Plural Component System Comprising A - Group I To Iv Metal Hydride Or Organometallic Compound - And B - Group Iv To Viii Metal, Lanthanide Or Actinde Compound - (i.e., Alkali Metal, Ag, Au, Cu, Alkaline Earth Metal, Be, Mg, Zn, Cd, Hg, Sc, Y, Al, Ga, In, Tl, Ti, Zn, Hf, Ge, Sn Or Pb Hydride Or Organometallic Compound And Ti, Zr, Hf, Ge, Sn, Pb, V, Nb, Ta, As, Sb, Bi, Cr, Mo, W, Po, Mn, Tc, Re, Iron Group, Platinum Group, Atomic Number 57 To 71 Inclusive Or Atomic Number 89 Or Higher Compound) Patents (Class 502/102)
  • Publication number: 20040138054
    Abstract: A supported catalyst composition comprising the reaction product of i) a magnesium halide, ii) a solvent, iii) an electron donor compound, iv) and a transition metal compound; an inert support; and a cocatalyst composition wherein the supported catalyst is substantially free of other alcohols and wherein the molar ratio of the first alcohol to magnesium is less than or equal to 1.9. Methods of making supported catalyst compositions and methods of making polymers with supported catalysts.
    Type: Application
    Filed: July 15, 2002
    Publication date: July 15, 2004
    Inventors: Burkhard Eric Wagner, Michael D. Awe
  • Publication number: 20040132612
    Abstract: A salt of formula (I): [HKR13]+[T1T2]− wherein K is a nitrogen or phosphorous atom; R1 is hydrocarbon radical; T1 is a Lewis acid and T2 is a substituted pyrrolyl radical. These salts can be used as cocatalyst in a process for the polymerization of alpha-olefins in conjunction with a transition metal organometallic compound.
    Type: Application
    Filed: November 21, 2003
    Publication date: July 8, 2004
    Inventors: Luigi Resconi, Simona Guidotti
  • Publication number: 20040132611
    Abstract: Supported catalyst composition for polymerization of olefins comprising: (i) a titanium compound, a magnesium compound and at least one electron donor compound; (ii) an oxygen containing polymer support; and (iii) a cocatalyst comprising at least one aluminum compound.
    Type: Application
    Filed: February 17, 2004
    Publication date: July 8, 2004
    Inventors: Mansour I. Taftaf, Serajudin F. Ahmed
  • Patent number: 6759361
    Abstract: Single-site catalyst systems useful for polymerizing olefins are disclosed. The catalyst systems comprise an organometallic complex and an activator. The complex includes a Group 3-10 transition metal, M, and at least one indenoindolyl ligand that is pi-bonded to M. The activator is a reaction product of an alkylaluminum compound and an organoboronic acid. Catalyst systems of the invention significantly outperform known catalyst systems that employ a metallocene complex and similar aluminoboronate activators.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: July 6, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Michael W. Lynch, Craig C. Meverden, Sandor Nagy, Karen L. Neal-Hawkins
  • Publication number: 20040127656
    Abstract: A process for polymerizing olefins using a catalyst system comprising a conventional Ziegler-Natta catalyst and an external election donor selected from the group consisting of diethers and combinations thereof. The catalyst system comprises a Ziegler-Natta catalyst having a transition metal compound generally represented by the formula: MR′x where M is a transition metal, R′ is a halogen or a hydrocarboxyl, and x is the valence of the transition metal. The transition metal compound can be TiCl4. The Ziegler-Natta catalyst may comprise an internal electron donor, such as phthalate. The catalyst system further includes an external electron donor selected from the group consisting of diethers and a co-catalyst selected from the group of organoaluminum compounds. In one embodiment, the external electron donor is 2,2-diisobutyl-1,3-dimethoxypropane, and the co-catalyst is triethylaluminum.
    Type: Application
    Filed: January 1, 2003
    Publication date: July 1, 2004
    Inventor: Christopher G. Bauch
  • Publication number: 20040127657
    Abstract: Catalytic composition for the (co)polymerization of ethylene and other &agr;-olefins, including a metallocene complex of a metal M of group 4 of the periodic table or the product obtainable from the same combined with a suitable activator, wherein said metallocene complex includes at least one cyclopentadienyl group and at least one unsaturated hydrocarbyl organic group bonded to the metal M, having the following formula (I):
    Type: Application
    Filed: September 26, 2003
    Publication date: July 1, 2004
    Applicant: POLIMERI EUROPA S.p.A.
