Plural Component System Comprising A - Group I To Iv Metal Hydride Or Organometallic Compound - And B - Group Iv To Viii Metal, Lanthanide Or Actinde Compound - (i.e., Alkali Metal, Ag, Au, Cu, Alkaline Earth Metal, Be, Mg, Zn, Cd, Hg, Sc, Y, Al, Ga, In, Tl, Ti, Zn, Hf, Ge, Sn Or Pb Hydride Or Organometallic Compound And Ti, Zr, Hf, Ge, Sn, Pb, V, Nb, Ta, As, Sb, Bi, Cr, Mo, W, Po, Mn, Tc, Re, Iron Group, Platinum Group, Atomic Number 57 To 71 Inclusive Or Atomic Number 89 Or Higher Compound) Patents (Class 502/102)
  • Patent number: 6916758
    Abstract: The present invention provides a fibrous catalyst-immobilization system that can be employed for immobilizing catalysts that are subject to fluid flow within a chemical production process. The fibrous systems can be synthesized using electrospinning and the catalysts are secured in the fibers during the electrospinning process.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: July 12, 2005
    Assignee: The University of Akron
    Inventors: Darrell Reneker, George Chase, Daniel Smith
  • Patent number: 6916761
    Abstract: In order to provide a novel Lewis acid catalyst, which shows high reaction activity in aqueous medium, is easily recovered, and is excellent in reusability, a Lewis acid group expressed by the general formula (I): MXn??(I) (wherein M represents a polyvalent element, X represents an anionic group, and n is an integer representing the valence of M) is linked and supported on a polymer membrane via an SO3 or SO4 group.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: July 12, 2005
    Assignee: Japan Science and Technology Corporation
    Inventor: Shu Kobayashi
  • Patent number: 6908875
    Abstract: An organometallic composition, suitable for use in curing polyisocyanate compositions, includes a complex of at least one metal selected from iron, cobalt and aluminum and at least one ?-dicarbonyl compound wherein when the metal is iron (II) or cobalt (II) the molar ratio of ?-dicarbonyl compound to metal is in the range from 2.1:1 to 10:1, and when the metal is aluminum (III), iron (III) or cobalt (III) the molar ratio of ?-dicarbonyl compound to metal is in the range from 3.1:1 to 10:1. A polyisocyanate composition containing the organometallic composition and a process for binding lignocellulosic material is also described.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: June 21, 2005
    Assignee: Acma Limited
    Inventors: Christopher J Skinner, Martin G Partridge
  • Patent number: 6884750
    Abstract: The present invention relates to new chiral salen catalysts and methods for the preparation of chiral compounds from racemic epoxides by using new catalyst. More particularly, the present invention is to provide novel chiral salen catalysts and their uses for producing chiral compounds having high optical purity to be used as raw materials for preparing chiral medicines or food additives in a large scale economically, wherein the chirl salen catalyst having a particular molecules structure can be reused continuously without any activating process of used catalysts and cause no or little racemization after the reaction is completed because it maintains its catalytic activity after the reaction process.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: April 26, 2005
    Assignee: RS Tech Corp.
    Inventors: Geon Joong Kim, Ho Seong Lee, Ho Cheol Kim, Jin Won Yun, Seong Jin Kim
  • Patent number: 6881697
    Abstract: A process for producing a titanium-containing silicon oxide catalyst having a silicon-carbon-silicon bond, silicon-oxygen-silicon bond and silicon-oxygen-titanium bond which includes causing a silicon compound of the following formula (1) and a titanium alkoxide compound to gel in a water and/or alcohol solvent and removing the solvent in the resulted gel by extraction with a supercritical fluid (R1 to R7 each independently represent a hydrocarbon group having 1 to 20 carbon atoms.).
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: April 19, 2005
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Carsten Stocker
  • Patent number: 6878660
    Abstract: The present invention relates to a novel, heterogeneous catalyst which is suitable, in particular, for olefin metathesis. This catalyst is immobilized on an inorganic support and contains at least one active rhenium compound containing at least one carbene group and, if desired, further functional groups. The rhenium compound is bonded to the material used as support by a chemical bond.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: April 12, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Jean-Marie Basset, Mathieu Chabanas, Christophe Coperet
  • Patent number: 6864201
    Abstract: Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: March 8, 2005
    Assignees: The Regents of the University of California, Symyx Technologies, Inc.
