And Divalent Metal Oxide (e.g., Oxides Of Zinc, Cadmium, Beryllium, Alkaline Earth Metal, Magnesium, Etc.) Patents (Class 501/69)
  • Publication number: 20130209773
    Abstract: To provide glass to be used for chemically tempered glass, of which the strength is less likely to be reduced even when indentations are formed thereon. Glass for chemical tempering, which comprises, as represented by mole percentage based on oxides, from 62 to 68% of SiO2, from 6 to 12% of Al2O3, from 7 to 13% of MgO, from 9 to 17% of Na2O, and from 0 to 7% of K2O, wherein the difference obtained by subtracting the content of Al2O3 from the total content of Na2O and K2O is less than 10%, and when ZrO2 is contained, its content is at most 0.8%. Chemically tempered glass obtained by chemically tempering such glass for chemical tempering. Such chemically tempered glass has a compressive stress layer formed on the glass surface, which has a thickness of at least 30 ?m and a surface compressive stress of at least 550 MPa.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 15, 2013
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventor: ASAHI GLASS COMPANY, LIMITED
  • Patent number: 8507098
    Abstract: The various embodiments of the present invention are directed to wear resistant coatings, tiles having the wear resistant coatings disposed thereon, and to methods of making the coatings and tiles. A wear resistant coating generally includes a strontium aluminosilicate glass-ceramic composition that is formed from a glaze. The glaze can include a crystallizing component, which itself can include strontium, aluminum, and silicon, but also comprises less than about 2 weight percent each of lithium, boron, barium, sodium, iron, titanium, zirconium, and carbon, based on a total weight of the crystallizing component.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: August 13, 2013
    Assignees: Mohawk Carpet Corporation, Intercolor S.p.A.
    Inventors: Thomas Long, Claudio Ansaloni, Massimo Sernesi, David A. Earl
  • Publication number: 20130202715
    Abstract: An aluminosilicate glass for touch screens is provided. The glass includes, calculated based on weight percentage: SiO2, 55 to 65%; Na2O, 12 to 17%; Al2O3, 15 to 20%; K2O, 2 to 6%; MgO, 3.9 to 10%; ZrO2, 0 to 5%; ZnO, 0 to 4%; CaO, 0 to 4%; Na2O+K2O+MgO+ZnO+CaO, 15 to 28%; SnO2, 0 to 1%; TiO2+CeO2, ?1%. A chemical strengthening method for glass also provided that includes ion exchange strengthening in a 100% KNO3 salt bath, wherein a preheating temperature ranges from 370° C. to 430° C. and the treatment time is from 0.5 to 16 hours.
    Type: Application
    Filed: December 10, 2010
    Publication date: August 8, 2013
    Applicants: SCHOTT GLASS TECHNOLOGIES (SUZHOU) CO., LTD., SCHOTT AG
    Inventors: Chong Wang, José Zimmer
  • Patent number: 8497220
    Abstract: The glass substrate for a solar cell of the present invention is characterized by having a glass composition including, in terms of mass %, 50 to 80% of SiO2, 5 to 20% of Al2O3, 0 to 20% of B2O3, 0 to 20% of MgO, 0 to 20% of CaO, 0 to 20% of SrO, 0 to 20% of BaO, 0.001 to 2% of SnO2, 0 to 1% of As2O3, having a mass ratio SnO2/(Fe2O3+SnO2) of 0.9 or more, and having a difference between transmittances at a wavelength of 400 nm before and after irradiation with ultraviolet ray of 2% or less.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: July 30, 2013
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventor: Takashi Murata
  • Patent number: 8492297
    Abstract: A device including a glass substrate made of a soda lime silica glass composition of: SiO2 (50˜75 wt %); Na2O (1˜8 wt %); K2O (1˜12 wt %); CaO (1˜12 wt %); ZrO2 (0˜8 wt %); SrO (0˜15 wt %); BaO (0˜12 wt %); MgO (0˜10 wt %); Al2O3 (0˜12 wt %); B2O3 (0˜3 wt %), wherein the total amount of Na2O and K2O is in the range of 5˜15 wt %, the total amount of CaO, MgO, SrO and BaO is in the range of 10˜25 wt %.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: July 23, 2013
    Assignee: SAGE Electrochromics, Inc.
    Inventors: Jun-Young Lee, Sei-Woong Yoo, Doo-Sang Ko, Marc Maurer
  • Publication number: 20130165312
    Abstract: A cover glass for semiconductor package having thermal expansion coefficient conformable to plastic packages and allowing accurate detection of existence of foreign substances, dusts, etc. in an imaging test always having a low emission amount of alpha-ray, and a related production method. The cover glass comprises, in terms of percentage by mass, of from 58 to 75% of SiO2, of from 1.1 to 20% of Al2O3, of from 0 to 10% of B2O3, of from 0.1 to 20% of Na2O, of from 0 to 11% of K2O, and of from 0 to 20% of alkaline earth metal oxide. The cover glass has average thermal expansion coefficient of from 90 to 180×10?7/° C. in the temperature range of from 30 to 380° C., a Young's modulus of 68 GPa or more, and an emission amount of alpha-ray from the glass of 0.05 c/cm2·hr or less.
