Component B Metal Is Other Than Titanium Or Vanadium Patents (Class 502/117)
  • Publication number: 20110034653
    Abstract: The present invention discloses metallic complexes based on hydroxyl-carbonyl fulvene ligands, their method of preparation and their use in the oligomerisation or polymerisation of ethylene and alpha-olefins.
    Type: Application
    Filed: July 16, 2008
    Publication date: February 10, 2011
    Applicants: TOTAL PETROCHEMICALS RESEARCH FELUY, Centre National De La Recherche Scientifique (CNRS
    Inventors: Clement Lansalot-MaTras, Olivier Lavastre, Sabine Sirol
  • Publication number: 20110021852
    Abstract: A hydrogenation catalyst system is provided. The catalyst system includes a metal complex of Formula (I), an organic lithium compound and an organic compound having a cyclic structure including at least one double bond. In Formula (I), M is transition metals. R1, R2, R3, R4 and R5 are the same or different, including hydrogen, C1-8 alkyl, and C1-8 alkoxy, or two of R1, R2, R3, R4 and R5 are linked together to form a ring. X1, X2 and X3 are a cyclic group, hydrogen, chlorine, bromine, alkyl or alkoxy, wherein when one of X1, X2 and X3 is a cyclic group, and the others are the same or different, including hydrogen, chlorine, bromine, alkyl or alkoxy. The invention also provides a selective hydrogenation process utilizing the catalyst system.
    Type: Application
    Filed: July 23, 2010
    Publication date: January 27, 2011
    Inventors: Kuo-Chen SHIH, Hung-Yu Chen, Mao-Lin Hsueh, Yi-Zhen Chen
  • Patent number: 7871951
    Abstract: A method for producing magnesium compound represented by formula (I): Mg(OEt)2-n(OMe)n??(I) where Et is an ethyl group, Me is a methyl group and n is a numerical value of from 0.001 to 1, by reacting metal magnesium, ethanol, methanol and a halogen and/or a halogen-containing compound containing at least 0.0001 gram atom of a halogen atom relative to one gram atom of the metal magnesium. A method of producing a solid catalyst component.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: January 18, 2011
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Shojiro Tanase, Nobuhiro Yabunouchi, Takanori Sadashima
  • Publication number: 20110003950
    Abstract: The object is to provide a catalyst component for ethylene polymerization which can produce an ethylene polymer of high molecular weight which has substantially only an ethyl branch, and a process for producing the catalyst component for ethylene polymerization which can produce an ethylene polymer of high molecular weight which has substantially only an ethyl branch. A catalyst component for polymerization of ethylene obtained by contacting the following components (A), (B), (C) and (D): component (A): a meso-metallocene compound, component (B): a compound which ionizes a metallocene compound to form an ionic complex, component (C): an organoaluminum compound, and component (D): an electron donating compound, and a process for producing the ethylene polymer by polymerizing ethylene in the presence of the above catalyst component for ethylene polymerization.
    Type: Application
    Filed: February 17, 2009
    Publication date: January 6, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Yasutoyo Kawashima
  • Publication number: 20100331501
    Abstract: The present invention provides dual catalyst systems containing a metallocene catalyst and a hydrogen scavenging catalyst, and polymerization processes employing these dual catalyst systems. Due to a reduction in hydrogen levels in the polymerization processes, olefin polymers produced from these polymerization processes may have a higher molecular weight, a lower melt index, and higher levels of unsaturation.
    Type: Application
    Filed: June 28, 2010
    Publication date: December 30, 2010
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Rex E. Murray, William B. Beaulieu, Qing Yang, Errun Ding, Gary L. Glass, Alan L. Solenberger, Steve J. Secora
  • Patent number: 7858729
    Abstract: A catalyst, co-catalyst, and/or chain transfer agent is added at a time after initiation of an addition polymerization reaction to produce a polymer product with a widened molecular weight distribution relative to having all of the components in the original reaction mixture. The catalyst, co-catalyst, or chain transfer agent may be added discretely or continuously to the reaction to produce a product with a bimodal, trimodal, or other broadened molecular weight distribution.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: December 28, 2010
    Assignee: Novomer, Inc.
    Inventor: Scott D. Allen
  • Publication number: 20100324237
    Abstract: Mixtures of different polyolefins may be made by direct, preferably simultaneous, polymerization of one or more polymerizable olefins using two or more transition metal containing active polymerization catalyst systems, at least one of which contains cobalt or iron complexed with selected ligands. The polyolefin products may have polymers that vary in molecular weight, molecular weight distribution, crystallinity, or other factors, and are useful as molding resins and for films.