    Inventors: Francesco Masi, Anna Sommazzi, Roberto Santi
  • Publication number: 20040127348
    Abstract: A catalyst system is provided. In one aspect, the catalyst system includes one or more polymerization catalysts and at least one activator.
    Type: Application
    Filed: June 24, 2003
    Publication date: July 1, 2004
    Inventors: Matthew W. Holtcamp, David A. Cano
  • Publication number: 20040127349
    Abstract: The invention provides a catalyst component for ethylene polymerization, comprising an inorganic oxide support, and at least one alkyl metal compound, at least one halide, at least one dihydrocarbyl magnesium compound, at least one difuntional compound that reacts with the dihydrocarbyl magnesium compound and at least one titanium compound. The invention also relates to a process for preparing the catalyst component and use thereof. The catalyst comprising the catalyst component exhibits good hydrogen response and activity balance, and that the amount of static charges carried by the catalyst solid component powders is remarkably reduced will facilitate the industrial-scale operation of polymerization.
    Type: Application
    Filed: October 15, 2003
    Publication date: July 1, 2004
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, BEIJING RESEARCH INSTITUTE OF CHEMICAL INDUSTRY
    Inventors: Kejing Gao, Dongbing Liu, Wei Chen, Guirong Fan, Xinping Lu, Jingyan An, Ying Guan, Jun Zhang, Qinfang Zhao
  • Patent number: 6756195
    Abstract: The present invention relates, inter alia, to methodologies for the synthesis, screening and characterization of organometallic compounds and catalysts (e.g., homogeneous catalysts). The methods of the present invention provide for the combinatorial synthesis, screening and characterization of libraries of supported and unsupported organometallic compounds and catalysts (e.g., homogeneous catalysts). The methods of the present invention can be applied to the preparation and screening of large numbers of organometallic compounds which can be used not only as catalysts (e.g., homogeneous catalysts), but also as additives and therapeutic agents.
    Type: Grant
    Filed: January 21, 1999
    Date of Patent: June 29, 2004
    Assignee: Symyx Technologies, Inc.
    Inventors: W. Henry Weinberg, Eric McFarland, Isy Goldwasser, Thomas Boussie, Howard Turner, Johannes A. M. Van Beek, Vince Murphy, Timothy Powers
  • Patent number: 6753288
    Abstract: Organolead compounds such as tetraethyllead are useful in catalyst compositions for the oxidative carbonylation of hydroxyaromatic compounds to diaryl carbonates. They are employed in combination with a Group 8, 9, or 10 metal such as palladium, or a compound thereof, and a bromide or chloride such as tetraethylammonium bromide.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: June 22, 2004
    Assignee: General Electric Company
    Inventors: Kirill Vladimirovich Shalyaev, Bruce Fletcher Johnson
  • Publication number: 20040116278
    Abstract: The present invention provides a method for producing a new catalyst of high polymerization activity for homo- or co-polymerization of ethylene, or more particularly a method for producing a titanium solid complex catalyst supported on a carrier containing magnesium, wherein said catalyst is capable of producing polymers of high bulk density and narrow particle size distribution with few fine particles.
    Type: Application
    Filed: October 20, 2003
    Publication date: June 17, 2004
    Inventors: Chun-Byung Yang, Won-Young Kim, Weon Lee
  • Publication number: 20040106514
    Abstract: Catalyst systems useful for olefin polymerization are disclosed. The catalysts include a bimetallic complex that incorporates two linked indenoindolyl groups, each of which is pi-bonded through its cyclopentadienyl ring to one of the metals Compared with conventional indenoindolyl complexes, the bimetallic complexes of the invention have enhanced ability to give polyolefins with desirably low melt indices. Certain bimetallic indenoindolyl complexes also provide a way to broaden polymer molecular weight distribution and thereby improve processability simply by regulating the amounts of comonomer and activator used in the polymerization.
