver amplifier. Balanced output lines of the power amplifier provide a differential signal to the first and second nodes. The balun converts the differential signal to a single-ended signal. The single-ended signal is available at the first node of the center-tapped inductor. The selector circuit activates the receiver amplifier and deactivates the power amplifier, and vice versa. The power amplifier may comprise only a single-ended output line connected to either the first or the second node.
    Type: Application
    Filed: September 3, 2010
    Publication date: December 29, 2011
    Inventor: Manoj Shridhar Soman
  • Patent number: 8086189
    Abstract: The present invention relates to a polar transmission method and a polar transmitter for transmitting phase and amplitude components derived from in-phase (I) and quadrature-phase (Q) components of an input signal. A first conversion is provided for converting the in-phase (I) and quadrature-phase (Q) components into the phase and amplitude components at a first sampling rate. Additionally, a second conversion is provided for converting the phase component into a frequency component, wherein the second conversion comprises a rate conversion for converting the first sampling rate into a lower second sampling rate at which the frequency component is provided. Thereby, the second sampling rate can be used as a lower update rate in a digitally controlled oscillator in order to save power or because of speed limitations, while the surplus phase samples obtain due to the higher first sampling rate enable better approximation of the phase component after the digitally controlled oscillator.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: December 27, 2011
    Assignee: NXP B.V.
    Inventors: Manel Collados Asensio, Nenad Pavlovic, Vojkan Vidojkovic, Paulus T. M. Van Zeijl
  • Patent number: 8078458
    Abstract: A technique is described for concealing the effect of a lost frame in a series of frames representing an encoded audio signal in a sub-band predictive coding system. In accordance with the technique, a first synthesized sub-band audio signal is synthesized, wherein synthesizing the first synthesized sub-band audio signal comprises performing waveform extrapolation based on a stored first sub-band decoded audio signal. A second synthesized sub-band audio signal is also synthesized, wherein synthesizing the second synthesized sub-band audio signal comprises performing waveform extrapolation based on the stored second sub-band decoded audio signal. The first synthesized sub-band audio signal and the second synthesized sub-band audio signal are combined to generate a synthesized full-band output audio signal corresponding to a lost frame.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: December 13, 2011
    Assignee: Broadcom Corporation
    Inventors: Robert W. Zopf, Jes Thyssen, Juin-Hwey Chen
  • Patent number: 8078125
    Abstract: A demodulator (6) for demodulating a modulated signal (3) comprises a Hubert transformer (7) for generating a Hubert transformed modulated signal (18) of the modulated signal (3). The Hubert transformed modulated signal (18) comprises modulated (5) and unmodulated signal sequences (4) and originates from an unmodulated signal. The demodulator (6) further comprises a comparing device (14) for comparing the Hubert transformed modulated signal (18) with a reference signal (15), which corresponds to the Hubert transformed unmodulated signal. The demodulator (6) is further configured to identify the modulated and unmodulated signal sequences (4, 5) based on the comparison.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: December 13, 2011
    Assignee: NXP B.V.
    Inventors: Harald Witschnig, Johannes Bruckbauer
  • Patent number: 8073079
    Abstract: A threshold noise-canceling method comprising the steps of: receiving an angle-modulated signal; identifying in the angle-modulated signal potential threshold noise events that exceed a first threshold value; calculating average values of the phase of the angle-modulated signal before and after a potential threshold noise event; identifying every potential threshold noise event as a threshold noise event when the difference between the corresponding before and after average values of the phase is greater than a second threshold value; and canceling out each threshold noise event by adding to the phase of the angle-modulated signal a 2? phase shift of polarity opposite to that of the corresponding threshold noise event.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: December 6, 2011
    Assignee: The United States of America as represented by Secretary of the Navy
    Inventor: Ahsen Ahmed
  • Patent number: 8064858
    Abstract: Systems and techniques for processing signals include, in at least one aspect, a method including: receiving an input signal having an associated carrier frequency; multiplying the input signal to produce a multiplied signal; filtering the multiplied signal to produce a high frequency component of the multiplied signal; delaying the multiplied signal to produce a delayed signal; and combining the high frequency component of the multiplied signal with the delayed signal to produce a scaling factor for use in detecting at least one of multiple signal bitstreams associated with the input signal.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: November 22, 2011
    Assignee: Marvell International Ltd.