    Type: Application
    Filed: August 6, 2010
    Publication date: December 23, 2010
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Alison Margaret Anne Bennett, Edward Bryan Coughlin, Joel David Citron, Lin Wang
  • Publication number: 20100324236
    Abstract: The present invention provides polymerization catalyst compositions employing novel heterodinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins are also provided.
    Type: Application
    Filed: June 23, 2009
    Publication date: December 23, 2010
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: REX E. MURRAY, KUMUDINI C. JAYARATNE, QING YANG, JOEL L. MARTIN, GARY L. GLASS
  • Patent number: 7851644
    Abstract: A new class of heterocyclic metallocenes, a catalytic system containing them and a process for polymerizing addition polymerizable monomers using the catalytic system are disclosed; the heterocyclic metallocenes correspond to the formula (I): YjR?iZjjMeQkPl wherein Y is a coordinating group containing a six ? electron central radical directly coordinating Me, to which are associated one or more radicals containing at least one non-carbon atom selected from B, N, O, Al, Si, P, S, Ga, Ge, As, Se, In, Sn, Sb and Te; R? is a divalent bridge between the Y and Z groups; Z is a coordinating group, optionally being equal to Y; Me is a transition metal; Q is halogen or hydrocarbon substituents; P is a counterion; i is 0 or 1; j is 1-3; jj is 0-2; k is 1-3; and l is 0-2.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: December 14, 2010
    Assignee: Basell Polyolefine GmbH
    Inventors: John A. Ewen, Michael J. Elder, Robert L. Jones, Jr., Yuri A. Dubitsky
  • Publication number: 20100311931
    Abstract: The present invention discloses metallic complexes based on carbonylamino fulvene ligands; their method of preparation and their use in the oligomerisation or polymerisation of ethylene and alpha-olefins.
    Type: Application
    Filed: July 16, 2008
    Publication date: December 9, 2010
    Inventors: Clement Lansalot-Ma-Tras, Olivier Lavastre, Sabine Sirol
  • Publication number: 20100311930
    Abstract: The present invention relates to new tridentate ligand compounds with imino furan units, to a method for manufacturing said compounds and to their use in the preparation of catalysts for the homopolymerisation or copolymerisation of ethylene and alpha-olefins.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 9, 2010
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventor: Sabine Sirol
  • Patent number: 7847099
    Abstract: A non-metallocene organometallic complex comprising a tridentate ligand and a metal bonded to a tridentate ligand, wherein two substituted aryl groups in the tridentate ligand are connected to a cyclic group at the ortho position via semi-rigid ring-ring linkages, and selected so to provide the resulting non-metallocene organometallic complex with a CS geometry, a C1 geometry, a C2 geometry or a C2v geometry. Method for performing olefin polymerization with a non-metallocene organometallic complex as a catalyst, related catalytic systems, tridentate ligand and method for providing a non-metallocene organometallic complex.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: December 7, 2010
    Assignee: California Institute of Technology
    Inventors: Theodor Agapie, Suzanne Rose Golisz, Daniel Tofan, John E. Bercaw
  • Publication number: 20100298618
    Abstract: The present invention relates to a catalyst composition comprising: (a) a binuclear chromium(II) complex; (b) a ligand of the general structure (A) R1R2P—N(R3)—P(R4)—N(R5)—H or (B) R1R2P—N(R3)—P(R4)—N(R5)—PR6R7, wherein R1, R2, R3, R4, R5, R6 and R7 are independently selected from halogen, amino, trimethylsilyl, C1-C10-alkyl, aryl and substituted aryl, wherein the PNPN- or PNPNP-unit is optionally part of a ring system; and (c) an activator or co-catalyst, as well as to a process for oligomerization of ethylene.
    Type: Application
    Filed: November 5, 2008
    Publication date: November 25, 2010
    Inventors: Vugar Aliyev, Mohammed Al-Hazmi, Fuad Mosa, Peter M. Fritz, Heinz Bölt, Anina Wöhl, Wolfgang Müller, Florian Winkler, Anton Wellenhofer, Uwe Rosenthal, Bernd H. Müller, Marko Hapke, Normen Peulecke
  • Publication number: 20100292423
    Abstract: Catalyst composition for the oligomerization of ethylene, comprising (i) an at least partially hydrolyzed transition metal compound, obtainable by controlled addition of water to a transition metal compound having the general formula MXm(OR?)4-m or MXm(OOCR?)4-m, wherein R? is an alkyl, alkenyl, aryl, aralkyl or cycloalkyl group, X is halogen, preferably Cl or Br, and m is from 0 to 4; preferably 0-3; and (ii) an organoaluminum compound as a cocatalyst, wherein the molar ratio of water and transition metal compound is within a range of between about (0.01-3):1; a process for oligomerization of ethylene and a method for preparing the catalyst composition.