    Type: Application
    Filed: December 3, 2002
    Publication date: June 3, 2004
    Inventors: Sandor Nagy, Barbara M. Tsuie, William J. Sartain
  • Publication number: 20040106512
    Abstract: The invention relates to phosphacyclohexanes of general formulae I and II, wherein the following designations, among others, apply: R can represent hydrogen, C1-100-alkyl, C7-20-aralkyl, C7-20-alkaryl, and C6-12-aryl: R1 to R10 can independently represent hydrogen, C1-20-alkyl, C7-20-aralkyl, C7-20-alkaryl, and C6-12-aryl: W, W′ can independently represent single bonds or bridges comprising 1 to 20 carbon atoms, which can form part of a cyclic or aromatic group and can be interrupted by heteroatoms. Said phosphacyclohexanes are used as ligands in transition metal complexes of transition metals belonging to groups VIII to X of the periodic table.
    Type: Application
    Filed: December 18, 2002
    Publication date: June 3, 2004
    Inventors: Thomas Mackewitz, Wolfgang Ahlers, Edgar Zeller, Michael Roper, Rocco Paciello, Rainer Papp, Konrad Knoll, Hartwig Voss
  • Publication number: 20040102310
    Abstract: A solid catalyst component for olefin polymerization comprising titanium, magnesium and a compound of the general formula (I) 1
    Type: Application
    Filed: September 30, 2003
    Publication date: May 27, 2004
    Inventors: Nobuhiro Yabunouchi, Takanori Sadashima, Hideo Funabashi
  • Publication number: 20040092679
    Abstract: There are provided a process for producing a catalyst for &agr;-olefin polymerization, which comprises the step of contacting (1) a solid catalyst component having Ti, Mg and a halogen as essential components, (2) an organoaluminum compound and (3) a compound having a —C—O—C—O—C— bond group in a closed ring structure with one another; and a process for producing an &agr;-olefin polymer, which comprises the step of homopolymerizing or copolymerizing an &agr;-olefin in the presence of a catalyst for &agr;-olefin polymerization produced by the above process.
    Type: Application
    Filed: November 5, 2003
    Publication date: May 13, 2004
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Shin-Ichi Kumamoto
  • Publication number: 20040092678
    Abstract: The present invention relates to an improved supported Ziegler-Natta catalyst especially useful for the olefin polymerisation, said catalyst comprising a carrier, an organomagnesium compound, a borate compound, and one transition metal compound.
    Type: Application
    Filed: December 11, 2003
    Publication date: May 13, 2004
    Inventor: Stephen John Dossett
  • Publication number: 20040087435
    Abstract: Supported catalyst composition for polymerization of olefins comprising: (i) a titanium compound, a magnesium compound and at least one electron donor compound; (ii) a chlorine containing polymer support; and (iii) a cocatalyst comprising at least one aluminum compound, wherein the magnesium loading on the final catalyst is between about 0.20 and 6% by weight.
    Type: Application
    Filed: December 18, 2003
    Publication date: May 6, 2004
    Inventors: Mansour I. Taftaf, Serajudin F. Ahmed
  • Publication number: 20040077808
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises an activator and an organometallic complex that incorporates a Group 3 to 10 transition metal and at least one chelating, dianionic triquinane ligand. The cis,syn,cis-triquinane framework is generated in three high-yield steps from inexpensive starting materials, and with heat and light as the only reagents. By modifying substituents on the triquinane ligand, polyolefin makers can control catalyst activity, comonomer incorporation, and polymer properties.
    Type: Application
    Filed: October 14, 2003
    Publication date: April 22, 2004
    Applicant: EQUISTAR CHEMICALS, LP
    Inventor: Jonathan L. Schuchardt
  • Publication number: 20040077487
    Abstract: There are provided (asymmetric) complex catalysts comprising metal complexes and Lewis acids as components, the metal complex being of formula (1): 1
    Type: Application
    Filed: September 8, 2003
    Publication date: April 22, 2004
    Inventor: Kazuaki Sasaki
  • Publication number: 20040077490
    Abstract: Process for the polymerization of olefins CH=CHR, in which R is hydrogen or a hydrocarbon radical with 1-12 carbon atoms, carried out in the presence of a catalyst component (A) comprising Mg, Ti and halogen as essential elements and of a catalyst component (B) capable to produce, under the same polymerization conditions, a polymer with an average particle size lower than that obtainable with the said catalyst component A. The said process provides polymers with increased bulk density.
