Aluminum Compound Patents (Class 502/132)
  • Patent number: 11840588
    Abstract: The present disclosure relates to a linear low-density polyethylene copolymer and a preparation method thereof. The linear low-density polyethylene copolymer has a long-chain branching (LCB) distribution similar to that of general metallocene polyethylene (mPE) and has good mechanical properties such as processability and toughness. Thus, the linear low-density polyethylene copolymer is useful for molding into shrinkage films, agricultural films, etc.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: December 12, 2023
    Assignee: DL Chemical CO., LTD.
    Inventors: Hee Jun Lee, Byung Keel Sohn, Da Jung Kim, Sung Ho Choi, Su Hyun Park
  • Patent number: 10233271
    Abstract: The present invention relates to a process for producing polypropylene polymer composition by polymerizing propylene with a C4 to C8 a-olefin comonomer and with ethylene in a sequential polymerization process with at least two reactors connected in series in the presence of a solid Ziegler-Natta catalyst component being free of external carrier material and any phthalic compounds, and wherein the C4 to C8 a-olefin comonomer content in the propylene polymer composition is at least 4.5 wt-%.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: March 19, 2019
    Assignee: BOREALIS AG
    Inventors: Pauli Leskinen, Jingbo Wang, Johanna Lilja, Markus Gahleitner
  • Patent number: 9006127
    Abstract: The present invention relates to a support for silver catalyst used in the ethylene oxide production, a preparation method for the same, a silver catalyst prepared from the same, and its use in the ethylene oxide production. The silver catalyst produced from the silver catalyst support has an improved activity, stability and/or selectivity in the production of ethylene oxide by epoxidation of ethylene.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: April 14, 2015
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Jun Jiang, Jianshe Chen, Jinbing Li, Shuyun Li, Zhixiang Zhang, Wei Lin, Qian Xue
  • Patent number: 8999875
    Abstract: The invention refers to a process for preparing a supported catalyst system for the polymerization of olefins comprising at least one active catalyst component on a support, the process comprising A) impregnating a dry porous support component with a mixture comprising at least one precatalyst, at least one cocatalyst, and a first solvent, such that the total volume of the mixture is from 0.8 to 2.0 times the total pore volume of the support component, and B) thereafter, adding a second solvent in an amount of more than 1.5 times the total pore volume of the support component. The invention refers further to a catalyst system made by this process and the use of this catalyst system for polymerization or copolymerization of olefins.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: April 7, 2015
    Assignee: Basell Polyolefine GmbH
    Inventors: Fabiana Fantinel, Shahram Mihan, Rainer Karer, Volker Fraaije
  • Patent number: 8975209
    Abstract: Disclosed is a solid support-polymethylaluminoxane complex exhibiting a higher polymerization activity than a conventional substance and being homogeneous. Also disclosed is a method for producing an olefin-based polymer having a favorable quality using the complex and a transition metal compound. The complex comprises a coating layer containing polymethylaluminoxane and trimethylaluminum on the surface of a solid support. The coating layer comprises a solid polymethylaluminoxane composition in which (i) the content of aluminum is in a range of 36 to 41 mass % and (ii) the molar fraction of methyl groups derived from a trimethylaluminum moiety to the total number of moles of methyl groups is 12 mol % or less. Also disclosed is an olefin polymerization catalyst comprising the complex and a transition metal compound represented by general formula (III): MR5R6R7R8 as catalyst components, and a method for producing a polyolefin comprising polymerizing an olefin using the catalyst.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: March 10, 2015
    Assignee: Tosoh Finechem Corporation
    Inventors: Eiichi Kaji, Etsuo Yoshioka
  • Patent number: 8962510
    Abstract: The invention relates to catalyst compositions including at least one catalyst compound and at least one continuity additive such as poly-oxo-metal carboxylate compound and their use in the polymerization of olefins.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: February 24, 2015
    Assignee: Univation Technologies, LLC
    Inventors: Agapios K. Agapiou, Chi-I Kuo, David M. Glowczwski, Michael D. Awe, Ghanshyam H. Patel, Randy D. Ackerman
  • Patent number: 8940654
    Abstract: A catalyst component for the polymerization of olefins obtained by: (a) reacting in a inert hydrocarbon suspension medium a Mg(OR1)(OR2) compound, in which R1 and R2 are identical or different and are each an alkyl radical having 1 to 10 carbon atoms, with a tetravalent transition metal compound having at least a Metal-halogen bond, used in amounts such that the molar ratio metal/Mg is from 0.05 to 10, thereby obtaining a solid reaction product dispersed in a hydrocarbon slurry, (b) washing the solid reaction product dispersed in a hydrocarbon slurry with a liquid hydrocarbon, (c) contacting the washed solid reaction product obtained in (b) with a tetravalent titanium compound and (d) contacting the product obtained in (c) with an organometallic compound of a metal of group 1, 2 or 13 of the Periodic Table.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: January 27, 2015