    Inventors: Peter G. Schultz, Xiaodong Xiang, Isy Goldwasser, Gabriel Briceno, Xiao-Dong Sun, Kai-An Wang
  • Patent number: 6864210
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an activator and a bimetallic complex that incorporates two Group 3 to 10 transition metal atoms, which may be the same or different, and a neutral or anionic indigoid ligand. By proper selection of the indigoid skeleton and by modifying its substituents and transition metal centers, polyolefin makers can fine-tune the bimetallic complexes to control activity, enhance comonomer incorporation, and optimize polymer properties.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: March 8, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Gregory G. Hlatky, Jonathan L. Schuchardt
  • Patent number: 6841504
    Abstract: Disclosed are polymerization catalyst activator compounds which include a Group 13 atom, preferably boron or aluminum, bonded to at least one heterocyclic groups. The heterocyclic group preferably contains one or more heteroatoms selected from Group 15 and/or 16, and may be unsubstituted or substituted. Preferably, the heterocyclic ligand is substituted with a halogen atom or a halogen containing group, where the halogen is preferably fluorine. Also disclosed are olefin(s) polymerization processes utilizing the invention.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: January 11, 2005
    Assignee: Univation Technologies, LLC
    Inventor: Matthew W. Holtcamp
  • Patent number: 6838563
    Abstract: Substituted monocyclopentadienyl, monoindenyl, monofluorenyl and heterocyclopentadienyl complexes of chromium, molybdenum or tungsten in which at least one of the substituents on the cyclopentadienyl ring carries a donor function which is bonded rigidly, not exclusively via sp3-hybridized carbon or silicon atoms, and a process for the polymerization of olefins.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: January 4, 2005
    Assignee: Basell Polyolefins
    Inventors: Shahram Mihan, Dieter Lilge, Paulus de Lange, Günther Schweier, Martin Schneider, Ursula Rief, Udo Handrich, Johannes Hack, Markus Enders, Gunter Ludwig, Ralph Rudolph
  • Patent number: 6838407
    Abstract: The coating composition of the invention cures at room temperature, and forms a coating which is resistant to flex-fatigue. environmental temperature variability and provides for excellent adhesion to flexible elastomeric substrates. The coating in two parts comprises (A) a graft-modified fluoroelastomer and (B) a curing component containing at least one group reactive with an active hydrogen bearing group, such as an isocyanate group and another group which forms crosslinks, and (C) a solvent. The coating is prepared by mixing and milling the fluoroelasomer which has been graft-functionalized with an active hydrogen bearing group groups. The first part is admixed with the second part prior to applying the coating. Gelation of the coating takes place at room temperature over several hours with complete cure taking place within about 24 hours.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: January 4, 2005
    Assignee: Lord Corporation
    Inventors: James R. Halladay, Frank J. Krakowski
  • Publication number: 20040266609
    Abstract: A solid catalyst component for olefin polymerization in which the molar ratio of residual alkoxy groups to supported titanium is 0.60 or less is obtained by reacting the following compound (a1) with the following compound (b1) at a hydroxyl group/magnesium molar ratio of 1.0 or more, reacting the reaction mixture with the following compound (c1) at a halogen/magnesium molar ratio of 0.20 or more, reacting the resultant reaction mixture with the following compounds (d1) and (e) at a temperature of 120° C. or higher but 150° C.
