Aluminum Compound Patents (Class 502/132)
  • Patent number: 6620757
    Abstract: The present invention relates to mixed catalyst system of a Group 15 containing metal catalyst compound, a bulky ligand metallocene-type catalyst compound, and a Lewis acid aluminum containing activator and to a supported version thereof and for their use in a process for polymerizing olefin(s).
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: September 16, 2003
    Assignee: Univation Technologies, LLC
    Inventors: David H. McConville, Matthew W. Holtcamp, Donald R. Loveday
  • Patent number: 6617277
    Abstract: A catalyst composition has a catalyst component which includes a metallocene transition metal compound, a magnesium compound, a hydroxyl containing compound, and a polymeric material. The catalyst component may also include asilicon compound and an aluminum compound. The catalyst component is combined with a cocatalyst and used in olefin polymerization.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: September 9, 2003
    Assignee: Saudi Basic Industries Corporation
    Inventors: Orass Hamed, Akhlaq Moman, Atieh Abu-Raqabah
  • Patent number: 6617405
    Abstract: A process of polymerizing ethylene or ethylene and one or more comonomers in one or more fluidized bed reactors with a catalyst system comprising (i) a supported or unsupported magnesium/titanium based precursor in slurry form, said precursor containing an electron donor; and (ii) an activator containing aluminum in an amount sufficient to essentially complete the activation of the precursor is disclosed. In the process, the precursor and the activator are mixed prior to introduction into the reactor in at least one mixing procedure, and then the mixture is contacted again with additional activator to essentially complete activation of the precursor. In the method, the atomic ratio of aluminum to titanium is in the range of about 1:1 to about 15:1 and the mole ratio of activator to electron donor is about 1:1 to about 2:1, and no additional activator is introduced into the reactor(s).
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: September 9, 2003
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventor: Robert James Jorgensen
  • Patent number: 6613852
    Abstract: This invention provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises a post-contacted organometal compound, a post-contacted organoaluminum compound, and a post-contacted fluorided silica-alumina.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: September 2, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Kathy S. Collins, Anthony P. Eaton, Elizabeth A. Benham, Michael D. Jensen, Joel L. Martin, Gil R. Hawley
  • Patent number: 6608153
    Abstract: The present invention relates to a catalyst composition and a method for making the catalyst composition of a polymerization catalyst and a carboxylate metal salt. The invention is also directed to the use of the catalyst composition in the polymerization of olefin(s). In particular, the polymerization catalyst system is supported on a carrier. More particularly, the polymerization catalyst comprises a bulky ligand metallocene-type catalyst system.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: August 19, 2003
    Assignee: Univation Technologies, LLC
    Inventors: Agapios Kyriacos Agapiou, Chi-I Kuo, David Michael Glowczwski, Steven Kent Ackerman
  • Publication number: 20030130551
    Abstract: A catalytic composition for oligomerizing ethylene, in particular to 1-hexene, is obtained by mixing at least one chromium carboxylate characterized in that it also contains a free carboxylic acid in a set proportion, with at least one aryloxy compound of an element M selected from the group formed by magnesium, calcium, strontium and barium, with general formula M(RO)2-nXn in which RO is an aryloxy radical containing 6 to 80 carbon atoms, X is a halogen atom or a hydrocarbyl radical containing 1 to 30 carbon atoms and n is a whole number that can take the values 0 or 1, and with at least one hydrocarbylaluminum compound selected from the group formed by tris(hydrocarbyl)-aluminum compounds, chlorinated or brominated hydrocarbylaluminum compounds and aluminoxanes.