    Assignee: Basell Polyolefine GmbH
    Inventors: Friedhelm Gundert, Martin Schneider
  • Patent number: 8835582
    Abstract: Catalyst systems and methods for making and using the same. The catalyst system can include a single site catalyst compound, a support comprising fluorinated alumina, and an aluminoxane. The aluminoxane can be present in an amount of about 10 mmol or less per gram of the support.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: September 16, 2014
    Assignee: Univation Technologies, LLC
    Inventors: Kevin J. Cann, C. Jeff Harlan, Wesley R. Mariott, Lixin Sun, Daniel P. Zilker, Jr., F. David Hussein, Phuong A. Cao, John H. Moorhouse, Mark G. Goode
  • Publication number: 20140221587
    Abstract: Pyridyldiamido transition metal complexes are disclosed for use in alkene polymerization to produce polyolefins.
    Type: Application
    Filed: January 20, 2014
    Publication date: August 7, 2014
    Inventors: John R. Hagadorn, Matthew S. Bedoya, Peijun Jiang
  • Patent number: 8765886
    Abstract: The invention generally relates to chain shuttling agents (CSAs), a process of preparing the CSAs, a composition comprising a CSA and a catalyst, a process of preparing the composition, a processes of preparing polyolefins, end functional polyolefins, and telechelic polyolefins with the composition, and the polyolefins, end functional polyolefins, and telechelic polyolefins prepared by the processes.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: July 1, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Thomas P. Clark, Nahrain E. Kamber, Sara B. Klamo, Phillip D. Hustad, David R. Wilson
  • Patent number: 8735312
    Abstract: The present invention relates to a catalyst composition and a process for preparing an olefin polymer using the same. More specifically, the present invention relates to a novel catalyst composition comprising at least two types of catalysts and a process for preparing an olefin polymer having excellent heat resistance using the same. The present invention can provide an olefin polymer having excellent activity and high heat resistance, and also can control the values of density, heat resistance and melt index (MI) of the olefin polymer.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: May 27, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Kyung-Seop Noh, Hoon Chae, Cheon-Il Park, Won-Hee Kim, Sang-Jin Jeon, Eun-Jung Lee, Choong-Hoon Lee, Jong-Joo Ha
  • Patent number: 8728970
    Abstract: A solid catalyst component comprising the product of a process comprising (a) reacting a magnesium alcoholate of formula Mg(OR1)(OR2) compound, in which R1 and R2 are identical or different and are each an alkyl radical having 1 to 10 carbon atoms, with titanium tetrachloride carried out in a hydrocarbon at a temperature of 50-100° C., (b) subjecting the reaction mixture obtained in (a) to a heat treatment at a temperature of 110° C. to 200° C. for a time ranging from 3 to 25 hours (c) isolating and washing with a hydrocarbon the solid obtained in (b), said solid catalyst component having a Cl/Ti molar ratio higher than 2.5.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: May 20, 2014
    Assignee: Basell Polyolefine GmbH
    Inventors: Friedhelm Gundert, Martin Schneider, Joachim Berthold, Bernd Lothar Marczinke
  • Patent number: 8716166
    Abstract: The invention generally relates to chain shuttling agents (CSAs), a process of preparing the CSAs, a composition comprising a CSA and a catalyst, a process of preparing the composition, a processes of preparing polyolefins, end functional polyolefins, and telechelic polyolefins with the composition, and the polyolefins, end functional polyolefins, and telechelic polyolefins prepared by the processes.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: May 6, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Thomas P. Clark, Nahrain E. Kamber, Sara B. Klamo, Phillip D. Hustad, David R. Wilson
  • Patent number: 8709967
    Abstract: A wire catalyst for hydrogenation reaction and/or dehydrogenation reaction comprises a metallic core and an oxide surface layer covering at least part of the surface thereof. The metallic core is electrically conductive so that the metallic core itself can generate heat by directly passing an electric current therethrough or electromagnetic induction. The oxide surface layer is made of an oxide of a metallic element constituting the metallic core. The oxide surface layer is provided with a porous structure having pores opening at the surface of the oxide surface layer. The catalytic material is supported in the pores of the oxide surface layer. When a shaped wire catalyst is manufactured, the shaping into a specific shape is made before the oxide surface layer having the porous structure is formed and the catalytic material is supported thereon.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: April 29, 2014
    Assignees: Nippon Seisen Co., Ltd.