    Type: Application
    Filed: April 22, 2004
    Publication date: December 30, 2004
    Inventors: Shojiro Tanase, Takanori Sadashima
  • Publication number: 20040266610
    Abstract: A MgCl2.mEtOH.nH2O adducts, where 3.4<m≦4.4, 0≦n≦0.7, characterized by an X-ray diffraction spectrum, taken under the condition set forth above, in which, in the range of 2&thgr; diffraction angles between 5° and 10°, at least two diffraction lines are present at diffraction angles 2&thgr; of 9.3±0.2°, and 9.9±0.2°, the most intense diffraction lines being the one at 2&thgr; of 9.3±0.2°, the intensity of the other diffraction line being less than 0.4 times the intensity of the most intense diffraction line. Catalyst components obtained from the adducts of the present invention are capable to give catalysts for the polymerization of olefins characterized by enhanced activity and/or porosity with respect to the catalysts prepared from the adducts of the prior art.
    Type: Application
    Filed: May 17, 2004
    Publication date: December 30, 2004
    Inventors: Daniel Evangelisti, Gianni Collina, Ofelia Fusco, Mario Sacchetti
  • Patent number: 6835686
    Abstract: A catalyst system comprising a primary catalyst chosen from one or more homogeneous or heterogeneous, inorganic, organic or complex metal-containing compound; and one or more phenolic activator/modifier(s). The catalyst system can be used for the preparation of allylic alcohols by rearrangement of corresponding epoxides, the subsequent Oppenauer type oxidation of allylic alcohols to alpha, beta-unsaturated carbonyl compounds, and/or the preparation of alpha, beta-unsaturated carbonyl compounds by rearrangement of epoxides to corresponding allylic alcohols followed by the subsequent Oppenauer type oxidation of allylic alcohols in a one pot process.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: December 28, 2004
    Assignee: Millennium Specialty Chemicals
    Inventors: Gennadiy G. Kolomeyer, Jacob S. Oyloe
  • Publication number: 20040260041
    Abstract: The invention relates to novel bridged biphosphole ligands according to the general formula: 1
    Type: Application
    Filed: April 8, 2004
    Publication date: December 23, 2004
    Inventors: Francois-Javier Buzin, Francois Nief, Francois Mathey, Jean Malinge, Eliane Deschamps, Bernard Deschamps
  • Publication number: 20040259722
    Abstract: A multi-catalyst system is disclosed. The catalyst system comprises catalyst A and catalyst B. Catalyst A comprises a supported bridged indenoindolyl transition metal complex. Catalyst B comprises a supported non-bridged indenoindolyl transition metal complex. The catalyst system of the invention produces polyolefins which have bi- or multi-modal molecular weight distribution.
    Type: Application
    Filed: June 20, 2003
    Publication date: December 23, 2004
    Inventor: Shaotian Wang
  • Publication number: 20040259720
    Abstract: The catalyst for polymerizing vinyl compounds according to the present invention comprises (A) a complex of Group 4 to 10 transition metal of the Periodic Table, (B) a clay, clay mineral or ion-exchangeable layered compound, and (C) at least one aluminoxy compound represented by Formula (1): 1
    Type: Application
    Filed: July 13, 2004
    Publication date: December 23, 2004
    Applicant: IDEMITSU PETROCHEMICAL CO., LTD.
    Inventors: Haruhito Sato, Masami Watanabe, Masahiko Kuramoto
  • Publication number: 20040259721
    Abstract: Disclosed is a catalyst for olefin polymerization comprising [I] a solid titanium catalyst component [S] comprising titanium, magnesium, halogen and an electron donor (b), which is obtained by bringing a solid adduct consisting of a magnesium compound and an electron donor (a) into contact with an electron donor (b) and a liquid titanium compound by at least one method selected from (A) a method of contacting the materials in a suspended state in the coexistence of an inert hydrocarbon solvent and (B) a method of contacting the material plural times individed portions and [II] an organometallic compound catalyst component [M] containing a metal selected from the groups I to III in the periodic table. By olefin polymerization with this polymerization catalyst, an olefinic (co)polymer having high stereospecificity can be obtained with high activity.