    Type: Application
    Filed: September 26, 2003
    Publication date: April 22, 2004
    Inventors: Gianni Collina, Ofelia Fusco, Eduardo Chicote Carrion, Alberto Gil, Volker Dolle, Horst Klassen, Karl-Heinz Kagerbauer
  • Publication number: 20040077486
    Abstract: A catalyst composition for producing polyesters comprises: a) an organometallic compound obtained by reacting an orthoester or condensed orthoester of titanium, zirconium or aluminum, an alcohol containing at least two hydroxyl groups, a 2-hydroxy carboxylic acid and a base; and b) at least one compound comprising germanium, antimony or tin. Polyesters obtained by esterification reaction in the presence of the catalyst compositions according to the present invention exhibit improved melt properties and are particularly suitable for production of textile and commercial fibers, films and rigid packaging.
    Type: Application
    Filed: November 24, 2003
    Publication date: April 22, 2004
    Inventors: Andrew Martin Bellamy, Charles Mark Lindall, Calum Harry McIntosh, Martin Graham Partridge, John Armstrong Young, Steven Charles Davies
  • Publication number: 20040072677
    Abstract: The present invention relates to a multinuclear metallocene catalyst for olefin polymerization and a process for olefin polymerization using the same, in which the multinuclear metallocene catalyst for olefin polymerization comprises, as a main catalyst, a transition metal compound that contains at least two metal atoms in the groups III to X of the periodic table as central metals and a ligand having a cyclopentadienyl structure bridging between the two metal atoms, and, as a cocatalyst, an aluminoxane compound, an organoaluminum compound or a bulky compound reactive to the transition metal compound to impart a catalytic activity to the transition metal compound.
    Type: Application
    Filed: July 29, 2003
    Publication date: April 15, 2004
    Inventors: Min-Hyung Lee, Sung-Jin Park, Seong-Kyun Kim, Young-Jo Kim, Yong-Gyu Han, Young-Kyu Do, Ki-Ho Choi, Seung-Woong Yoon, Bo-Geun Song, Han-Seock Cho
  • Patent number: 6720186
    Abstract: A method and system for researching and developing and/or optimizing new catalysts and products in a combinatorial manner is disclosed. The method begins with starting components or a ligand library and provides methods of creating catalyst or product libraries, which are then tested in a reaction of interest. The system uses methods of robotic handling for moving libraries from station to station. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial catalyst libraries, but also offer significant advantages over conventional experimental methods as well.
    Type: Grant
    Filed: January 8, 1999
    Date of Patent: April 13, 2004
    Assignee: Symyx Technologies, Inc.
    Inventors: Howard W. Turner, Adam Safir, Ralph B. Nielsen
  • Publication number: 20040063571
    Abstract: The present invention relates to a method for the prepolymerization of &agr;-olefin in the presence of a catalyst system which comprises (a) a magnesium supported solid complex titanium catalyst and (b) an organometallic compound of metal of Group I or III of the Periodic Table, characterized in that an inert solvent having high viscosity with molecular weight of 300 g/mole or more is used as a reaction medium.
    Type: Application
    Filed: October 16, 2003
    Publication date: April 1, 2004
    Inventors: Yoo-Kyoung Kim, Kun Lo, Il-Seop Kim
  • Publication number: 20040063572
    Abstract: Disclosed is a preparation method of titanium catalyst for olefin polymerization, the method comprising (1) preparing magnesium compound solution by resolving non-deoxidative magnesium halide and IIIA group atom compound in a solvent mixture of cyclic ether, at least one alcohol, phosphorus compound and organosilane with or without hydrocarbon solvent; (2) reacting said magnesium compound solution with titanium compound, silicon compound, tin compound or mixture thereof to produce a support; and (3) reacting said support with titanium compound and electron donor to produce solid complex titanium catalyst, wherein the particle size and particle size distribution f said catalyst are regulated by controlling solubility of the reactants in said steps (2) and/or (3).