    Type: Application
    Filed: September 8, 2011
    Publication date: June 27, 2013
    Applicant: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Takako Komai, Takashi Murata, Masahiro Yodogawa
  • Patent number: 8461070
    Abstract: Flat glass composition comprising the following (expressed as percentages by weight): SiO2 60 75%; Al2O3 0 5%; Na2O 10 18%; K2O 0 5.5%; CaO 0 5%; MgO 0-2%; SO3 0 1%; Fe2O3 (total iron)>0.01%; TiO2 0-1% and one or both of: SrO 0-15%; BaO 0-15% with the proviso that the summed amount of SrO and BaO is greater than 4%. A preferred composition comprises: SiO2 65-74%; Al2O3 0-3%; Na2O 13 16%; K2O 0-2%; CaO 1-4.9%; MgO 0-2%; SO3 0-1%; Fe2O3 (total iron)>0.01%; TiO2 0 1%; BaO 4-10%; SrO 0-5%, wherein the summed amount of the alkaline earth metal constituents is in the range 10-13% and the summed amount of the alkali metal constituents is in the range 14-16%. The ferrous level of the glass may be greater than or equal to 28%, its performance in a thickness of 5 mm or less may be greater than or equal to 29 at LTA?70%, and greater than or equal to 27 at LTA?75%, and its liquidus temperature may be less than or equal to 980° C.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: June 11, 2013
    Assignee: Pilkington Group Limited
    Inventors: John Buckett, Keith Haughey, Neil McSporran
  • Patent number: 8455375
    Abstract: To provide a glass plate for display panels which has a low 82O3 content and a low compaction and which can be used as a glass substrate for large TFT panels. A glass plate for display panels, which comprises, as a glass matrix composition as represented by mass % based on oxide: SiO2 50.0 to 73.0, Al2O3 6.0 to 20.0, B2O3 0 to 2.0, MgO 4.2 to 9.0, CaO 0 to 6.0, SrO 0 to 2.0, BaO 0 to 2.0, MgO+CaO+SrO+BaO 6.5 to 11.3, Li2O 0 to 2.0, Na2O 2.0 to 18.0, K2O 0 to 13.0, and Li2O+Na2O+K2O 8.0 to 18.0, and has a heat shrinkage (C) of at most 20 ppm.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: June 4, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Manabu Nishizawa, Yuya Shimada, Yuichi Kuroki, Kei Maeda
  • Patent number: 8450226
    Abstract: Disclosed are glass compositions containing Beryllia in addition to various proportions of Silica, Alumina, Calcium, Magnesia, Sodium, Potassium, Iron, Titania, Zirconia, Manganese and/or Phosphorous. Fibers were produced from the disclosed compositions using standard glass processing equipment. These fibers yielded high temperature fibers having low density, high strength, high modulus, excellent glass surfaces requiring very little bonding material to hold the fibers together. Bio solubility is preferably promoted by ensuring that only trace quantities of alumina are present. Fibers having those properties are particularly suitable for producing high temperature glass fiber insulation for use in aircraft and other vehicles.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: May 28, 2013
    Assignee: Glass Incorporated
    Inventor: Albert Lewis
  • Publication number: 20130115422
    Abstract: Provided is a glass sheet, comprising, as a glass composition in terms of mass %, 40 to 80% of SiO2, 0 to 30% of Al2O3, 0 to 15% of B2O3, 0 to 25% of an alkali metal oxide (one kind or two or more kinds of Li2O, Na2O, and K2O), and 0 to 15% of an alkaline earth metal oxide (one kind or two or more kinds of MgO, CaO, SrO, and BaO), and being used as a viewing zone control member for covering partially or wholly a two-dimensional display.
    Type: Application
    Filed: June 3, 2011
    Publication date: May 9, 2013
    Inventor: Takashi Murata
  • Patent number: 8431502
    Abstract: A fusion formable and ion exchangeable silicate glass having a seed concentration of less than about 1 seed/cm3.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: April 30, 2013
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Sinue Gomez
  • Patent number: 8431503
    Abstract: The present invention provides an alkali-free glass having a high strain point, a low viscosity and low devitrification, which is easily subjected to float molding and fusion molding. The glass herein has a strain point of 725° C. or higher, an average thermal expansion coefficient at 50 to 300° C. of 30×10?7 to 40×10?7/° C., a temperature T2 at which a glass viscosity becomes 102 dPa·s of 1,710° C. or lower, a temperature T4 at which a glass viscosity becomes 104 dPa·s of 1,330° C. or lower, a glass surface devitrification temperature (Tc) of 1,330° C. or lower, and a glass internal devitrification temperature (Td) of 1,330° C. or lower.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: April 30, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Kensuke Nagai, Yuichi Kuroki, Manabu Nishizawa, Tomoyuki Tsujimura
  • Publication number: 20130101853
    Abstract: Alkaline earth alumino-silicate glass compositions with improved chemical and mechanical durability and pharmaceutical packages comprising the same are disclosed herein. In one embodiment a glass composition may include from about 65 mol. % to about 75 mol. % SiO2; from about 6 mol. % to about 12.5 mol. % Al2O3; and from about 5 mol. % to about 12 mol. % alkali oxide. The alkali oxide may include Na2O and K2O. The K2O may be present in an amount less than or equal to 0.5 mol. %. The glass composition may also include from about 8.0 mol. % to about 15 mol. % of at least one alkaline earth oxide. The glass composition is susceptible to strengthening by ion-exchange thereby facilitating chemically strengthening the glass to improve the mechanical durability.