    Type: Application
    Filed: November 13, 2008
    Publication date: November 18, 2010
    Inventors: Vugar Aliyev, Fuad Mosa, Mohammed Al-Hazmi
  • Publication number: 20100286349
    Abstract: Novel group 4 organometallic compounds, supported on anions by means of at least one covalent metal-oxygen bond, are obtained by reaction of at least one borate or aluminium comprising at least one hydroxy group with at least one group 4 transition metal compound. These compounds are used in a catalytic composition implemented in an olefin oligomerization or polymerization method.
    Type: Application
    Filed: July 3, 2008
    Publication date: November 11, 2010
    Applicant: IFP
    Inventors: Christine Bibal, Catherine Santini, Yves Chauvin, Helene Olivier-Bourbigou, Christophe Vallee
  • Publication number: 20100274065
    Abstract: Among other things, this disclosure provides an olefin oligomerization system and process, the system comprising: a) a transition metal compound; b) a pyrrole compound having a hydrogen atom on at the 5-position or the 2- and 5-position of a pyrrole compound and having a bulky substituent located on each carbon atom adjacent to the carbon atom bearing a hydrogen atom at the 5-position or the 2- and 5-position of a pyrrole compound. These catalyst system have significantly improved productivities, selectivities to 1-hexene, and provides higher purity 1-hexene within the C6 fraction than catalyst systems using 2,4-dimethylpyrrole.
    Type: Application
    Filed: April 30, 2010
    Publication date: October 28, 2010
    Applicant: Chevron Phillips Chemical Company LP
    Inventor: Orson L. Sydora
  • Patent number: 7820581
    Abstract: A method of making a catalyst for use in oligomerizing an olefin comprising a chromium-containing compound, a pyrrole-containing compound, a metal alkyl, a halide-containing compound, and optionally a solvent, the method comprising contacting a composition comprising the chromium-containing compound and a composition comprising the metal alkyl, wherein the composition comprising the chromium-containing compound is added to the composition comprising the metal alkyl.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: October 26, 2010
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ronald D. Knudsen, Bruce E. Kreischer, Ronald G. Abbott, Steven D. Bridges, Eduardo J. Baralt, Brooke L. Small
  • Patent number: 7820580
    Abstract: A nickel-carbene polymerization catalyst system for preparing high cis polydienes is provided. The catalyst system comprises (a) a nickel N-heterocyclic carbene complex, (b) an organoaluminum compound, (c) a fluorine-containing compound, and (d) optionally, an alcohol. Also provided is a process for producing a polydiene comprising reacting a conjugated diene in the presence of a polymerization catalyst comprising (a) a nickel N-heterocyclic carbene complex, (b) an organoaluminum compound, (c) a fluorine-containing compound, and (d) optionally, an alcohol.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: October 26, 2010
    Assignee: Bridgestone Corporation
    Inventors: Zengquan Qin, Jason T. Poulton, Michael W. Hayes
  • Publication number: 20100261860
    Abstract: A metallocene compound with the 4- and 7-positions on the indenyl moiety possessing large aromatic substituents is prepared in accordance with a method which produces substantially 100 percent racemic isomer. Advantageously, polymerisation catalysts including the metallocene of the invention provide superior olefin polymerisation results.
    Type: Application
    Filed: October 25, 2007
    Publication date: October 14, 2010
    Applicant: LUMMUS NOVOLEN TECHNOLOGY GMBH
    Inventors: Joerg Schulte, Thorsten Sell, Matthew Grant Thorn, Andreas Winter, Anita Dimeska
  • Publication number: 20100240849
    Abstract: Disclosed is a method of producing a cyclic olefin polymer having a polar functional group, an olefin polymer produced by using the method, an optical anisotropic film including the olefin polymer, and a catalyst composition for producing the cyclic olefin polymer. In the olefin polymerization method and the catalyst composition for polymerization, since deactivation of the catalyst due to polar functional groups of monomers is capable of being suppressed, it is possible to produce polyolefins having a high molecular weight at high polymerization yield during polyolefin polymerization. Furthermore, the cyclic olefin having the polar functional groups has excellent polymerization reactivity and the activity of the catalyst composition including the same is maintained under a variable polymerization condition. Accordingly, the present invention is very useful for a mass-production process.