    Type: Application
    Filed: July 20, 2004
    Publication date: December 23, 2004
    Inventors: Kazuhisa Matsunaga, Masao Nakano, Masaaki Ohgizawa, Toshiyuki Tsutsui
  • Publication number: 20040254063
    Abstract: The present invention relates to an adduct comprising MgCl2, an alcohol (ROH) in which R is a C1-C10 hydrocarbon group, and a compound containing a transition metal M selected from the Groups 3 to 11 or the lanthanide or actinide groups of the Periodic Table of the Elements (new IUPAC version) in an amount such as to give a weight of M atoms lower than 10% based on the total weight of the adduct. The catalyst components that are obtained by reacting the adducts with halogenating agents show very high specific activity.
    Type: Application
    Filed: April 22, 2004
    Publication date: December 16, 2004
    Inventors: Mario Sacchetti, Daniele Evangelisti, Diego Brita, Gianni Collina
  • Publication number: 20040248728
    Abstract: A compound of formula I: 1
    Type: Application
    Filed: August 19, 2003
    Publication date: December 9, 2004
    Inventors: Michael Chi-Wang Chan, Chi-Fai Kui
  • Publication number: 20040242409
    Abstract: The present invention relates to a catalyst for homo-polymerization or co-polymerization of ethylene, or more particularly to a solid complex titanium catalyst for homo-polymerization or co-polymerization of ethylene. The catalyst may be produced by preparing a magnesium solution by contact-reacting a magnesium halide compound with an alcohol. Reacting the solution with an ester compound and a boron compound. Then reacting the solution with a mixture of a titanium compound and a silicon compound.
    Type: Application
    Filed: July 7, 2004
    Publication date: December 2, 2004
    Applicant: Samsung General Chemicals Co., Ltd.
    Inventors: Chun Byung Yang, Sang Yull Kim, Ho Yeoun Kim, Eun Ha Kim
  • Publication number: 20040242407
    Abstract: The present invention relates to an olefin polymerisation catalyst comprising a catalyst component in the form of particles having a predetermined size range and a low surface area, but high activity, said catalyst being suitable for use in olefin polymerisation, to the process for preparing the catalysts as such and to their use in polymerisation olefins.
    Type: Application
    Filed: July 13, 2004
    Publication date: December 2, 2004
    Inventors: Peter Denifl, Timo Leinonen, Erik Van Praet, Thomas Garoff, Kari Pesonen
  • Publication number: 20040242408
    Abstract: The invention relates to the use of nitrogenous aluminium organyl complexes of general formula (I) as co-catalysts in heterogeneous polymerisation reactions of propene. In said formula: R, R′, R1 and R1′ independently of one another represent branched or unbranched C1-C7 alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl or alkynyl; R2 represents unsubstituted, monoalkylated or polyalkylated and/or monofluorinated or polyfluorinated aromatic hydrocarbons from group (II); R3 and R4 independently of one another represent CH2, CF2 oder C(R1)2; m stands for 0, 1 or 2; n stands for 0, 1 or 2; o stands for 0 or 1, all independently of one another. Said systems exhibit improved characteristics in terms of activity and stereoselectivity in comparison to conventional co-catalysts such as AlEt3 and can act simultaneously as co-catalysts and stereoselectivity promoters.
    Type: Application
    Filed: April 8, 2004
    Publication date: December 2, 2004
    Inventors: Katrin Kohler, Herbert Schumann, Birgit Corinna Wassermann, Wilfried Wassermann, Katharina Lange, Sebastian Dechert, Markus Hummert, Stefan Schutte, Walter Kaminsky, Andrea Eisenhardt, Bjorn Heuer, Andre Laban
  • Publication number: 20040242406
    Abstract: A process for producing a Gp 2/transition metal olefin polymerisation catalyst component, in which a Gp 2 metal complex is reacted with a transition metal compound so as to produce an oil-in-oil emulsion, the disperse phase containing the preponderance of the Mg being solidified by heating to provide a catalyst component of excellent morphology. Polymerisation of olefins using a catalyst containing such a component is also disclosed. The process may be employed in the production of Ziegler-Natta catalysts.