    Type: Application
    Filed: October 25, 2012
    Publication date: April 25, 2013
    Inventors: Melinda Ann Drake, Robert Michael Morena
  • Publication number: 20130101766
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
    Type: Application
    Filed: October 25, 2012
    Publication date: April 25, 2013
    Inventors: Paul Steven Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Publication number: 20130102454
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
    Type: Application
    Filed: October 25, 2012
    Publication date: April 25, 2013
    Inventors: Paul Steven Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Patent number: 8415013
    Abstract: A strengthened glass article having a central tension that is below a threshold value above which the glass exhibits frangible behavior. The central tension varies non-linearly with the thickness of the glass. The glass article may be used as cover plates or windows for portable or mobile electronic devices such as cellular phones, music players, information terminal (IT) devices, including laptop computers, and the like.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: April 9, 2013
    Assignee: Corning Incorporated
    Inventors: Kristen L Barefoot, James Joseph Price, Jose Mario Quintal, Ronald Leroy Stewart
  • Publication number: 20130085058
    Abstract: An object of the present invention is to provide a Li2O—Al2O3—SiO2 based crystallized glass with excellent bubble quality even without using As2O3 or Sb2O3 as a fining agent and a method for producing the same. The Li2O—Al2O3—SiO2 based crystallized glass of the present invention is a Li2O—Al2O3—SiO2 based crystallized glass which does not substantially comprise As2O3 and Sb2O3 and comprises at least one of Cl, CeO2 and SnO2, and has a S content of not more than 10 ppm in terms of SO3.
    Type: Application
    Filed: May 30, 2011
    Publication date: April 4, 2013
    Applicant: NIPPON ELECTRIC GLASS CO., LTD.
    Inventors: Shingo Nakane, Kosuke Kawamoto
  • Patent number: 8394516
    Abstract: The present invention relates to recording glass substrates molar percentages: 56-75 SiO2, 1-11 Al2O2, more than 0-4 Li2O, 1-15 Na2O. more than 0 less than 3 K2O, no BaO. total Li2O, Na2O and K2O 6-15, (Li2O Na2O) less than 0.50, {K2O/(Li2O, Na2O and K2O)} equal or less than 0.13, total MgO, CaO and SrO 10-30, MgO and CaO 10-30, {(MgO+CaO)/(MgO+CaO+SrO)} equal or more than 0.86, alkali oxides to alkaline earth oxides equal to or more than 0.50. total ZrO2, TiO2, Y2O3, La2O3, Gd2O3, Nb2O5, and Ta2O5 more than 0 equal to or less than 10, molar ratio {(ZrO2, TiO2, Y2O3, La2O3, Gd2O3, Nb2O5, and Ta2O5)/Al2O2 equal or more than 0.40, Tg equal to or higher than 600° C., average coefficient linear expansion equal or higher than 70×10?7/°C. at 100-300° C. and Young's modulus equal to or higher than 80 GPa.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: March 12, 2013
    Assignee: Hoya Corporation
    Inventors: Naomi Matsumoto, Kinobu Osakabe, Yoichi Hachitani
  • Publication number: 20130047672
    Abstract: Transparent, essentially colorless ?-quartz glass-ceramic materials, the composition of which is free of As2O3 and of Sb2O3, where said composition contains a specific combination of three nucleating agents: TiO2, ZrO2 and SnO2; TiO2 being present in low quantity.
    Type: Application
    Filed: October 25, 2012
    Publication date: February 28, 2013
    Inventors: Marie Jacqueline Monique Comte, Lothar Wondraczek
  • Publication number: 20130040169
    Abstract: Disclosed are a glass substrate for an information recording medium, having excellent scratch resistance and a light weight and having high fracture toughness, the glass substrate having a fragility index value, measured in water, of 12 ?m?1/2 or less or having a fragility index value, measured in an atmosphere having a dew point of ?5° C. or lower, of 7 ?m?1/2 or less, or the glass substrate comprising, by mol %, 40 to 75% of SiO2, 2 to 45% of B2O3 and/or Al2O3 and 0 to 40% of R?2O in which R? is at least one member selected from the group consisting of Li, Na and K), wherein the total content of SiO2, B2O3, Al2O3 and R?2O is at least 90 mol %, and a magnetic information recording medium comprising a magnetic recording layer formed on the glass substrate.