    Type: Application
    Filed: December 4, 2002
    Publication date: July 10, 2003
    Applicant: Institut Francais du Petrole
    Inventors: Sebastien Drochon, Severine Guibert, Lucien Saussine
  • Patent number: 6569964
    Abstract: The invention relates to an improved olefin catalyst, a method of in situ-activated catalyst preparation and a process for the polymerization of olefinic monomers via, for example, a titanium trichloride/magnesium dichloride/tetrahydrofuran reaction product catalyst precursor. The activated catalyst is prepared in situ in a polymerization reactor using an alumoxane based co-catalyst wherein the cumbersome traditional steps of catalyst activation and isolation, prior to polymerization are eliminated. An unexpected advantage of this invention is a significant increase in catalyst productivity while maintaining a relatively constant value of the bulk density of polymeric materials produced while concomitantly producing a polymeric product having a broad molecular weight distribution compared with typical alumoxane-activated metallocene catalysts.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: May 27, 2003
    Assignee: Saudi Basic Industries Corporation
    Inventors: Atieh Abu-Raqabah, Abdul Wahab Al-Sádoun, Navin Nallaveerapan
  • Patent number: 6566294
    Abstract: The present invention provides a catalyst system and methods for polymerizing homopolymers or copolymers of olefins, preferably polypropylene and copolymers of polypropylene. The catalyst system includes a Ziegler-Natta or Ziegler-Natta-type catalysts in combination with a mixture of silane electron donors, preferably at least two electron donors, even more preferably three electron donors, selected from tetraethoxysilane, methylcyclohexyldimethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, dicyclopentyldimethoxysilane and mixtures thereof. The preferred silane electron donor is methylcyclohexyldimethoxysilane.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: May 20, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Nemesio D. Miro
  • Publication number: 20030092563
    Abstract: A supported catalyst for olefin polymerization comprises a combination of a novel metal oxide support and an activator which is an aluminoxane or a boron activator. The novel metal oxide support of this invention is a conventional particulate metal oxide support material (such as silica or alumina) which has been treated with a halosulfonic acid. A catalyst system which contains this novel catalyst support and a transition metal catalyst is highly active for olefin polymerization (in comparison to prior art catalyst systems which use a conventional metal oxide support).
    Type: Application
    Filed: February 7, 2002
    Publication date: May 15, 2003
    Applicant: NOVA Chemicals (International) S.A.
    Inventors: Xiaoliang Gao, P. Scott Chisholm, Matthew Gerald Kowalchuk, Robert D. Donaldson
  • Patent number: 6562918
    Abstract: A catalyst for olefin polymerization, which is obtained by contacting (A) a compound of a transition metal of Groups 4 to 6 of the Periodic Table, (B) an organoaluminiumoxy compound, and optionally (C) a carrier with each other, and for which they are exposed to elastic waves at least in any step of contacting them with each other. Preferably, the elastic waves are ultrasonic waves falling between 1 and 1000 kHz. Provided are high-activity metallocene catalysts for olefin polymerization. As having high polymerization activity, they are favorable to vapor-phase or slurry polymerization for producing olefinic polymers.
    Type: Grant
    Filed: October 4, 2000
    Date of Patent: May 13, 2003
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Yutaka Minami, Masami Kanamaru
  • Patent number: 6562916
    Abstract: The present invention provides a novel process for the preparation of isoolefin copolymers in the presence of zirconium halides or hafnium halides or mixtures thereof and organic nitro compounds, especially for the preparation of butyl rubbers, as well as isoolefin copolymers composed of isobutene, isoprene and, optionally, further monomers.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: May 13, 2003
    Assignee: Bayer Aktiengesellschaft
    Inventors: Gerhard Langstein, Martin Bohnenpoll
  • Patent number: 6559090
    Abstract: The present invention is directed to a coordinating catalyst system comprising at least one metallocene or constrained geometry pre-catalyst transition metal compound, (e.g., di-(n-butylcyclopentadienyl)zirconium dichloride), at least one support-activator (e.g., spray dried silica/clay agglomerate), and optionally at least one organometallic compound (e.g., triisobutyl aluminum), in controlled amounts, and methods for preparing the same. The resulting catalyst system exhibits enhanced activity for polymerizing olefins and yields polymer having very good morphology. The support-activator is a layered material having a negative charge on its interlaminar surfaces and is sufficiently Lewis acidic to activate the transition metal compound for olefin polymerization.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: May 6, 2003
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Keng-Yu Shih, Dean Alexander Denton, Michael John Carney
  • Patent number: 6559252
    Abstract: Catalysts for the polymerization of olefins are disclosed, which comprise the product obtained by contacting: (A) a bridged and/or substituted cyclopentadienyl compound of titanium, zirconium or hafnium; (B) an organometallic aluminium compound of the formula: Al(CH2—CR4R5—CR6R7R8)wR9qHz wherein R4 is a C1-C10 alkyl, alkenyl, or arylalkyl group; R5 is hydrogen or a C1-C10 alkyl, alkenyl, or arylalkyl group; R6 and R7 are C1-C10 alkyl, alkenyl, aryl, arylalkyl or alkylaryl groups; R8 is hydrogen or a C1-C10 alkyl, alkenyl, aryl, arylalkyl or alkylaryl group; R9 is a C1-C10 alkyl, alkenyl, or arylalkyl group, a carbon atom in the compound of formula (II) being optionally replaced by a Si or Ge atom; w is 1-3, z is 0 or 1, q=3−w−z, and (C) water; the molar ratio (B)/(C) being comprised between 1:1 and 100:1. These catalysts show an improved activity with respect to known catalysts, wherein different aluminium compounds are used.