    Type: Application
    Filed: June 28, 2004
    Publication date: December 2, 2004
    Inventors: Peter Denifl, Timo Leinonen
  • Publication number: 20040235644
    Abstract: Process for preparing an olefin polymerisation catalyst component in the form of particles having a predetermined size range, said process comprising the steps of a) preparing a solution of a complex of a Group 2 metal and an electron donor by reacting a compound of said metal with said electron donor or a precursor thereof in an organic liquid reaction medium; b) adding said solution of said complex to at least one compound of a transition material to produce an emulsion, the dispersed phase of which contains more than 50 mol % of the Group 2 metal in said complex; c) agitating the emulsion, optionally in the presence of an emulsion stabilizer, in order to maintain the droplets of said dispersed phase within the average size range 5 to 200 m; d) solidifying said droplets of the dispersed phase; and e) recovering the solidified particles of the olefin polymerisation catalyst component, wherein a turbulence minimizing agent (TMA) is added to the reaction mixture before solidifying said droplets of the disperse
    Type: Application
    Filed: July 6, 2004
    Publication date: November 25, 2004
    Inventors: Peter Denifl, Timo Leinonen
  • Publication number: 20040235645
    Abstract: Cyclopolyenic 1,3-diethers wherein the carbon atom in position 2 belongs to a particular cyclic or polycyclic structure containing two or three unsaturations, solid catalyst components and catalysts therefrom, the catalysts comprising the reaction product of:
    Type: Application
    Filed: June 28, 2004
    Publication date: November 25, 2004
    Inventors: Giampiero Morini, Enrico Albizzati, Giulio Balbontin, Giovanni Baruzzi, Antonio Christofori
  • Publication number: 20040235646
    Abstract: The invention provides supported catalyst and methods for making and using the same, which are characterized as employing organometallic Group 4-10 catalysts with specially selected dienes, which, when combined with a cocatalyst, result in a supported catast which has improved kinetic profiles in the gas polymerization process.
    Type: Application
    Filed: July 1, 2004
    Publication date: November 25, 2004
    Applicant: BP Chemical Limited
    Inventors: Edmund M. Carnahan, David R. Neithamer, Ravi B. Shankar
  • Publication number: 20040235643
    Abstract: A process for preparing a diether-based catalyst component in which: a) a slurry is obtained by contacting a solid support comprising a magnesium halide or a precursor thereof, one or more 1,3-diethers and a liquid phase containing a titanium compound, and b) the obtained slurry is then subjected to a solid/liquid separation step in order to isolate a diether-based catalyst component; said separation step b) being characterized in that the ratio between the solid/liquid separation velocity and the final amount of separated solid must be higher than 0.5 liter/(min.Kg).
    Type: Application
    Filed: February 5, 2004
    Publication date: November 25, 2004
    Inventors: Gianni Vitale, Massimo Cimarelli, Giampiero Morini, Leo Cabrini
  • Patent number: 6821924
    Abstract: An oxidative halogenation process involving contacting a hydrocarbon, for example, ethylene, or a halogenated hydrocarbon with a source of halogen, such as hydrogen chloride, and a source of oxygen in the presence of a catalyst so as to form a halocarbon, preferably a chlorocarbon, having a greater number of halogen substituents than the starting hydrocarbon or halogenated hydrocarbon, for example, 1,2-dichloroethane. The catalyst is a novel composition comprising copper dispersed on a porous rare earth halide support, preferably, a porous rare earth chloride support. A catalyst precursor composition comprising copper dispersed on a porous rare earth oxyhalide support is disclosed. Use of the porous rare earth halide and oxyhalide as support materials for catalytic components is disclosed.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: November 23, 2004
    Assignee: Dow Global Technologies Inc.
    Inventors: Robert J. Gulotty, Jr., Mark E. Jones, Daniel A. Hickman
  • Patent number: 6815529
    Abstract: This invention relates to a catalyst for producing aliphatic polycarbonate, which is composed of a rare-earth coordination compound; an alkyl metal compound; a polyol; and a carbonate. The catalytic efficiency of the catalyst of the present invention is more than 8×104 g polymer/mol RE(RE is rare earth metal). The number average molecular weight of the polymer is higher than 30,000. The degree of carbon dioxide fixation is more than 42 wt % and the content of alternative sequence structure exceeds 97%.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: November 9, 2004
    Assignee: Changchun Institute of Applied Chemistry Chinese Academy of Sciences
    Inventors: Xiaojiang Zhao, Xianhong Wang, Fosong Wang
  • Patent number: 6815390
    Abstract: The present invention relates to a new catalyst system for fluorous biphasic catalysis processes which comprises functionalized polymeric beads, monodisperse SiO2 or SiO2 flakes associated with the catalyst. These functionalized particles are used as a support for catalysts in fluorous biphasic catalysis (FBC).