    Type: Application
    Filed: June 7, 2012
    Publication date: February 14, 2013
    Applicant: HOYA CORPORATION
    Inventors: Mikio Ikenishi, Atsuko Morita, Xuelu Zou
  • Publication number: 20130037105
    Abstract: A compositional range of high strain point and/or intermediate expansion coefficient alkali metal free aluminosilicate and boroaluminosilicate glasses are described herein. The glasses can be used as substrates or superstrates for photovoltaic devices, for example, thin film photovoltaic devices such as CdTe or CIGS photovoltaic devices or crystalline silicon wafer devices. These glasses can be characterized as having strain points ?600° C., thermal expansion coefficient of from 35 to 50×10?7/° C.
    Type: Application
    Filed: August 8, 2012
    Publication date: February 14, 2013
    Inventors: Bruce Gardiner Aitken, James Edward Dickinson, JR., Timothy James Kiczenski, John Christopher Mauro, Adama Tandia
  • Publication number: 20130017380
    Abstract: Provided is a tempered glass having a compression stress layer in a surface thereof, comprising, as a glass composition in terms of mol %, 50 to 75% of SiO2, 3 to 13% of Al2O3, 0 to 1.5% of B2O3, 0 to 4% of Li2O, 7 to 20% of Na2O, 0 to 10% of K2O, 0.5 to 13% of MgO, 0 to 6% of CaO, and 0 to 4.5% of SrO, and being substantially free of As2O3, Sb2O3, PbO, and F.
    Type: Application
    Filed: August 8, 2012
    Publication date: January 17, 2013
    Inventors: Takashi MURATA, Takako TOJYO, Kosuke KAWAMOTO, Yuusuke TOMITA
  • Publication number: 20130011650
    Abstract: To provide glass to be used for chemically tempered glass which is hardly broken even when flawed. Glass for chemical tempering, which comprises, as represented by mole percentage based on the following oxides, from 65 to 85% of SiO2, from 3 to 15% of Al2O3, from 5 to 15% of Na2O, from 0 and less than 2% of K2O, from 0 to 15% of MgO and from 0 to 1% of ZrO2, and has a total content SiO2+Al2O3 of SiO2 and Al2O3 of at most 88%.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: Asahi Glass Company, Limited
    Inventors: Shusaku Akiba, Kazutaka Ono, Jun Endo, Shigeki Sawamura, Tetsuya Nakashima, Yuichi Kuroki
  • Publication number: 20130011607
    Abstract: Provided is a high refractive index glass, comprising, as a glass composition in terms of mass %, 0 to 10% of B2O2, 0.001 to 35% of SrO, 0.001 to 30% of ZrO2+TiO2, and 0 to 10% of La2O2+Nb2O5, having a mass ratio of BaO/SrO of 0 to 40 and a mass ratio of SiO2/SrO of 0.1 to 40, and having a refractive index nd of 1.55 to 2.3.
    Type: Application
    Filed: May 18, 2012
    Publication date: January 10, 2013
    Inventors: Atsushi MUSHIAKE, Takashi MURATA, Tomoki YANASE
  • Patent number: 8349455
    Abstract: Glass comprising, as represented by mole percentage based on the following oxides, from 50 to 75% of SiO2, from 1 to 15% of Al2O3, from 6 to 21% of Na2O, from 0 to 15% of K2O, from 0 to 15% of MgO, from 0 to 20% of CaO, from 0 to 21% of ?RO (wherein R is Mg, Ca, Sr, Ba and/or Zn), from 0 to 5% of ZrO2, from 1.5 to 6% of Fe2O3, and from 0.1 to 1% of Co3O4.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: January 8, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Yuki Kondo, Hiroyuki Ohkawa, Makoto Sano, Kazutaka Hayashi, Shusaku Akiba
  • Patent number: 8349454
    Abstract: An object of the invention is to obtain a glass substrate having high mechanical strength by reconciling suitability for ion exchange and devitrification proof in a glass. The strengthened glass substrate of the invention is a strengthened glass substrate having a compression stress layer in the surface thereof, the glass substrate having a glass composition including, in terms of % by mass, 40-70% of SiO2, 12-25% of Al2O3, 0-10% of B2O3, 0-8% of Li2O, 6-15% of Na2O, 0-10% of K2O, 13-20% of Li2O+Na2O+K2O, 0-3.9% of MgO, 0-5% of CaO, 0-5% of ZnO, 0-6% of ZrO2, and 0-5% of SrO+BaO, the value of (MgO+ZrO2+ZnO)/(MgO+ZrO2+ZnO+Al2O3) in terms of mass proportion being from 0.25 to 0.45. The above-mentioned strengthened glass can be produced by melting raw glass materials mixed together so as to result in the given glass composition, forming the melt into a sheet by an overflow downdraw process, and then conducting an ion exchange treatment to form a compression stress layer in the glass sheet surface.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: January 8, 2013
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Takashi Murata, Hiroki Yamazaki
  • Publication number: 20130004758
    Abstract: An aluminosilicate glass article having a high compressive stress layer. The glass article comprises at least about 50 mol % SiO2 and at least about 11 mol % Na2O, and has a layer under a compressive stress of at least about 900 MPa and the depth of layer that extends at least about 30 ?m from the surface of the glass article into the glass. A method of making such a glass article is also provided.