    Inventors: Masaru Ichikawa, Yoshinori Tanimoto, Tsuneo Akiura
  • Patent number: 8703886
    Abstract: Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes use a catalyst system containing at least two activator-supports. One activator-support is a halided solid oxide, and the other activator-support is a sulfated solid oxide and/or phosphated solid oxide.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: April 22, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain, Kathy S. Collins
  • Patent number: 8691715
    Abstract: The present invention provides a polymerization process utilizing a dual ansa-metallocene catalyst system. Polymers produced from the polymerization process are also provided, and these polymers have a reverse comonomer distribution, a non-bimodal molecular weight distribution, a ratio of Mw/Mn from about 3 to about 8, and a ratio of Mz/Mw from about 3 to about 6.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: April 8, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, William B. Beaulieu, Joel L. Martin, Tony R. Crain
  • Patent number: 8680001
    Abstract: The present invention relates to a process for preparing a catalyst solid for olefin polymerization, comprising a finely divided support, an aluminoxane and a metallocene compound, which comprises: a) firstly combining the finely divided support with the aluminoxane and subsequently b) adding the reaction product of a metallocene compound with at least one organometallic compound to the modified support, catalyst solids obtainable by this process, catalyst systems comprising these catalyst solids, their use for the polymerization of olefins and a process for the polymerization of olefins.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: March 25, 2014
    Assignee: Basell Polyolefine GmbH
    Inventors: Heike Gregorius, Volker Fraaije, Manfred Lutringshauser
  • Patent number: 8664141
    Abstract: Provided is a silver-supported alumina catalyst for reducing nitrogen oxides using ethanol, which has the drawbacks of the conventional silver-supported alumina catalysts improved, has high performance, is not likely to deteriorate over time, and has excellent initial performance and durability. A catalyst for purifying nitrogen oxides, which purifies nitrogen oxides in exhaust gas using an alcohol as a reducing agent, and contains alumina, aluminum sulfate and silver as main components.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: March 4, 2014
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Masatoshi Fujisawa, Yasuyoshi Kato
  • Publication number: 20140038809
    Abstract: The present invention relates to a supported catalyst for the polymerization of olefins. More specifically, the present invention provides a catalyst comprising a spherical alumina support modified by the addition of a magnesium compound containing a magnesium alkoxide and the product of the reaction of it with a titanium halide. The present invention also relates to the method for preparing said supported catalyst.