    Type: Application
    Filed: June 15, 2007
    Publication date: September 23, 2010
    Applicant: LG CHEM, LTD.
    Inventors: Dai-Seung Choi, Young-Whan Park, Sung-Ho Chun, Sung Cheol Yoon, Young-Chul Won
  • Patent number: 7799727
    Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: September 21, 2010
    Assignee: UOP LLC
    Inventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
  • Publication number: 20100190936
    Abstract: Polyethylene is made by (co)polymerizing ethylene in a gas-phase reactor using a mixed catalyst system comprising a chromium catalyst supported on silica and a Group 4 transition metal catalyst, separately supported on silica. The Group 4 transition metal catalyst is defined by the formula shown, wherein M is a Group 4 metal, PI is a phosphinimide or ketimide ligand (shown), L is a monoanionic ligand which is a cyclopentadienyl or a bulky heteroatom type ligand, m is 1 or 2, n is 0 or 1, and p is an integer. The mixed catalyst system gives access to polyethylene having a broad or bimodal molecular weight distribution. In the copolymerization of ethylene, reversed or partially reversed comonomer distribution is achieved: the supported Group 4 component provides polymer segments having higher molecular weight and also higher comonomer incorporation than polymer segments produced at the supported chromium sites.
    Type: Application
    Filed: March 25, 2010
    Publication date: July 29, 2010
    Inventors: Peter Phung Minh Hoang, Victoria Ker, Bradley Funk
  • Publication number: 20100190939
    Abstract: The present invention relates to a catalyst composition and a process for di-, tri- and/or tetramerization of ethylene, wherein the catalyst composition comprises a chromium compound, a ligand of the general structure (A) R1R2P—N(R3)—P(R4)—N(R5)—H or (B) R1R2P—N(R3)—P(R4)—N(R5)—PR6R7, or any cyclic derivatives of (A) and (B), wherein at least one of the P or N atoms of the PNPN-unit or PNPNP-unit is member of a ring system, the ring system being formed from one or more constituent compounds of structures (A) or (B) by substitution and a co-catalyst or activator.
    Type: Application
    Filed: June 16, 2008
    Publication date: July 29, 2010
    Inventors: Peter M. Fritz, Heinz Bölt, Anina Wöhl, Wolfgang Müller, Florian Winkler, Anton Wellenhofer, Uwe Rosenthal, Bernd H. Müller, Marko Hapke, Normen Peulecke, Mohammed Hassan Al-Hazmi, Vugar O. Aliyev, Fuad Mohammed Mosa
  • Patent number: 7759443
    Abstract: Ethylenically unsaturated, particularly acrylic, monomers are polymerized using a catalyst system including a manganese carbonyl initiator, an organic halogen reactive substrate and an allylic halide chain termination agent. Desirably the manganese carbonyl initiator is a dimanganese compound, particularly dimanganese decacarbonyl (Mn2(CO)10). The catalysis mechanism appears to involve initiator homolysis, abstraction of halogen from the reactive substrate forming an organic free radical which acts as a chain initiator for polymerization and eventual reaction of the propagating chain radical with the chain terminating agent. The speed or extent of reaction may be modified by the inclusion of Lewis acids in the reaction mixture. The resulting polymers are telechelic and may have different end groups. The polymers can be reacted further to functionalize them and/or to form block copolymers.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: July 20, 2010
    Assignee: Croda International, Inc.