    Type: Application
    Filed: June 26, 2012
    Publication date: January 3, 2013
    Inventors: Matthew John Dejneka, Adam James Ellison, John Christopher Mauro
  • Patent number: 8341978
    Abstract: A method of forming high strength glass fibers in a refractory lined glass melter is disclosed. The refractory lined melter is suited to the batch compositions disclosed for the formation high modulus, and high-strength glass fibers. The glass composition for use in the method of the present invention is up to about 70.5 Weight % SiO2, 24.5 weight % Al2O3, 22 weight % alkaline earth oxides and may include small amounts of alkali metal oxides and ZrO2. Oxide based refractories included alumina, chromic oxide, silica, alumina-silica, zircon, zirconia-alumina-silica and combinations thereof. By using oxide based refractory lined furnaces the cost of production of glass fibers is substantially reduced in comparison with the cost of fibers using a platinum lined melting furnace. Fibers formed by the present invention are also disclosed.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: January 1, 2013
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Douglas A. Hofmann, Peter B. McGinnis
  • Patent number: 8338524
    Abstract: Disclosed is a glass composition which can be suitably used as a glass filler to be blended into a polycarbonate resin. This glass composition contains, in mass %, 50?SiO2?60, 8?Al2O3?15, 0?MgO?10, 10?CaO?30, 0?Li2O+Na2O+K2O<2, and 5<TiO2?10, and does not substantially contain B2O3, F, ZnO, SrO, BaO and ZrO2.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: December 25, 2012
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Kosuke Fujiwara, Akihiro Koyama
  • Patent number: 8338319
    Abstract: A composition for the manufacture of high strength glass fibers suitable for manufacture in a refractory lined glass melter is disclosed. The glass composition of the present invention includes 64-75 weight % SiO2, 16-24 weight % Al2O3, 8-11 weight % MgO and 0.25 to 3.0 weight % R2O where R2O is the sum of Li2O and Na2O. A composition of the present invention includes 64-75 weight % SiO2, 16-24 weight % Al2O3, 8-11 weight % MgO and 0.25 to 3.0 weight % Li2O. Another composition includes 68-69 weight percent SiO2, 20-22 weight percent Al2O3, 9-10 weight percent MgO and 1-3 weight percent Li2O. By using oxide based refractory lined furnaces the cost of production of glass fibers is substantially reduced in comparison with the cost of fibers using a platinum lined melting furnace. Fibers formed by the present invention are also disclosed. The fibers have a fiberizing temperature of less than 2650° F., a ?T of at least 80° F.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: December 25, 2012
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Peter Bernard McGinnis, Douglas A. Hofmann
  • Publication number: 20120308803
    Abstract: A silicate glass that is tough and scratch resistant. The toughness is increased by minimizing the number of non-bridging oxygen atoms in the glass. In one embodiment, the silicate glass is an aluminoborosilicate glass in which ?15 mol %?(R2O+R?O—Al2O3—ZrO2)—B2O3?4 mol %, where R is one of Li, Na, K, Rb, and Cs, and R? is one of Mg, Ca, Sr, and Ba.
    Type: Application
    Filed: August 17, 2012
    Publication date: December 6, 2012
    Inventors: Matthew John Dejneka, Adam James Ellison, Sinue Gomez, Robert Michael Morena
  • Publication number: 20120309607
    Abstract: The invention relates to glass-ceramics based on the lithium disilicate system which can be mechanically machined easily in an intermediate step of crystallisation and, after complete crystallisation, represent a very strong, highly-translucent and chemically-stable glass-ceramic. Likewise, the invention relates to a method for the production of these glass-ceramics. The glass-ceramics according to the invention are used as dental material.