    Type: Application
    Filed: June 30, 2003
    Publication date: April 1, 2004
    Inventors: ll Seop Kim, Moon Young Shin, Ki Su Ro
  • Publication number: 20040063574
    Abstract: The present invention relates to catalyst systems, processes for making such catalysts, intermediates for such catalysts, and olefin polymerization processes using such catalysts wherein such catalyst includes a component represented by the following formula IA: 1
    Type: Application
    Filed: December 16, 2002
    Publication date: April 1, 2004
    Inventors: Klaus H. Theopold, Woo-Kyu Kim, Leonard A. MacAdams, John M. Power, Javier M. Mora, Albert P. Masino
  • Publication number: 20040063570
    Abstract: A catalyst solid for olefin polymerization comprising
    Type: Application
    Filed: October 22, 2002
    Publication date: April 1, 2004
    Inventors: Carsten Suling, Wolf Spaether, Nicola Paczkowski, Joachim Rosch, Joachim Wulff-Doring, Wolfgang Bidell
  • Publication number: 20040058802
    Abstract: A process for making a polyolefin catalyst component, catalyst and polymer resin is disclosed. Controlling the viscosity of a catalyst synthesis solution with the addition of aluminum alkyl alters the precipitation of the catalyst component from a catalyst synthesis solution. The average particle size of the catalyst component increases with an increased concentration of aluminum alkyl in the synthesis solution. The catalyst component can be produced by a process comprising contacting a magnesium alkyl compound with an alcohol and an aluminum alkyl to form a magnesium dialkoxide. Catalyst components, catalysts, catalyst systems, polyolefin, products made therewith, and methods of forming each are disclosed. The reaction products can be washed with a hydrocarbon solvent to reduce titanium species [Ti] content to less than about 100 mmol/L.
    Type: Application
    Filed: September 22, 2003
    Publication date: March 25, 2004
    Inventors: David W. Knoeppel, Tim J. Coffy, Henry Enriquez, Steven D. Gray
  • Publication number: 20040053774
    Abstract: The present invention provides a method for producing a new catalyst of high catalytic activity and superior catalyst morphology for homo- or co-polymerization of ethylene, or more particularly a method for producing a titanium solid complex catalyst supported on a carrier containing magnesium, wherein said catalyst of high polymerization activity is capable of producing polymers of high bulk density.
    Type: Application
    Filed: October 27, 2003
    Publication date: March 18, 2004
    Inventors: Chun-Byung Yang, Sang-Yull Kim, Weon Lee
  • Publication number: 20040054101
    Abstract: This process for preparing a catalyst support for the homopolymerization or copolymerization of ethylene and &agr;-olefins is characterized in that at least one organochlorine compound and a premix of at least one alkylmagnesium and of at least one organoaluminum compound chosen from aluminoxanes, aluminosiloxanes and alkylaluminums are reacted together, in the presence of at least one aliphatic diether as electron donor.
    Type: Application
    Filed: September 9, 2003
    Publication date: March 18, 2004
    Inventors: Thierry Saudemont, Jean Malinge, Jean-Loup Lacombe
  • Publication number: 20040054102
    Abstract: A catalyst is used which comprises a cocatalyst component wherein a non-coordinating ion-containing compound is chemically bonded to a fine particulate carrier, together with a metallocene compound and a specific hydrocarbon. There are provided an olefin polymerization catalyst which produces olefin polymers containing few solvent-soluble components without a wider molecular weight distribution, and which exhibits no significant reduction in activity even after storage, as well as olefin polymerization catalyst components and a method for their storage, and a process for production of propylene polymers using them.
    Type: Application
    Filed: June 18, 2003
    Publication date: March 18, 2004
    Inventors: Satoru Ishigaki, Shinji Hinokuma
  • Publication number: 20040048989
    Abstract: Blends of two or more polyethylenes are made by reacting ethylene with an oligomerization catalyst that forms &agr;-olefins, and two polymerization catalysts, one of which under the process conditions copolymerizes ethylene and &agr;-olefins, and the other of which under process conditions does not readily copolymerize ethylene and &agr;-olefins. The blends may have improved physical properties and/or processing characteristics.
    Type: Application
    Filed: September 10, 2003
    Publication date: March 11, 2004
    Inventors: Lin Wang, Maria Spinu, Joel David Citron
  • Publication number: 20040048735
    Abstract: The present invention concerns an addition compound of a carboxylic acid and a rare earth or gallium halide or a rare earth or gallium halogenocarboxylate of the same acid. This compound is obtained by a process in which a rare earth or gallium carboxylate is reacted with HX, X representing a halogen, in a solvent selected from alkanes, cycloalkanes and aromatic solvents and mixtures thereof, the reaction being carried out with an X/rare earth or gallium atomic ratio of less than 3 when preparing a halogenocarboxylate.