    Type: Grant
    Filed: January 9, 2003
    Date of Patent: November 9, 2004
    Assignee: Merck Patent GmbH
    Inventors: Julian F. S. Vaughan, Martin G. Pellatt, James Sherrington, Eric George Hope
  • Publication number: 20040214715
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system includes an organometallic complex that incorporates a Group 3 to 10 transition metal and a hydroxyl-depleted calixarene ligand that is chelated to the metal. Molecular modeling studies reveal that organometallic complexes incorporating such calixarene ligands, when combined with an activator such as MAO, should actively polymerize olefins.
    Type: Application
    Filed: April 23, 2003
    Publication date: October 28, 2004
    Inventor: Sandor Nagy
  • Publication number: 20040214716
    Abstract: Catalysts useful for polymerizing olefins are disclosed. The catalysts comprise an activator and a triple-decker bimetallic complex. The complex includes two Group 3-10 transition metals and a delocalized dianionic ligand that is pi-bonded to each of the metals. The behavior of the catalysts can be modified by choice of each metal, by the choice of the dianionic ligand, or by choice of the ancillary ligands. The invention provides a new way to make a large variety of catalyst systems.
    Type: Application
    Filed: April 23, 2003
    Publication date: October 28, 2004
    Inventors: Sandor Nagy, Joel A. Mutchler
  • Patent number: 6809056
    Abstract: The present invention relates to a process for manufacturing polyolefin polymerization catalysts and provides a process for manufacturing polyolefin polymerization catalysts, wherein after manufacturing a homogeneous solution of magnesium compounds using magnesium compounds and alcohols along with hydrocarbon solvents and contacting with titanium compounds by adding organic aluminum, the mixture is treated again with organic aluminum or alcohols having 5 or less carbon atoms, then contacted with titanium compounds. Polyolefin polymerization catalysts prepared by the preparation process of the present invention have superior polyolefin polymerization activities, they prepare polymers having high Melt Flow Ratios, and produce a lesser amount of fine particle polymers.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: October 26, 2004
    Assignee: LG Chemical Ltd
    Inventors: Hong-Ki Choi, Joo-Kee Yoon, Churl-Young Park, Jae-Seung Oh
  • Publication number: 20040209762
    Abstract: A metal compound obtained by a process comprising the step of contacting, in a specific ratio, a compound represented by the formula M1L1r, a compound represented by the formula R1s-1TH, and a compound represented by the formula R24-nJ(OH)n; a catalyst component for addition polymerization comprising the metal compound; a catalyst for addition polymerization using the catalyst component; and a process for producing an addition polymer using the catalyst.
    Type: Application
    Filed: January 9, 2004
    Publication date: October 21, 2004
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Kazuo Takaoki, Hideki Oshima, Makoto Satoh
  • Publication number: 20040209763
    Abstract: A metal compound obtained by a process comprising the step of contacting, in a specific ratio, a compound represented by the formula BiL1r, a compound represented by the formula R1s-1TH, and a compound represented by the formula R23-nJ(OH)n; a catalyst component for addition polymerization comprising the metal compound; a catalyst for addition polymerization using the catalyst component; and a process for producing an addition polymer using the catalyst.