    Inventor: Hui-Ling Lou
  • Patent number: 8060051
    Abstract: In a radio communication apparatus, a frequency offset calculator of the radio communication apparatus calculates a frequency offset of the received radio signal from the reception frequency of the radio communication apparatus. An averaging unit averages the frequency offset calculated by the frequency offset calculator. A moving speed calculator calculates the moving speed of an associated radio communication apparatus with which the radio communication apparatus is communicating, based on the frequency offset calculated by the frequency offset calculator. An averaging time changer changes an averaging time for which the frequency offset is averaged by the averaging unit, in accordance with the moving speed of the associated radio communication apparatus calculated by the moving speed calculator.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: November 15, 2011
    Assignee: Fujitsu Limited
    Inventor: Takato Ezaki
  • Patent number: 8060049
    Abstract: An integrated low-IF (low intermediate frequency) terrestrial broadcast receiver and associated method are disclosed that provide an advantageous and cost-efficient solution. The integrated receiver includes a mixer, local oscillator generation circuitry, low-IF conversion circuitry, and DSP circuitry. And the integrated receiver is particularly suited for small, portable devices and the reception of terrestrial audio broadcasts, such as FM and AM terrestrial audio broadcast, in such portable devices.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: November 15, 2011
    Assignee: Silicon Laboratories Inc.
    Inventors: G. Tyson Tuttle, Dan B. Kasha
  • Publication number: 20110275338
    Abstract: A new pulse shape for CPM is introduced which is obtained by a linear combination of well-known RC and REC pulse shapes. The new pulse shape addresses the tradeoff between the width of the PSD main lobe and the rate of decay of the side lobe to improve the coded performance of multi-carrier systems affected by ACI. Also, a methodology is proposed to design and evaluate the performance of the new pulse shape for multi-carrier, coded systems based on the modulation constrained capacity. Furthermore, a binary convolutional code and the CPM modulator are concatenated using an S-random bit interleaver to lower the error floor. Finally, Laurent representation of the new pulse shape is suggested such that by retaining only the principal pulses at the receiver, complexity of the receiver can be reduced.
    Type: Application
    Filed: September 30, 2010
    Publication date: November 10, 2011
    Applicant: Hughes Network Systems, LLC
    Inventors: Rohit SESHADRI, Bassel F. BEIDAS, Mustafa EROZ, Lin-Nan LEE
  • Patent number: 8055225
    Abstract: An arctangent detector according to the present invention generates a demodulated signal based on the result of arctangent calculation of the ratio between an in-phase component and a quadrature component obtained from a frequency modulation (FM) received signal that are perpendicular to each other. A median filter substitutes the median value of the sample values obtained by sampling the demodulated signal generated by the arctangent detector as many times as the point number for the current value of the demodulated signal and outputs a resultant signal. The point number altering unit alters the point number in the median filter based on the signal intensity of the FM received signal.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: November 8, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshinari Ojima, Erina Aochi
  • Patent number: 8055224
    Abstract: A wireless receiver that includes a reception unit which, in the case in which the frequency bandwidth of the chunk is Fc, receives a) data to which phase rotation for controlling the maximum delay time between the plurality of transmission antennas is added so that the maximum delay time is set to either a predetermined first value which is smaller than 1/Fc or a predetermined second value which is larger than 1/Fc depending on whether transmission is performed using frequency diversity or transmission is performed using multi-user diversity and b) pilot channels corresponding to the plurality of transmission antennas which are orthogonal to each other; and a demodulating unit which demodulates the data based on transfer functions calculated using the pilot channels.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: November 8, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Kimihiko Imamura
  • Patent number: 8045717
    Abstract: A stereo decoder and a method therefor are provided. The stereo decoder receives a MPX signal from an FM demodulator, and comprises a first auto-calibration circuit, a band-pass filter, a second auto-calibration circuit, a slicer and a PLL circuit. The first auto-calibration circuit generates a first control signal. The band-pass filter generates the pilot signal by filtering the MPX signal with a center frequency set by the first control signal. The second auto-calibration circuit generates a second control signal. The slicer converts the pilot signal into a square wave signal. The PLL circuit comprises a voltage controlled oscillator for generating an oscillation frequency in response to the second control signal. The PLL circuit receives the square wave signal to generate the reference signal around the predetermined frequency in response to the oscillation frequency.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: October 25, 2011
    Assignee: Media Tek Inc.
    Inventors: Chieh Hung Chen, Hsiang-Hui Chang, Chih-Chien Huang
  • Patent number: 8041304
    Abstract: An area estimation apparatus 100 includes: a reception level receiving unit 110 configured to receive, from a plurality of the radio signal capturing terminals 40a and 40b via the network, a radio signal reception level transmitted from the radio signal transmitting terminal 10, a radio signal transmitting terminal ID for uniquely identifying the radio signal transmitting terminal 10, and a radio signal capturing terminal ID for uniquely identifying each of the plurality of radio signal capturing terminals 40a and 40b; with a presence area of the radio signal capturing terminals being known; a reception level storage unit 123 configured to store the radio signal reception level, the radio signal transmitting terminal ID and the radio signal capturing terminal ID, which are received from each of the radio signal capturing terminals 40a and 40b, in association with one another; and a presence area estimating unit 140 configured to refer to the reception level storage unit and to estimate the presence area of th
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: October 18, 2011
    Assignee: NTT DoCoMo, Inc.
    Inventors: Naoharu Yamada, Yoshinori Isoda