    Type: Application
    Filed: October 1, 2003
    Publication date: March 11, 2004
    Inventor: Thomas Mathivet
  • Publication number: 20040048736
    Abstract: Bimetallic catalyst for producing polyethylene resins with a bimodal molecular weight distribution, its preparation and use. The catalyst is obtainable by a process which includes contacting a support material with an organomagnesium component and carbonyl-containing component. The support material so treated is contacted with a non-metallocene transition metal component to obtain a catalyst intermediate, the latter being contacted with an aluminoxane component and a metallocene component. This catalyst may be further activated with, e.g., alkylaluminum cocatalyst, and contacted, under polymerization conditions, with ethylene and optionally one or more comonomers, to produce ethylene homo- or copolymers with a bimodal molecular weight distribution and improved resin swell properties in a single reactor. These ethylene polymers are particularly suitable for blow molding applications.
    Type: Application
    Filed: May 29, 2003
    Publication date: March 11, 2004
    Inventors: Robert Ivan Mink, Thomas Edward Nowlin, Pradeep P. Shirodkar, Gary M. Diamond, David Bruce Barry, Chunming Wang, Hitesh A. Fruitwala, Shih-May Christine Ong
  • Publication number: 20040048991
    Abstract: It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G′) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
    Type: Application
    Filed: September 10, 2003
    Publication date: March 11, 2004
    Applicant: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, David J. Rauscher, Michael Ray Wallace
  • Publication number: 20040044154
    Abstract: A process of producing a bimodal polyolefin composition is described, which includes in one embodiment contacting monomers with a supported bimetallic catalyst composition for a time sufficient to form a bimodal polyolefin composition that includes a high molecular weight polyolefin component and a low molecular weight polyolefin component; wherein the supported bimetallic catalyst includes a first catalyst component that is preferably non-metallocene, and a second catalyst component that includes a metallocene catalyst compound having at least one fluoride or fluorine containing leaving group, wherein the bimetallic catalyst is supported by an enhanced silica, dehydrated at a temperature of 800° C. or more in one embodiment.
    Type: Application
    Filed: February 18, 2003
    Publication date: March 4, 2004
    Inventors: Chi-I Kuo, G. McCullough Laughlin, Pradeep Pandurang Shirodkar, Fred David Ehrman, Porter Clarke Shannon, Robert Lynn Santana, Steven K. Ackerman, Daniel Gerard O'Neil
  • Publication number: 20040043892
    Abstract: Process for preparing an olefin polymerisation catalyst component comprising magnesium halide, titanium halide and a carboxylic acid ester electron donor, in which the precursors of its constituents are reacted in solution from which the component is eventually precipitated, this precipitation being accompanied by co-precipitation of one or more oligoesters of the carboxylic acid formed in a controlled manner. The component is employed, together with an organometallic co-catalyst, for polymerisation of C2-C1-0 &agr;-olefins.
    Type: Application
    Filed: September 12, 2003
    Publication date: March 4, 2004
    Inventors: Timo Leinonen, Peter Denifl
  • Patent number: 6699961
    Abstract: A process for the preparation of a DMC catalyst useful in the polymerization of alkylene oxides into polyether polyols, which process having the steps of (a combining an aqueous solution of a metal salt with an aqueous solution of a metal salt with an aqueous solution of a metal cyanide salt and reacting these solutions, wherein at least part of this reaction takes place in the presence of an organic complexing agent, thereby forming a dispersion of a solid DMC complex in an aqueous medium; (b) combining the dispersion obtained in step (a) with a liquid, which is essentially insoluble in water and which is capable of extracting the solid DMC complex formed in step (a) from the aqueous medium, and allowing a two-phase system to be formed consisting of a first aqueous layer and a layer containing the DMC complex and the liquid added; (c) removing the first aqueous layer; and (d) recovering the DMC catalyst from the layer containing the DMC catalyst.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: March 2, 2004
    Assignee: Shell Oil Company
    Inventors: Michiel Barend Eleveld, Riemer Alberts De Groot, Ronald Van Kempen, Johan Paul Smit
  • Publication number: 20040039139
    Abstract: An olefin polymerization catalyst is described which includes: (A) a solid catalyst component being prepared by copulverizing a magnesium compound, an aluminum compound, an electron donor and a titanium compound, and (B) an organoaluminum compound. The present invention is also directed to a process for preparing polyolefins using the aforesaid catalyst system to polymerize olefins.