    Type: Application
    Filed: December 22, 2011
    Publication date: February 6, 2014
    Applicant: PETROLEO BRASILEIRO S.A. - PETROBRAS
    Inventors: Luciana Bortolin Ramis, Fernando Reis Da Cunha, Rafael Silva Dias, Natalia Dantas Do Vale Batista
  • Patent number: 8618017
    Abstract: A catalyst for hydrotreating and/or hydroconverting heavy metal-containing hydrocarbon feeds, comprises a support in the form of mainly irregular and non-spherical alumina-based agglomerates the specific shape. The catalyst is prepared by a specific order of steps: crushing, calcining, acidic autoclaving, drying, further calcining and impregnation with catalytic metals.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: December 31, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Stephane Kressmann, Magalie Roy-Auberger, Jean Luc Le Loarer, Denis Guillaume, Jean Francois Chapat
  • Patent number: 8592536
    Abstract: The invention refers to a process for preparing a Group 2 metal/transition metal olefin polymerization catalyst component in particulate form having improved polymerization properties due to the use of H2 during catalyst component preparation and the use of such catalyst components in a process for polymerizing olefins.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: November 26, 2013
    Assignee: Borealis AG
    Inventors: Timo Leinonen, Peter Denifl, Anssi Haikarainen
  • Patent number: 8563677
    Abstract: A stable catalyst solution suitable for catalyzing the polycondensation of reactants to make polyester polymers comprising: (i) M, wherein M is represented by an alkaline earth metal or alkali metal and (ii) aluminum metal and (iii) a polyhydroxyl solvent having at least 3 carbon atoms and at least two primary hydroxyl groups, the longest carbon chain being a hydrocarbon; such as 1,3-propane diol, 1,4-butane diol, 1,5-pentane diol, or combinations thereof, wherein the molar ratio of M:Al ranges from 0.75:1 to less than 1.5:1. The catalyst solution is desirably a solution which does not precipitate upon standing over a period of at least one week at room temperature (25° C.-40° C.), even at molar ratios of M:Al approaching 1:1. There is also provided a method for the manufacture of the solution, its feed to and use in the manufacture of a polyester polymer, and polyester polymers obtained by combining certain ingredients or containing the residues of these ingredients in the composition.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: October 22, 2013
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventor: Jason Christopher Jenkins
  • Patent number: 8557920
    Abstract: The present invention relates to a polymer composition, comprising (i) a polypropylene homopolymer, (ii) a polypropylene random copolymer, prepared by copolymerization of propylene with an olefin comonomer and having an amount of olefin comonomer units of 0.2 to 5 wt %, and (iii) an elastomeric copolymer of propylene and at least one olefin comonomer, the polymer composition having a tensile modulus, determined according to ISO 527-2/1 B at 1 mm/min. and 230 C, of at least 1200 MPa.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: October 15, 2013
    Assignee: Borealis Technology Oy
    Inventors: Kauno Alastalo, Carl-Gustaf Ek, Bo Malm, Ulf Torgersen, Olli Tuominen
  • Patent number: 8546289
    Abstract: A solid catalyst component for olefin polymerization in which the molar ratio of residual alkoxy groups to supported titanium is 0.60 or less is obtained by reacting the following compound (a1) with the following compound (b1) at a hydroxyl group/magnesium molar ratio of 1.0 or more, reacting the reaction mixture with the following compound (c1) at a halogen/magnesium molar ratio of 0.20 or more, reacting the resultant reaction mixture with the following compounds (d1) and (e) at a temperature of 120° C. or higher but 150° C.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: October 1, 2013
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Shojiro Tanase, Takanori Sadashima
  • Patent number: 8524626
    Abstract: The present invention provides polymerization catalyst compositions employing novel dinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: September 3, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin
  • Patent number: 8501653
    Abstract: Catalyst systems, processes of forming the same and polymers formed therefrom are described herein.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: August 6, 2013
    Assignee: Fina Technology, Inc.
    Inventors: Lei Zhang, David Knoeppel
  • Patent number: 8461280
    Abstract: A multimodal linear low density polyethylene polymer having a final density of 900 to 940 kg/m3, and containing at least one ?-olefin comonomer in addition to ethylene comprising: (A) 30 to 60 wt % of a lower molecular weight component being an ethylene homopolymer or a copolymer of ethylene and at least one ?-olefin; and (B) 70 to 40 wt % of a higher molecular weight component being a copolymer of ethylene and at least one ?-olefin, said ?-olefin being the same or different from any ?-olefin used in component (A) but with the proviso that both components (A) and (B) are not polymers of ethylene and butane alone; wherein the multimodal LLDPE has a dart drop of at least 700 g; and wherein components (A) and (B) are obtainable using a Ziegler-Natta catalyst.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: June 11, 2013