    Inventors: Richard J Harrison, Bruce C Gilbert, Andrew F Parsons, Derek J Irvine
  • Patent number: 7759271
    Abstract: The present invention relates to a process for preparing an activating support for metallocene complexes in the polymerisation of olefins comprising the steps of: I) providing a support prepared consisting in particles formed from at least one porous mineral oxide; II) optionally fixing the rate of silanols on the surface of the support; III) functionalising the support with a solution containing a fluorinated functionalising agent; IV) heating the functionalised and fluorinated support of step c) under an inert gas and then under oxygen; V) retrieving an active fluorinated support. That activating support is used to activate a metallocene catalyst component for the polymerisation of olefins.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: July 20, 2010
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Floran Prades, Christophe Boisson, Roger Spitz, Abbas Razavi
  • Patent number: 7754641
    Abstract: Disclosed herein is a composition comprising a complex hydride and a borohydride catalyst wherein the borohydride catalyst comprises a BH4 group, and a group IV metal, a group V metal, or a combination of a group IV and a group V metal. Also disclosed herein are methods of making the composition.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: July 13, 2010
    Assignee: General Electric Company
    Inventors: Grigorii Lev Soloveichik, Matthew John Andrus
  • Patent number: 7745568
    Abstract: A process is provided for recovering polymer solids from a polymerisation reactor effluent. The process comprises extracting the polymerisation effluent from a polymerisation reactor; passing the effluent, or a part thereof, to a flash vessel for flashing liquid in the effluent to vapour, and removing said vapour from said flash vessel; passing the polymer solids from the flash vessel to a transfer apparatus which comprises a transfer vessel; passing the polymer solids from the transfer vessel to a purging means for removing residual liquid from the polymer solids; wherein the polymer solids are passed from the flash vessel to the purging means in a continuous flow such that a quantity of polymer solids is maintained in the transfer vessel. An apparatus for performing the process is also provided.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: June 29, 2010
    Assignee: Total Petrochemicals Research Feluy
    Inventor: Hugo Vandaele
  • Patent number: 7741418
    Abstract: A process for preparing a polydiene, the process comprising the step of polymerizing conjugated diene monomer in the presence of a dihydrocarbyl ether, where said step of polymerizing employs a lanthanide-based catalyst system.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: June 22, 2010
    Assignee: Bridgestone Corporation
    Inventors: Steven Luo, Kevin M. McCauley, Jason T. Poulton
  • Publication number: 20100113717
    Abstract: A process for producing a substituted metallocene compound comprises reacting a first compound with a transfer-agent, wherein the first compound comprises a complex of a transition metal atom selected from Group 3, 4, 5 or 6 of the Periodic Table of Elements, or a lanthanide metal atom, or actinide metal atom and at least one monocyclic or polycyclic ligand that is pi-bonded to M and is substituted with at least one halogen or sulfonate substituent and the transfer-agent comprises a hydrocarbyl, substituted hydrocarbyl, halocarbyl, substituted halocarbyl, silylcarbyl, or germylcarbyl radical capable of replacing said at least one halogen or sulfonate substituent of said first compound under reaction conditions.
    Type: Application
    Filed: December 17, 2009
    Publication date: May 6, 2010
    Inventors: Alexander Z. Voskoboynikov, Alexey N. Ryabov, Catalina L. Coker, Jo Ann M. Canich
  • Publication number: 20100113852
    Abstract: Among other things, this disclosure provides an olefin oligomerization system and process, the system comprising: a) a transition metal compound; b) a pyrrole compound having independently-selected C1 to C18 organyl groups at the 2- and 5-positions, wherein at least one of the organyl group alpha-carbon atoms attached to the 2- and 5-positions of the pyrrole compound is a secondary carbon atoms; and c) a metal alkyl. For example, the 2,5-diethylpyrrole (2,5-DEP)-based catalyst systems can afford a productivity increases over unsubstituted pyrrole catalyst systems, non-2,5-disubstituted catalyst systems, and 2,5-dimethylpyrrole (2,5-DMP) catalyst systems.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 6, 2010
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventor: Orson L. Sydora
  • Patent number: 7709586
    Abstract: An olefin polymerization catalyst which includes an organometallic compound of the following Formula 1; aluminoxane; and an organic transition metal compound of the following Formula 2: M1R11R2mR3n or R2mR3nM1R11M1R2mR3n??[Formula 1 ] in Formula 1, M1 is selected from the group consisting of Group 2A, 2B and 3A of the Periodic Table, R1 is cyclic hydrocarbyl group of 5 to 30 carbon atoms, R2 and R3 are independently hydrocarbyl group of 1 to 24 carbon atoms, l is an integer of more than 1, m and n are independently an integer of 0 to 2, l+m+n is equal to the valence of M1, Q is a divalent group; M2R4pXq??[Formula 2 ] in Formula 2, M2 is Ti, Zr or Hf; R4 is cyclic hydrocarbyl group of 5 to 30 carbon atoms, X is halogen atom, p is an integer of 0 or 1, q is an integer of 3 or 4, p+q is equal to the valence of metal M2.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: May 4, 2010
    Assignee: Daelim Industrial Co., Ltd.