    Type: Application
    Filed: August 27, 2003
    Publication date: February 26, 2004
    Applicant: Formosa Plastics Co., U.S.A.
    Inventors: Bing Lu, Honglan Lu, Chih-Jian Chen
  • Publication number: 20040038806
    Abstract: The present invention relates to a catalyst composition for polymerization of olefins and copolymerization of olefins with alpha-olefins comprising (a) catalyst precursor comprising at least one Ziegler-Natta compound, at least one metallocene compound, at least one titanate compound and/or at least one alcohol compound, a magnesium compound and a polymeric material, and (b) a cocatalyst comprising of an alkylaluminum compound, aluminoxane compound or mixtures thereof; and to a process for polymerization of olefins and copolymerization of olefins with alpha olefins using a catalyst composition according to the present invention.
    Type: Application
    Filed: July 8, 2003
    Publication date: February 26, 2004
    Inventors: Akhlaq Moman, Orass Hamed, Atieh Abu-Raqabah, Khalid Al-Bahily
  • Publication number: 20040038807
    Abstract: This invention provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises contacting an organometal compound, an organoaluminum compound, and a solid, wherein said solid is selected from the group consisting of titanium tetrafluoride, zirconium tetrafluoride, and a treated solid oxide compound.
    Type: Application
    Filed: May 23, 2003
    Publication date: February 26, 2004
    Inventors: Max P. McDaniel, Marvin M. Johnson, Bruce B. Randolph, Kathy S. Collins, Elizabeth A. Benham, Michael D. Jensen, Gil R. Hawley, Joel L. Martin
  • Patent number: 6696379
    Abstract: A supported catalyst composition comprising: A1) a mixture of aluminum containing Lewis acids of the formulas: [(—AlQ1—O—)z(—AlArf—O—)z′] and (Arfz″Al2Q16−z″)  where; Q1 independently each occurrence is C1-20 alkyl; Arf is a fluorinated aromatic hydrocarbyl moiety of from 6 to 30 carbon atoms; z is a number from 1 to 50; z′ is a number from 1 to 50; and z″ is an number from 0 to 6; or A2) a fluorohydrocarbyl-substituted alumoxane compound corresponding to the formula: R1—(AlR3O)m—R2,  wherein: R1 and R2 independently each occurrence is a C1-40 aliphatic or aromatic group or a fluorinated derivative thereof or R1 and R2 together form a covalent bond; R3 independently each occurrence is a monovalent, fluorinated organic group containing from 1 to 100 carbon atoms or R1, with the proviso that in at least one occurrence per molecule, R3 is a monovalent, fluorinated organic group containing from 1
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: February 24, 2004
    Assignee: The Dow Chemical Company
    Inventors: Edmund M. Carnahan, Grant B. Jacobsen, Eugene Y. Chen, James C. Stevens
  • Publication number: 20040033889
    Abstract: A cationic Group 3 or Lanthanide metal complex for coordination polymerization of olefins is disclosed. The precursor metal complex is stabilized by an anionic amidinate ancillary ligand. Upon reaction with an activator, the complex becomes an active olefin-polymerization catalyst. Some invention processes give narrow polymer polydispersities.
    Type: Application
    Filed: June 19, 2003
    Publication date: February 19, 2004
    Inventors: Bart Hessen, Sergio Bambirra
  • Publication number: 20040033887
    Abstract: A method for making a solid catalyst component for use in a Ziegler-Natta catalyst includes combining a porous particulate support with a magnesium source in a hydrocarbon solvent to form a mixture, the magnesium source including a hydrocarbon soluble organomagnesium compound and a hydrocarbon insoluble anhydrous inorganic magnesium-halogen compound. The organomagnesium compound is halogenated and the mixture is reacted with a titanium compound or vanadium compound to form the solid catalyst component. The solid catalyst component is then recovered and combined with an organoaluminum cocatalyst to form a Ziegler-Natta catalyst which is advantageously used for the polymerization of olefins, particularly alk-1-enes such as ethylene, propylene, 1-butene, and the like. The catalyst can optionally include internal and external electron donors.