    Assignee: Borealis Technology Oy
    Inventors: Virginie Eriksson, Marjo Vaananen, Markku Vahteri, Thomas Garoff, Petri Rekonen, Jari Hatonen, Siw Bodil Fredriksen, Katrin Nord-Varhaug, Marit Seim, Jorunn Nilsen, Irene Helland
  • Patent number: 8420733
    Abstract: A continuity additive according to one general approach includes a substance having an ability to reduce, prevent, or mitigate at least one of fouling, sheeting, and static level of a material present in a polymerization reactor system when added to the reactor system in an effective amount, with the proviso that the substance is not a polysulfone polymer, a polymeric polyamine, or an oil-soluble sulfonic acid; and a scavenger contacted with the substance, optionally, the scavenger neutralizing water coming in contact therewith. Additional continuity additives, methods of making continuity additives, and use of continuity additives are also presented.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: April 16, 2013
    Assignee: Univation Technologies, LLC
    Inventors: F. Gregory Stakem, Agapios K. Agapiou, F. David Hussein
  • Patent number: 8404612
    Abstract: Catalyst compositions for the polymerization of olefins having improved flowability properties are provided.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: March 26, 2013
    Assignee: Univation Technologies, LLC
    Inventors: Agapios K. Agapiou, Jeevan S. Abichandani
  • Patent number: 8399375
    Abstract: The invention relates to a supported metallocene catalyst composition and a process for the preparation of polyolefin using the same. A supported metallocene catalyst composition according to the invention is prepared by bringing a compound of a group IV transition metal into contact with an inorganic or organic porous carrier treated with an ionic compound. Advantages of a supported metallocene catalyst composition of the invention include an increase in the catalyst activity during polymerization of slurry and an olefin compound in the vapor phase even at a low content of metallocene metal components within the carrier, and an improvement in solving process problems such as fouling, sheeting, plugging or the like.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: March 19, 2013
    Assignees: SK Global Chemical Co., Ltd., SK Innovation Co., Ltd.
    Inventors: Seungyeol Han, Myungahn Ok, Young-Soo Ko, Chang-il Lee
  • Patent number: 8383542
    Abstract: A composition comprising a polymerization modifier for the copolymerization of at least one olefin monomer and 1-octene and a polymerization process using the polymerization modifier.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: February 26, 2013
    Assignee: Dow Global Technologies, LLC
    Inventors: Daryoosh Beigzadeh, Richard E. Campbell, Jr., David D. Devore, Duane R. Romer, James C. Stevens, Francis J. Timmers, Hendrik E. Tuinstra, Paul C. Vosejpka
  • Publication number: 20130035463
    Abstract: Catalyst systems and methods for making and using the same. The catalyst system can include a single site catalyst compound, a support comprising fluorinated alumina, and an aluminoxane. The aluminoxane can be present in an amount of about 10 mmol or less per gram of the support.
    Type: Application
    Filed: February 18, 2011
    Publication date: February 7, 2013
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Kevin J. Cann, C. Jeff Harlan, Wesley R. Mariott, Lixin Sun, Daniel P. Zilker, JR., F. David Hussein, Phuong A. Cao, John H. Moorhouse, Mark G. Goode
  • Patent number: 8354485
    Abstract: Compositions useful for activating catalysts for olefin polymerization, and methods for making same, are provided. Such compositions can be derived from at least: an organoaluminum compound, a carrier, an oxygen source, and, optionally, a Lewis base.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: January 15, 2013
    Assignee: Albemarle Corporation
    Inventors: Lubin Luo, Samuel A. Sangokoya, Xiao Wu, Steven P. Diefenbach, Brian Kneale
  • Patent number: 8343886
    Abstract: A composition comprising a polymerization modifier for the copolymerization of at least one olefin monomer and propylene and a polymerization process using the polymerization modifier.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: January 1, 2013
    Assignee: Dow Global Technologies, LLC
    Inventors: Daryoosh Beigzadeh, Richard E. Campbell, Jr., David D. Devore, Duane R. Romer, James C. Stevens, Francis J. Timmers, Hendrik E. Tuinstra, Paul C. Vosejpka
  • Patent number: 8324126
    Abstract: The present invention relates a process for the preparation of catalytic support and the supported metallocene catalysts used in the production of ethylene homopolymers and ethylene copolymers with ?-olefins, of high and ultra high molecular weight with broad molecular weight distribution, in gas or liquid phase polymerization processes, the latter being in slurry, bulk or suspension, and the products obtained from these processes.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: December 4, 2012
    Assignee: Braskem S.A.