    Inventors: Sah-Mun Hong, Sung-Woo Kang, Young-Jae Jun, Jin-Sook Oh
  • Publication number: 20100099834
    Abstract: Catalyst systems and methods of forming the catalyst systems are described herein. The methods generally include contacting a support material with an activator to form a support composition, contacting a component with at least a portion of an aluminum containing compound including TIBAl, wherein the component is selected from the support composition, the transition metal catalyst compound and combinations thereof and contacting the support composition with a transition metal catalyst compound to form a supported catalyst system.
    Type: Application
    Filed: December 21, 2009
    Publication date: April 22, 2010
    Applicant: Fina Technology, Inc.
    Inventors: Jun Tian, William Gauthier, Joseph Thorman, Shady Henry
  • Publication number: 20100093958
    Abstract: Compositions useful for activating catalysts for olefin polymerization are-provided. The compositions are derived from at least: a) compound derived from at least (i) carrier having at least one pair of hydrogen bonded hydroxyl groups, (ii) organoaluminum compound, and (iii) Lewis base, such that each of a majority of aluminum atoms in the organoaluminum compound forms chemical bonds with at least two oxygen atoms from the at least one pair of hydrogen bonded hydroxyl groups; and b) Bronsted acid, wherein the molar ratio of the Bronsted acid to the organoaluminum compound is less than or equal to about 2:1.
    Type: Application
    Filed: December 4, 2007
    Publication date: April 15, 2010
    Inventors: Lubin Luo, Katherine Wu, Steven P. Diefenbach
  • Patent number: 7696123
    Abstract: A method for preparing a nickel-containing composition, and a composition prepared by such method, are disclosed including the steps of: a) mixing a phosphorous compound with a nickel complex having nickel bonded to a heteroatom to thereby form a nickel-phosphorous-containing mixture; and b) contacting the nickel-phosphorous-containing mixture with a supported partially hydrolyzed alkylaluminum compound, thereby forming such nickel-containing composition. Use of such nickel-containing composition in the dimerization of propene is also disclosed.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: April 13, 2010
    Assignee: ConocoPhillips Company
    Inventors: Katharina J. Schneider, Alt G. Helmut, George D. Parks, Roland Schmidt
  • Publication number: 20100081770
    Abstract: The present invention relates to a process of preparing 1,4-trans polybutadiene grafted with an aromatic organosulfur compound, the process comprising (a) preparing 1,4-trans polybutadiene by polymerizing 1,3-butadiene or butadiene derivatives in a nonpolar solvent in the presence of a particular catalyst, and (b) preparing the 1,4-trans polybutadiene grafted with an aromatic organosulfur compound by reacting the trans polybutadiene with an aromatic organosulfur compound. The organosulfur molecule in the molecular chain minimizes ultra high molecular weight fraction and narrows the molecular weight distribution, thereby enabling this polymer to show improved processability and tensile properties.
    Type: Application
    Filed: September 16, 2009
    Publication date: April 1, 2010
    Inventors: Gwang Hoon KWAG, Hoochae Kim, Seung Hwon Lee, Hwieon Park, Hyung Kyu Choi
  • Publication number: 20100048843
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.
    Type: Application
    Filed: October 29, 2009
    Publication date: February 25, 2010
    Applicant: CHEVRON PHILLIPS CHEMICALCOMPANY LP
    Inventors: Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Elizabeth A. Benham, Randy Muninger, Gary Jerdee, Ashish M. Sukhadia, Qing Yang, Matthew G. Thorn
  • Patent number: 7666959
    Abstract: The present invention discloses a metallocene catalyst system for producing polyolefins comprising: A. a hafnocene-based catalyst component suitable for producing the high molecular weight fraction of the polyolefin; B. one or more metallocene or post-metallocene components different from the component A and suitable for producing the low molecular weight fraction of the polyolefin; C. an activating agent having a low or no coordinating capability.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: February 23, 2010
    Assignee: Total Petrochemicals Research Feluy
    Inventor: Abbas Razavi
  • Publication number: 20100029469
    Abstract: Transition metal complexes of selected monoanionic phosphine ligands, which also contain a selected Group 15 or 16 (IUPAC) element and which are coordinated to a Group 3 to 11 (IUPAC) transition metal or a lanthanide metal, are polymerization catalysts for the (co)polymerization of olefins such as ethylene and ?-olefins, and the copolymerization of such olefins with polar group-containing olefins. These and other nickel complexes of neutral and monoanionic bidentate ligands copolymerize ethylene and polar comonomers, especially acrylates, at relatively high ethylene pressures and surprisingly high temperatures, and give good incorporation of the polar comonomers and good polymer productivity. These copolymers are often unique structures, which are described.