    Type: Application
    Filed: January 14, 2004
    Publication date: October 21, 2004
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Kazuo Takaoki
  • Publication number: 20040209767
    Abstract: A contact product obtained by a process comprising the step of contacting a compound (a) represented by the formula, M1L1r, a compound (b) represented by the formula, R1s-1T1H a compound (c) represented by the formula, R2t-2T2H2, and a nonionic surfactant (d) having no active hydrogen; a catalyst component for addition polymerization comprising said contact product; a catalyst for addition polymerization obtained by a process comprising the step of contacting said catalyst component with a compound of a metal selected from the group consisting of metals of the Groups 3 to 12 and Lanthanide Series of the Periodic Table, and optionally an organoaluminum compound; and a process for producing an addition polymer comprising the step of polymerizing an addition polymerizable monomer in the presence of said catalyst.
    Type: Application
    Filed: January 20, 2004
    Publication date: October 21, 2004
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Kazuo Takaoki
  • Patent number: 6803339
    Abstract: A metallocene catalyst may be temporarily and reversibly passivated by contact with an effective amount of an unsaturated hydrocarbon passivating compound.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: October 12, 2004
    Assignee: BP Corporation North America Inc.
    Inventors: Richard A. Hall, Jerome A. Streeky, Roger Uhrhammer
  • Publication number: 20040176242
    Abstract: The present invention provides a catalyst for olefin polymerization having high olefin polymerization activity without being accompanied by generation of an adhered polymer on the wall of a polymerization reactor and the wall of pipe line and generation of a blocking massive polymer, and capable of manufacturing an olefin polymer industrially and stably for a long period of time.
    Type: Application
    Filed: December 29, 2003
    Publication date: September 9, 2004
    Inventors: Yoshiyuki Ishihama, Toshihiko Sugano
  • Publication number: 20040176241
    Abstract: Catalyst systems that have a benzoindenoindolyl ligand are disclosed. The catalysts are useful for olefin polymerizations. They have high activity and are less susceptible to decreased activity with changes in activator level or changes in polymerization temperature. The resultant polymers have low polydispersity. A new method of preparing N-alkyldihydroindenoindoles is also disclosed. N-alkyldihydroindenoindoles are useful precursors for the benzoindenoindolyl ligand.
    Type: Application
    Filed: March 4, 2003
    Publication date: September 9, 2004
    Inventors: Sandor Nagy, Barbara M. Tsuie, Alexandr M. Genaev, Vyacheslav G. Shubin
  • Patent number: 6787498
    Abstract: Substituted monocyclopentadienyl, monoindenyl, monofluorenyl and heterocyclopentadienyl complexes of chromium, molybdenum or tungsten in which at least one of the substituents on the cyclopentadienyl ring carries a donor function which is bonded rigidly, not exclusively via sp3-hybridized carbon or silicon atoms, and a process for the polymerization of olefins.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: September 7, 2004
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Dieter Lilge, Paulus de Lange, Günther Schweier, Martin Schneider, Ursula Rief, Udo Handrich, Johannes Hack, Markus Enders, Gunter Ludwig, Ralph Rudolph
  • Publication number: 20040171480
    Abstract: Electrocatalyst powders and methods for producing electrocatalyst powders, such as carbon composite electrocatalyst powders. The powders have a well-controlled microstructure and morphology. The method includes forming the particles from an aerosol of precursors by heating the aerosol to a relatively low temperature, such as not greater than about 400° C.
    Type: Application
    Filed: December 9, 2003
    Publication date: September 2, 2004
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Plamen Atanassov, Paolina Atanassova, Klaus Kunze, Paul Napolitano, David Dericotte
  • Publication number: 20040171479
    Abstract: A catalyst is disclosed for the polymerization and co-polymerization of olefins with functionalized monomers. The catalyst is formed from a combination of two neutral metal complexes, L(iPr2)M(CH2Ph)(PMe3)[L=N-(2,6-diisopropylphenyl)-2-(2,6-diisopropylphenylimino)propanamide] and M(COD)2(COD=cyclooctadiene). The catalyst displays a unique mode of action and performs at ambient conditions producing high molecular weight polyolefins and co-polymers with functional groups. The polymerized olefins include ethylene, &agr;-olefins and functionalized olefins.