    Type: Application
    Filed: December 23, 2010
    Publication date: December 6, 2012
    Applicants: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V., DEGUDENT GMBH, VITA ZAHNFABRIK H. RAUTER GMBH & CO. KG
    Inventors: Bernhard Durschang, Jorn Probst, Norbert Thiel, Joachim Bibus, Markus Vollmann, Udo Schusser
  • Patent number: 8324123
    Abstract: To provide a glass plate which has a low B2O3 content and which can be used as a glass plate for e.g. an LCD panel. A glass plate which comprises, as a glass matrix composition as represented by mass % based on oxide, from 53 to 74 mass % of SiO2, from 15 to 23 mass % of Al2O3, from 0 to 3 mass % of B2O3, from 2 to 17 mass % of MgO, from 0 to 12 mass % of CaO, from 0 to 6 mass % of SrO, from 6 to 28 mass % of MgO+CaO+SrO, from 0 to 9 mass % of Na2O, from 0 to 6 mass % of K2O and from 0.8 to 11 mass % of Na2O+K2O, contains from 100 to 500 ppm of SO3, has an average coefficient of thermal expansion from 50 to 350° C. of at most 60×10?7/° C., and has a strain point of at least 600° C.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: December 4, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Yuya Shimada, Manabu Nishizawa, Junichiro Kase
  • Publication number: 20120289394
    Abstract: To provide a colored glass plate, which uses sodium sulfate (Na2SO3) as a refining agent and which is capable of stably maintaining the mass percentage of divalent iron calculated as Fe2O3 in the total iron calculated as Fe2O3 at a high level, while suppressing development of an amber color that is derived from sodium sulfate. A colored glass plate made of alkali-containing silica glass containing elements of iron, tin and sulfur, wherein the percentage of the total sulfur calculated as SO3 is at least 0.025% as represented by mass percentage based on oxides, the percentage of divalent iron calculated as Fe2O3 in the total iron calculated as Fe2O3 is from 60 to 80% as represented by mass percentage, and the percentage of divalent tin calculated as SnO2 in the total tin calculated as SnO2 is at least 0.1% as represented by mol percentage.
    Type: Application
    Filed: July 12, 2012
    Publication date: November 15, 2012
    Applicant: Asahi Glass Company, Limited
    Inventors: Kensuke NAGAI, Yuichi Suzuki, Terutaka Maehara
  • Patent number: 8304078
    Abstract: Chemically strengthened lithium aluminosilicate glass is characterized by a surface compression of at least 100,000 psi and a compression case depth of at least 600 microns. The glass also may be characterized by a compression at 50 microns below a surface of the glass that is at least 30,000 psi. A method of making this glass includes providing a lithium aluminosilicate glass having a composition comprising (in weight %): Li2O in an amount ranging from 3 to 9%, Na2O+K2O in an amount not greater than 3%, and Al2O3 in an amount ranging from 7 to 30%. The composition provides the glass with an annealing point temperature of at least 580° C. A mixed potassium and sodium salt bath is provided comprising predominantly potassium salt. A ratio of moles of sodium salt to moles of potassium salt in the mixed salt bath can range from 1:10 to 1:2. The temperature of the salt bath is maintained in a range of 450° C. up to an annealing point temperature of the glass.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: November 6, 2012
    Assignee: Saxon Glass Technologies, Inc.
    Inventor: Arun K. Varshneya
  • Patent number: 8304484
    Abstract: Disclosed is a glass composition having a stable quality, which can be easily obtained. This glass composition can be used as a glass filler to be blended into a polycarbonate resin, and enables to reduce the load imposed on a glass manufacturing apparatus. Specifically, this glass composition contains, in mass %, 50?SiO2?60, 8?Al2O3?15, 0?MgO?10, 5?CaO<21, 0<SrO+BaO?25, 10<MgO+SrO+BaO?30, 0?Li2O+Na2O+K2O<2, 2<TiO2?10 and 0?ZrO2<2 and does not substantially contain B2O3, F, and ZnO.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: November 6, 2012
    Assignee: Nippon Sheet Glass Company, Limited
    Inventors: Kosuke Fujiwara, Akihiro Koyama
  • Patent number: 8302596
    Abstract: A matched glass-to-metal connecting device for use in a vacuum tube collector for a solar energy collecting apparatus is made of a glass envelope and a metal sleeve directly bonded to the glass envelope. The glass envelope is made of a glass having a composition, in percent by weight on the basis of oxide content, consisting essentially of B2O3, 19; Al2O3, 8; Na2O, 2; K2O2, 3; BaO, 3; LiF, 1; and balance of SiO2 and the metal sleeve consists of metal material number 1.3981 of DIN 17745. The glass envelope has a thermal expansion coefficient that deviates from the metal part's thermal expansion coefficient by no more than 4% in the temperature range from 25° C. to 350° C.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: November 6, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: David Velasco, John Ditri, Nancy E. Wasson, David S. Munsky, Mark Trent
  • Patent number: 8298973
    Abstract: A glass thread adapted for reinforcing polymeric materials includes a plurality of filaments having a chemical composition that includes the following constituents within the limits defined below in weight percent: SiO2 40 to 60 Al2O3 0 to 5 CaO 1 to 15 MgO 1 to 15 BaO 2 to 15 SrO 12 to 20 ZnO 0.5 to 10 Na2O + K2O + Li2O 0 to 5 TiO2 3 to 20 Prosthetic members including such threads are also described.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: October 30, 2012
    Assignee: Societe de Recherches Techniques Dentaires—R.T.D.