    Inventors: Marcia Silva Lacerda Miranda, Fernanda Oliveira Vieira da Cunha
  • Patent number: 8298977
    Abstract: The present invention discloses a catalyst system consisting of a mono- or di-fluorinated metallocene catalyst component of formula and a fluorinated activating support.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: October 30, 2012
    Assignee: Total Petrochemicals Research Feluy
    Inventor: Floran Prades
  • Patent number: 8293857
    Abstract: Process for polymerization of ethylene using a catalyst system including (i) a solid catalyst of Ti, Mg and halogen, (ii) a first activator which is at least one trialkylaluminium compound of the formula AlR3, where each R is independently a C2 to C20 alkyl radical, and (iii) a second activator which is at least one alkylaluminium chloride of the formula AlR?2Cl, where each R? is independently a C2 to C20 alkyl radical. The second activator is introduced directly into the polymerization reactor, without precontact with the solid catalyst, continuously or semi-continuously, and at a maximum rate of introduction at any time corresponding to less than 10 ppm by weight of chlorine relative to the rate of polyethylene production.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: October 23, 2012
    Assignee: Ineos Europe Limited
    Inventors: Alain Berardi, Andre Frederich, Dominique Jan, Jean-Jacques Kuhlburger, Anthony Sgard, Alain Van Daele
  • Patent number: 8293862
    Abstract: The present invention provides processes for producing polyester. In one of the embodiments, the invention provides a process for producing polyester, comprising adding a catalyst in a polycondensation reaction, esterification reaction or transesterification reaction between components comprising at least a polyfunctional alcohol and at least a polyfunctional carboxylic acid or ester-forming derivative of a polyfunctional carboxylic acid to produce the polyester; and obtaining the polyester, wherein the polymerization catalyst comprises an aluminum substance and a phosphorus compound, wherein the aluminum substance is selected from the group consisting of aluminum hydroxide and aluminum alkoxides, and wherein the phosphorus compound has an aromatic ring structure.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: October 23, 2012
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Takahiro Nakajima, Ken-ichi Tsukamoto, Shoichi Gyobu, Mitsuyoshi Kuwata
  • Patent number: 8293672
    Abstract: A solid catalyst component for olefin polymerization in which the molar ratio of residual alkoxy groups to supported titanium is 0.60 or less is obtained by reacting the following compound (a1) with the following compound (b1) at a hydroxyl group/magnesium molar ratio of 1.0 or more, reacting the reaction mixture with the following compound (c1) at a halogen/magnesium molar ratio of 0.20 or more, reacting the resultant reaction mixture with the following compounds (d1) and (e) at a temperature of 120° C. or higher but 150° C.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: October 23, 2012
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Shojiro Tanase, Takanori Sadashima
  • Patent number: 8273677
    Abstract: A production process of a pre-polymerized catalyst component, comprising steps of (i) contacting a transition metal compound defined by formula [1], an activation agent, an organometallic compound defined by formula [2], and an optional organoaluminum compound with one another, thereby forming a primary polymerization catalyst, and (ii) pre-polymerizing an olefin in the presence of the primary polymerization catalyst; and a process for producing an addition polymer, comprising a step of polymerizing an addition polymerizable monomer in the presence of a pre-polymerized catalyst component produced by the above production process, or in the presence of the pre-polymerized catalyst component and an organoaluminum compound.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: September 25, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Takuya Ogane
  • Publication number: 20120232235
    Abstract: The present invention discloses catalyst compositions employing transition metal complexes with a thiolate ligand. Methods for making these transition metal complexes and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.
    Type: Application
    Filed: March 8, 2011
    Publication date: September 13, 2012
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventor: Mark L. Hlavinka
  • Patent number: 8258247
    Abstract: The object is to provide a catalyst component for ethylene polymerization which can produce an ethylene polymer of high molecular weight which has substantially only an ethyl branch, and a process for producing the catalyst component for ethylene polymerization which can produce an ethylene polymer of high molecular weight which has substantially only an ethyl branch. A catalyst component for polymerization of ethylene obtained by contacting the following components (A), (B), (C) and (D): component (A): a meso-metallocene compound, component (B): a compound which ionizes a metallocene compound to form an ionic complex, component (C): an organoaluminum compound, and component (D): an electron donating compound, and a process for producing the ethylene polymer by polymerizing ethylene in the presence of the above catalyst component for ethylene polymerization.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: September 4, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Yasutoyo Kawashima
  • Patent number: 8247588
    Abstract: Catalyst compositions for the polymerization of olefins having improved flowability properties are provided.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: August 21, 2012
    Assignee: Univation Technologies, LLC
    Inventors: Agapios K. Agapiou, Jeevan S. Abichandani
  • Publication number: 20120190803
    Abstract: The present invention provides polymerization catalyst compositions employing half-metallocene compounds with a heteroatom-containing ligand bound to the transition metal. Methods for making these hybrid metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.