    Type: Application
    Filed: August 1, 2008
    Publication date: February 4, 2010
    Applicant: E. I. du Pont de Nemours and Company
    Inventors: LIN WANG, Elisabeth M. Hauptman, Lynda Kaye Johnson, Elizabeth Forrester McCord, Stephan J. McLain, Ying Wang
  • Publication number: 20100022727
    Abstract: A highly active supported chromium catalyst composition for ethylene and other olefins polymerization and also for ethylene copolymerization with efficient incorporation of comonomer, produces polymers with superior spherical morphology, improved bulk density and almost 0% fines. The catalyst composition component includes at least one chromium compound, mainly chromium acetylacetonate, or chromium hexaflouroacetonylacetonate, or chromium diethylmalonate. One magnesium compound, or aluminum compound, metal alkoxy compound and defined polymer particles mainly chloromethylated cross linked styrene-DVB copolymer or polyvinylchloride. The catalyst composition, when used in conjunction with an organoaluminum compound or a mixture of organoaluminum compounds, can be used for olefin polymerization to produce medium or high density polyethylene and copolymers of ethylene with alpha-olefins having about 3 to 18 carbon atoms.
    Type: Application
    Filed: July 23, 2008
    Publication date: January 28, 2010
    Inventor: Abdullah Saad N. Al-Arifi
  • Patent number: 7648941
    Abstract: The invention relates to a process for upgrading hydrocarbonaceous feedstreams by hydroprocessing using bulk bimetallic catalysts. More particularly, the invention relates to a catalytic hydrotreating process for the removal of sulfur and nitrogen from a hydrocarbon feed such as a fuel or a lubricating oil feed. The catalyst is a bulk catalyst comprising a Group VIII metal and a Group VIB metal.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: January 19, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart L. Soled, Sabato Miseo, Sonja Eijsbouts, Frans L. Plantenga
  • Publication number: 20100010179
    Abstract: A method for preparing a spray dried catalyst and a low viscosity, low foam spray dried catalyst system for olefin polymerization are provided. In one aspect, the method includes preparing a catalyst system including one or more components selected from metallocenes, non-metallocenes, and activators, adding mineral oil to the catalyst system to form a slurry, and adding one or more liquid alkanes having three or more carbon atoms to the slurry in an amount sufficient to reduce foaming and viscosity of the slurry. In one aspect, the catalyst system includes one or more catalysts selected from metallocenes, non-metallocenes, and a combination thereof, wherein the catalyst system is spray dried. The system further includes mineral oil to form a slurry including a catalyst system, and one or more liquid alkanes having three or more carbon atoms in an amount sufficient to reduce foaming and viscosity of the slurry.
    Type: Application
    Filed: June 25, 2009
    Publication date: January 14, 2010
    Applicant: Univation Technologies, LLC
    Inventors: Natarajan Muruganandam, Kersten A. Terry, Michael D. Awe, John H. Oskam
  • Publication number: 20100010180
    Abstract: The present invention discloses an active supported catalyst system comprising: a) one or more non-metallocene catalyst component; b) an alkylating agent; c) an activating functionalised and fluorinated support. It also discloses a method for preparing said active support and its use in the polymerisation of polar and non polar monomers.
    Type: Application
    Filed: July 26, 2006
    Publication date: January 14, 2010
    Applicants: TOTAL PETROCHEMICALS RESEARCH FELUY, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)
    Inventors: Floran Prades, Roger Spitz, Christophe Boisson, Sabine Sirol, Abbas Razavi
  • Publication number: 20100010174
    Abstract: The present invention provides polymerization catalyst compositions employing half-metallocene compounds with a heteroatom-containing ligand bound to the transition metal. Methods for making these hybrid metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Application
    Filed: July 14, 2008
    Publication date: January 14, 2010
    Applicant: Chevron Phillips Chemical Company, LP
    Inventors: Max P. McDaniel, Matthew G. Thorn, Elizabeth A. Benham
  • Publication number: 20100004411
    Abstract: The present invention discloses active oligomerisation or polymerisation catalyst systems based on imino-quinolinol complexes.