    Inventors: Anne Berthereau, Jerome Blaizot
  • Publication number: 20120264585
    Abstract: To provide a method for producing chemically tempered glass, whereby the chemical tempering can be done at a low temperature and in a short time. A method for producing chemically tempered glass, which comprises chemically tempering glass for chemical tempering, comprising, as represented by mole percentage based on the following oxides, from 60 to 75% of SiO2, from 5 to 15% of Al2O3, from 1 to 12% of MgO, from 0 to 3% of CaO, from 0 to 3% of ZrO2, from 10 to 20% of Li2O, from 0 to 8% of Na2O and from 0 to 5% of K2O, and having a total content R2O of Li2O, Na2O and K2O of at most 25%, and a ratio Li2O/R2O of the Li2O content to R2O of from 0.5 to 1.0.
    Type: Application
    Filed: March 13, 2012
    Publication date: October 18, 2012
    Applicant: Asahi Glass Company, Limited
    Inventors: Seiki OHARA, Kazutaka Ono, Tetsuya Nakashima
  • Patent number: 8283060
    Abstract: To provide a substrate for information recording medium having various properties, in particular higher fracture toughness, required for application of the substrate for information recording medium of the next generation such as perpendicular magnetic recording system, etc. and a material with excellent workability for such purpose. A crystallized glass substrate for information recording medium, consisting of a crystallized glass which comprises one or more selected from RAl2O4 and R2TiO4 as a main crystal phase, in which R is one or more selected from Zn, Mg and Fe, and in which the main crystal phase has a crystal grain size in a range of from 0.5 nm to 20 nm, a degree of crystallinity of 15% or less, and a specific gravity of 3.00 or less.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: October 9, 2012
    Assignee: Ohara Inc.
    Inventors: Toshitaka Yagi, Naoyuki Goto
  • Publication number: 20120251827
    Abstract: A tempered glass substrate of the present invention is a tempered glass substrate, which has a compression stress layer on a surface thereof, and has a glass composition comprising, in terms of mass %, 40 to 71% of SiO2, 3 to 21% of Al2O3, 0 to 3.5% of Li2O, 7 to 20% of Na2O, and 0 to 15% of K2O.
    Type: Application
    Filed: June 8, 2012
    Publication date: October 4, 2012
    Inventor: Takashi MURATA
  • Publication number: 20120252652
    Abstract: A fusion formable and ion exchangeable silicate glass having a seed concentration of less than about 1 seed/cm3.
    Type: Application
    Filed: June 13, 2012
    Publication date: October 4, 2012
    Inventors: Matthew John Dejneka, Sinue Gomez
  • Publication number: 20120251743
    Abstract: A housing/enclosure/cover can include an ion-exchanged glass exhibiting the following attributes (1) radio, and microwave frequency transparency, as defined by a loss tangent of less than 0.03 and at a frequency range of between 15 MHz to 3.0 GHz; (2) infrared transparency; (3) a fracture toughness of greater than 0.6 MPa·m1/2; (4) a 4-point bend strength of greater than 350 MPa; (5) a Vickers hardness of at least 450 kgf/mm2 and a Vickers median/radial crack initiation threshold of at least 5 kgf; (6) a Young's Modulus ranging between about 50 to 100 GPa;; (7) a thermal conductivity of less than 2.0 W/m° C., and (9) and at least one of the following attributes: (i) a compressive surface layer having a depth of layer (DOL) greater and a compressive stress greater than 400 MPa, or, (ii) a central tension of more than 20 MPa.
    Type: Application
    Filed: May 15, 2012
    Publication date: October 4, 2012
    Inventors: Jaymin Amin, Matthew John Dejneka, Linda Ruth Pinckney, Katherine Rose Rossington, Robert Sabia
  • Patent number: 8263230
    Abstract: A ceramic composition is prepared to contain a B2O3—SiO2—Al2O3-MO based glass composition (M: Ca, Mg, Sr and/or Ba, B2O3: 4 to 17.5 weight %, SiO2: 28 to 50 weight %, Al2O3: 0 to 20 weight %, and MO: 36 to 50 weight %): 24 to 40 weight %, SrTiO3 and/or CaTiO3: 46 to 75.4 weight %, CuO: 0.1 to 5.0 weight %, CaO: 0.5 to 7.0 weight %, and MnO, ZnO and/or CoO: 10 weight % or more (however, including 0% by weight). The ceramic composition is subjected to firing to produce a ceramic sintered body, and obtain a composite LC component including the ceramic sintered body. While suppressing the shrinkage behavior during firing, dielectric properties can be improved dramatically as compared with conventional cases, and moreover reliability can be ensured.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: September 11, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Kazuhiro Kaneko, Satoshi Oga
  • Patent number: 8252707
    Abstract: A composition for the manufacture of high strength glass fibers suitable for manufacture in both precious metal lined furnaces and refractory lined glass melter is disclosed. The glass composition of the present invention includes 62-68 weight % SiO2, 22-26 weight % Al2O3, 8-15 weight % MgO and 0.1 to 3.0 weight % Li2O. One suitable composition of the present invention includes 64-66.5 weight percent SiO2, 23-24.5 weight percent Al2O3, 9-11 weight percent MgO and 0.3-0.35 weight percent Li2O. Another suitable composition includes 66.5 weight percent SiO2, 23.4 weight percent Al2O3, 9.8 weight percent MgO and 0.3 weight percent Li2O. Yet another suitable composition is about 66 weight percent SiO2, about 23 weight percent Al2O3, about 10.5 weight percent MgO and about 0.3 weight percent Li2O. Fibers formed by the present invention are also disclosed. The fibers have a fiberizing temperature of less than 2650° F., a ?T of at least 25° F.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: August 28, 2012
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Peter B. McGinnis, Douglas Hofmann
  • Publication number: 20120214660
    Abstract: A glass composition is provided for the production of high temperature glass fibers with oxides comprising 1% to 15% Fe2O3+FeO as a fluidizer to lower liquidus temperature and the fiberizing temperature of a mix of high temperature oxides. The glass composition has therein an appropriate content of high temperature oxides to produce glass fiber with high temperature limits and high burn-through properties.