    Type: Application
    Filed: February 28, 2003
    Publication date: September 2, 2004
    Inventors: Guillermo C. Bazan, Prasenjit Ghosh
  • Publication number: 20040167015
    Abstract: Broad molecular weight polyethylene and polyethylene having a bimodal molecular weight profile can be produced with chromium oxide based catalyst systems employing alkyl silanols. The systems may also comprise various organoaluminum compounds. Catalyst activity and molecular weight of the resulting polyethylene may also be tuned using the present invention.
    Type: Application
    Filed: January 22, 2004
    Publication date: August 26, 2004
    Inventors: Kevin J. Cann, Minghui Zhang, John H. Moorhouse, Maria A. Apecetche
  • Publication number: 20040162401
    Abstract: A method of modifying a Ziegler-Natta type polyolefin catalyst comprises contacting the Ziegler-Natta catalyst with olefin monomer to form a prepolymerized catalyst. The prepolymerized catalyst can comprise a reduced number of catalyst particles having a size of 40 microns or less. The prepolymerized catalyst can be used in a polymerization process to produce polymer fluff particles with a reduced number of polymer fluff fines than the Ziegler-Natta type catalyst.
    Type: Application
    Filed: February 18, 2003
    Publication date: August 19, 2004
    Inventors: Steven D. Gray, Tim J. Coffy, Edwar S. Shamshoum, Hong Chen
  • Publication number: 20040157727
    Abstract: A magnesium halide support material for a polyolefin catalysts is disclosed. The magnesium halide of present invention is prepared by reacting magnesium with an alkylhalide in a non-polar hydrocarbon solvent. Preparation of the support does not require the use electron donating solvents and therefore does not require extensive washing to remove the solvent from the support.
    Type: Application
    Filed: February 12, 2003
    Publication date: August 12, 2004
    Inventors: Honglan Lu, Gapgoung Kong, Zhongyang Liu, Chih-Jian Chen
  • Publication number: 20040157728
    Abstract: Copolymerization of Fe(II) or Co(II) pyridine diimine complexes containing olefinic substituents on aryl groups with styrene in the presence of a radical initiator results in polymerized late transition metal catalysts which can be used for olefin polymerization or oligomerization. These catalysts have high catalyst activity for olefin polymerization or oligomerization.
    Type: Application
    Filed: October 24, 2003
    Publication date: August 12, 2004
    Inventors: Guo-Xin Jin, Zerong Lin, Robert J. Wittenbrink, Chang-Kun Liu
  • Publication number: 20040157726
    Abstract: Disclosed is a new titanium based catalyst system for (co)-polymerizing ethylene or ethylene with alpha-olefin having 3 to 10 carbons. The catalyst is obtained by contacting a magnesium halide support with an aluminum compound and with a titanium halide compound and then treating the resulting solid with a magnesium-amide complex. The catalyst system is suitable for producing ethylene polymer and co-polymer with narrow molecular weight distribution as well as improved branching compositional distribution.
    Type: Application
    Filed: February 12, 2003
    Publication date: August 12, 2004
    Inventors: Gapgoung Kong, Zhongyang Liu, Honglan Lu
  • Publication number: 20040157730
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an activator and a bimetallic complex that incorporates two Group 3 to 10 transition metal atoms, which may be the same or different, and a neutral or anionic indigoid ligand. By proper selection of the indigoid skeleton and by modifying its substituents and transition metal centers, polyolefin makers can fine-tune the bimetallic complexes to control activity, enhance comonomer incorporation, and optimize polymer properties.
    Type: Application
    Filed: February 6, 2003
    Publication date: August 12, 2004
    Inventors: Gregory G. Hlatky, Jonathan L. Schuchardt
  • Publication number: 20040152591
    Abstract: Free-radical-initiated copolymerization of metallocene complexes containing olefinic substituents on aryl groups with styrene results in polymerized late transition metal catalysts that can be used for olefin polymerization or oligomerization. These catalysts have high catalyst activity for olefin polymerization or oligomerization.
    Type: Application
    Filed: October 24, 2003
    Publication date: August 5, 2004
    Inventors: Guo-Xin Jin, William M. Chien, Zerong Lin, Robert J. Wittenbrink, Guangyuan Zhou