    Type: Application
    Filed: August 19, 2002
    Publication date: February 19, 2004
    Inventor: Wolf Spaether
  • Publication number: 20040033890
    Abstract: Catalyst system for olefin polymerization comprising
    Type: Application
    Filed: June 6, 2003
    Publication date: February 19, 2004
    Inventors: Shahram Mihan, Markus Schopf, Jiachim Wulff-Doring, Wolfgang Bidell, Volker Fraaije, Nicola Paczkowski, Markus Oberhoff
  • Publication number: 20040030064
    Abstract: The present invention provides a catalyst component used for homopolymerization or co-polymerization of ethylene, comprising at least one suitable electron donor compound supported on a composition containing magnesium and titanium, wherein the electron donor compound is selected from the group consisting of aliphatic ethers, alicyclic ethers, aromatic ethers, aliphatic ketones and alicyclic ketones, and wherein the composition containing magnesium and titanium is prepared by dissolving a magnesium compound into a solvent system to form a homogeneous solution and then contacting the solution with a titanium compound in the presence of a precipitation aid to precipitate the composition. The present invention also relates to a method for the preparation of said catalyst component and a catalyst comprising thereof, and to use of the catalyst in homopolymerization of ethylene or co-polymerization of ethylene with at least one C3-C8 &agr;-olefln.
    Type: Application
    Filed: June 5, 2003
    Publication date: February 12, 2004
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, BEIJING RESEARCH INSTITUTE OF CHEMICAL INDUSTRY
    Inventors: Zhiwu Wang, Zhong Tan, Tianyi Li, Xingbo Li, Kai Zhang, Peng Kou, Haixiang Cui, Zhengyang Guo, Liang Pan
  • Publication number: 20040030067
    Abstract: There are provided (I) a process for producing a catalyst for &agr;-olefin polymerization, which comprises the steps of:
    Type: Application
    Filed: March 26, 2003
    Publication date: February 12, 2004
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Jiro Mori, Tomoaki Tanaka, Yasunori Kaminaga
  • Publication number: 20040029719
    Abstract: A catalyst composition, and olefin polymerization process using same, formed from a mixture of a non-aluminoxane aluminum compound, an inorganic oxide and a transition metal bidentate or tridentate complex in certain prescribed proportions. The composition can be formed in a single step or in-situ in the polymerization reaction zone. The resultant catalyst has high activity and is capable of producing high molecular weight olefin products without reactor fouling.
    Type: Application
    Filed: August 5, 2003
    Publication date: February 12, 2004
    Inventor: Keng Yu Shih
  • Publication number: 20040029720
    Abstract: Methods for preparing olefin polymers, and catalysts for preparing olefin polymers are disclosed. The polymers can be prepared by contacting the corresponding monomers with a Group 8-10 transition metal catalyst and a solid support. The polymers are suitable for processing in conventional extrusion processes, and can be formed into high barrier sheets or films, or low molecular weight resins for use in synthetic waxes in wax coatings or as emulsions.
    Type: Application
    Filed: June 26, 2003
    Publication date: February 12, 2004
    Applicant: Eastman Chemical Company
    Inventors: Peter Borden Mackenzie, Leslie Shane Moody, Christopher Moore Killian, Gino Georges Lavoie
  • Publication number: 20040023792
    Abstract: A solid titanium complex catalyst for polymerization and copolymeization of ethylene is prepared by the process comprising: (1) preparing a magnesium solution by reacting a halogenated magnesium compound with an alcohol; (2) reacting the magnesium solution with an ester compound having at least one hydroxyl group and a boron compound having at least one alkoxy group to produce a magnesium composition; and (3) producing a solid titanium catalyst through recrystallization by reacting the magnesium composition solution with a mixture of a titanium compound and a haloalkane compound; and optionally reacting the solid titanium catalyst with an additional titanium compound.
    Type: Application
    Filed: April 15, 2003
    Publication date: February 5, 2004
    Inventors: Chun-Byung Yang, Ji-Yong Park, Yong-Bok Lee, Weon Lee