    Type: Application
    Filed: January 25, 2011
    Publication date: July 26, 2012
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Errun Ding, Joel L. Martin, Albert P. Masino, Qing Yang, Youlu Yu
  • Patent number: 8173569
    Abstract: A Ziegler-Natta procatalyst composition in the form of solid particles and comprising magnesium, halide and transition metal moieties, said particles having an average size (D50) of from 10 to 70 ?m, characterized in that at least 5 percent of the particles have internal void volume substantially or fully enclosed by a monolithic surface layer (shell), said layer being characterized by an average shell thickness/particle size ratio (Thickness Ratio) determined by SEM techniques for particles having particle size greater than 30 ?m of greater than 0.2.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: May 8, 2012
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Robert J. Jorgensen, Michael A. Kinnan, Michael D. Turner, Stephanie M. Whited, Laszlo L. Ban, Burkhard E. Wagner
  • Patent number: 8143184
    Abstract: The invention is directed to a process for producing an olefin polymerization catalyst wherein a solution of a soluble magnesium complex containing an element of is Group 13 or 14 of the Periodic Table (IUPAC) is contacted with a halogen containing transition metal compound of Group 3 to 10 of the Periodic Table (IUPAC) to obtain a solid catalyst complex comprising as essential components Mg, said element of is Group 13 or 14 of the Periodic Table (IUPAC) and said transition metal compound.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: March 27, 2012
    Assignee: Borealis Technology Oy
    Inventors: Thomas Garoff, Päivi Waldvogel
  • Publication number: 20120035047
    Abstract: The present invention relates to a process for obtaining a catalyst of high activity based on a mixture of supports, more specifically, the mixture of supports being Al2O3 plus MgCl2, intended for the production of polyolefins. The catalyst of the present invention involves the use of a spherical support based on special alumina that serves as a porous matrix, which is impregnated, by precipitation, with magnesium chloride by dissolving the latter in ethers and/or alcohols.
    Type: Application
    Filed: March 10, 2010
    Publication date: February 9, 2012
    Applicant: PETROLEO BRASILEIRO S.A. - PETROBRAS
    Inventors: Noemi Tatizawa, Jaime Correia Da Silva, Danielle De Carvalho Pinto Freitas, Katia Simone Zanco Palma, Richard Faraco Amorim, Leandro Dos Santos Silveira
  • Publication number: 20110319575
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.
    Type: Application
    Filed: September 8, 2011
    Publication date: December 29, 2011
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Elizabeth A. Benham, Randy L. Muninger, Gary Jerdee, Ashish M. Sukhadia, Qing Yáng, Matthew G. Thorn
  • Patent number: 8071499
    Abstract: A catalyst component comprising Ti, Mg, Al, Cl, and optionally ORI groups in which RI is a C1-C20 hydrocarbon group, optionally containing heteroatoms, up to an amount such as to give a molar ORI/Ti ratio lower than 0.5, characterized by the fact that substantially all the titanium atoms are in valence state of 4, that the porosity (PF), measured by the mercury method and due to pores with radius equal to or lower than 1 ?m, is at least 0.3 cm3/g, and by the fact that the Cl/Ti molar ratio is lower than 29. The said catalysts are characterized by high morphological stability under the low molecular weight ethylene polymerization conditions while at the same time maintaining characteristics of high activity.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: December 6, 2011
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Giampiero Morini, Tiziano Dall'Occo, Dario Liguori, Joachim T. M. Pater, Gianni Vitale
  • Patent number: 8044155
    Abstract: A catalyst system obtainable by the process comprising the steps of contacting an adduct of formula (I) MgT2.yAlQj(OR?)3-j??(I) wherein T is chlorine, bromine, or iodine; R? is a linear or branched C1-C10 alkyl radical; y ranges from 1.00 to 0.05; and j ranges from 0.01 to 3.00; with at least one metallocene compound having titanium as central metal and at least one ligand having a cyclopentadienyl skeleton.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: October 25, 2011
    Assignee: Stichting Dutch Polymer Institute
    Inventors: John Richard Severn, John Clement Chadwick