    Type: Application
    Filed: June 6, 2011
    Publication date: August 23, 2012
    Inventor: Albert LEWIS
  • Publication number: 20120208309
    Abstract: The present invention relates to a glass plate for a substrate contains, as a glass matrix composition, in mol % on the oxide basis, SiO2: 67 to 72, Al2O3: 1 to 7, B2O3: 0 to 4, MgO: 11 to 15, CaO: 0 to 3, SrO: 0 to 3, BaO: 0 to 4, ZrO2: 0 to 4, Na2O: 8 to 15, and K2O: 0 to 7, with SiO2+Al2O3: 71 to 77, MgO+CaO+SrO+BaO: 11 to 17, Na2O+K2O: 8 to 17, and satisfying K2O/(Na2O+K2O)?0.13×(SiO2+Al2O3+0.5B2O3+0.3BaO)?9.4, in which the glass plate has a ?-OH value (mm?1) of 0.05 to 0.5, and a heat shrinkage ratio (C) of 16 ppm or less.
    Type: Application
    Filed: March 30, 2012
    Publication date: August 16, 2012
    Applicant: Asahi Glass Company, Limited
    Inventors: Tomoyuki TSUJIMURA, Yuichi Kuroki, Manabu Nishizawa
  • Publication number: 20120199203
    Abstract: Provided are a glass sheet for a CIGS solar cell which satisfies both of high power generation efficiency and high glass transition temperature, and a CIGS solar cell having high power generation efficiency. A glass sheet for a Cu—In—Ga—Se solar cell containing, in terms of mol % on the basis of the following oxides, 60 to 75% of SiO2, 3 to 10% of Al2O3, 0 to 3% of B2O3, 5 to 18% of MgO, 0 to 5% of CaO, 4 to 18.5% of Na2O, 0 to 17% of K2O, and 0% or more and less than 10% of SrO+BaO+ZrO2, wherein K2O/(Na2O+K2O) is 0 to 0.5, and the glass sheet has a glass transition temperature (Tg) of more than 550° C.
    Type: Application
    Filed: April 18, 2012
    Publication date: August 9, 2012
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Manabu Nishizawa, Yuichi Kuroki, Tatsuo Nagashima, Yasushi Kawamoto, Shigeru Niki, Shogo Ishizuka
  • Patent number: 8236717
    Abstract: Provided is a glass plate for a substrate, which comprises, as a glass matrix composition as represented by mass % based on oxide: SiO2: 70 to 80, Al2O3: 0.1 to 5, B2O3: 0 to 3, MgO: 9.5 to 12, where the amount of CaO+SrO+BaO is 0 to 2, and the amount of Na2O+K2O is 12.5 to 15.5, which has a density of at most 2.5 g/cm3, has an average coefficient of thermal expansion from 50 to 350° C. of more than 75×10?7/° C. and at most 87×10?7/° C., has a glass transition point of at least 560° C., has a brittleness of at most 6.5 ?m?1/2, and has a heat shrinkage (C)of at most 20 ppm.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: August 7, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Manabu Nishizawa, Yuya Shimada, Junichiro Kase
  • Publication number: 20120196110
    Abstract: Provided is a tempered glass having a compression stress layer in a surface thereof, comprising, as a glass composition in terms of mol %, 50 to 75% of SiO2, 3 to 13% of Al2O3, 0 to 1.5% of B2O3, 0 to 4% of Li2O, 7 to 20% of Na2O, 0.5 to 10% of K2O, 0.5 to 13% of MgO, 0 to 6% of CaO, and 0 to 4.5% of SrO, and being substantially free of As2O3, Sb2O3, PbO, and F.
    Type: Application
    Filed: January 17, 2012
    Publication date: August 2, 2012
    Inventors: Takashi MURATA, Takako Tojyo, Kosuke Kawamoto, Yuusuke Tomita