    Type: Application
    Filed: March 7, 2007
    Publication date: January 7, 2010
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Caroline L. Hillairet, Guilliaume Michaud, Sabine Sirol
  • Patent number: 7638456
    Abstract: A method comprising contacting a support with one or more chromium-containing compounds and one or more boria precursors to provide a catalyst precursor, and activating the catalyst precursor to provide a polymerization catalyst.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: December 29, 2009
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Max P. McDaniel, Kathy S. Collins
  • Patent number: 7635783
    Abstract: The present invention relates to a process for the meso-selective preparation of ansa-metallocene complexes of the formula (I), which comprises reacting a ligand starting compound of the formula (II) with a transition metal compound of the formula III, where R1, R1 are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms, R2, R2 are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms, R3 is a bulky organic radical which has at least 3 carbon atoms, is bound to the oxygen atom via a nonaromatic carbon or silicon atom and may be substituted by halogen atoms or further organic radicals having from 1 to 20 carbon atoms and may also contain heteroatoms selected from the group consisting of Si, N, P, O and S, T, T? are identical or different and are each a divalent organic group which has from 1 to 40 carbon atoms and together with the cyclopentadienyl ring forms at least one further saturated or unsaturated, substituted
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: December 22, 2009
    Assignee: Basell Polyolefine GmbH
    Inventors: Reynald Chevalier, Patrik Müller, Christian Sidot, Christian Tellier, Valerie Garcia, Ludovic Delancray
  • Publication number: 20090306318
    Abstract: Hafnium complexes of heterocyclic organic imidazol-2-yl ligands containing internal orthometallation and their use as components of olefin polymerization catalyst compositions, especially supported catalyst compositions, are disclosed.
    Type: Application
    Filed: April 26, 2007
    Publication date: December 10, 2009
    Inventors: Harold W. Boone, Joseph N. Coalter, III, Kevin A. Frazier, Carl N. Iverson, Ian M. Munro, Kevin P. Peil, Paul C. Vosejpka
  • Publication number: 20090306449
    Abstract: The present invention relates to a process for the preparation of linear low molecular weight alpha-olefins having 4 to 24 carbon atoms, comprising oligomerizing ethylene in an inert solvent in the presence of a catalyst system comprising: (i) zirconium carboxylate of the formula (R1COO)mZrCl4-m, wherein R1 is saturated or unsaturated aliphatic C1-C10 hydrocarbon or aromatic C6-C14 hydrocarbon and m fulfills 1?m?4, (ii) at least one aluminum compound selected from organoaluminum compounds of the formula R2nAlX3-n, wherein R2 is C1-C20 alkyl, X is chlorine, bromine or iodine, and n fulfills 1?n?2, and/or aluminoxanes, and (iii) at least two different additives selected from the group consisting of hydrogen, esters, ketones, ethers, amines, anhydrides, phosphines and sulfur compounds; as well as to a catalyst used therein.
    Type: Application
    Filed: August 10, 2006
    Publication date: December 10, 2009
    Inventors: Vugar O. Aliyev, Atieh Abu-Raqabah, Mohammad Zahoor
  • Patent number: 7622414
    Abstract: This invention provides compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein said composition comprises a post-contacted organometal compound, a post-contacted organoaluminum compound, and a post-contacted treated solid oxide compound. The post-contacted organometal compound includes metallocenes. The post-contacted treated solid oxide compound contains fluorine, boron, and a solid oxide compound.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: November 24, 2009
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Max P. McDaniel, Kathy S. Collins, Elizabeth A. Benham, Anthony P. Eaton, Michael D. Jensen, Joel L. Martin, Gil R. Hawley
  • Patent number: 7601666
    Abstract: A compound represented by the formula: where: M is a transition metal selected from group 4 of the periodic table; each R1 is independently selected from the group consisting of hydrogen, hydrocarbyl, substituted hydrocarbyl and functional group, and any two R1 groups may be linked, provided that if the two R1 groups are linked, then they do not form a butadiene group when M is Zr; R3 is carbon or silicon; R4 is hydrogen, hydrocarbyl, substituted hydrocarbyl or a functional group; R5 is hydrogen, hydrocarbyl, substituted hydrocarbyl or a functional group, R4 and R5 may be bound together to form a ring; R6 is carbon or silicon; each R7 is hydrogen; each R8 is independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, pentyl, hexyl and the isomers thereof; R10 is -M2(R16)h— where M2 is B, Al, N, P, Si or Ge, h is 1 or 2; each R9, R11, R13 and R14 and R16 is hydrogen, hydrocarbyl, substituted hydrocarbyl or a functional group, and two R16 groups may be linked together to f
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: October 13, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Francis C. Rix, Smita Kacker, Sudhin Datta, Rul Zhao, Vetkav R. Eswaran