    Type: Grant
    Filed: June 29, 1999
    Date of Patent: May 6, 2003
    Assignee: Basell Technology Company BV
    Inventors: Andrew D. Horton, Jan F. van Baar, Peter A. Schut, Gerard M. M. van Kessel, Klaas L. von Hebel
  • Patent number: 6559249
    Abstract: The present invention provides a catalyst for producing an ultra high molecular weight polyethylene and also a method for preparation of an ultra high molecular weight polyethylene with the use of said catalyst. The catalyst of the present invention is prepared by a process comprising: (i) producing a magnesium compound solution by contact-reacting a magnesium compound and an aluminum or boron compound with alcohol; (ii) contact-reacting the said solution with an ester compound containing at least one hydroxy group and a silicon compound containing an alkoxy group; and (iii) producing of a solid titanium catalyst by adding a mixture of a titanium compound and a silicon compound thereto. The catalyst prepared by the present invention has excellent catalytic activity, and it helps to produce an ultra-high molecular weight polyethylene with large bulk density and narrow particle distribution without too large and minute particles.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: May 6, 2003
    Assignee: Samsung General Chemicals Co. Ltd.
    Inventors: Chun-Byoung Yang, Ho-Sik Chang, Weon Lee
  • Patent number: 6548441
    Abstract: This invention provides a catalyst composition for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises an organometal compound, an organoaluminum compound, and a treated solid oxide compound comprising nickel, a halogen, and a solid oxide compound.
    Type: Grant
    Filed: October 27, 1999
    Date of Patent: April 15, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Kathy S. Collins, Anthony P. Eaton, Elizabeth A. Benham, Michael D. Jensen, Joel L. Martin, Gil R. Hawley
  • Patent number: 6544920
    Abstract: Solid catalyst component for the polymerization of olefins, includes the product of the direct reaction, with no subsequent reactions with reducing organometallic compounds, between a titanium compound and a support obtained by contacting a metal oxide containing hydroxyl groups with a solution containing A) a magnesium chloride; B) from 1 to 6 moles of an alcohol per mole of magnesium chloride, in a halogenated hydrocarbon or aromatic hydrocarbon organic solvent C) capable of bringing the magnesium chloride in solution in quantities greater than or equal to 5 grams per liter in the presence of the above-mentioned quantities of alcohol B), the solvent not being able to form adducts with the magnesium chloride.
    Type: Grant
    Filed: November 3, 1997
    Date of Patent: April 8, 2003
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Gianni Pennini, Arrigo Arletti, Giampiero Morini
  • Publication number: 20030054947
    Abstract: Disclosed are polymerization catalyst activator compositions which include a carbonium cation and an aluminum containing anion. These activator compositions are prepared by combining a carbonium or trityl source and with an aluminum containing complex, preferably a perfluorophenylaluminum compound. Also disclosed are polymerization catalyst systems including the activator composition of the invention, and processes for polymerizing olefins utilizing same.
    Type: Application
    Filed: October 8, 2002
    Publication date: March 20, 2003
    Inventor: Matthew W. Holtcamp
  • Patent number: 6534607
    Abstract: Catalysts for the polymerization of olefins comprise the product of the reaction between: (A) a titanium, zirconium or hafnium product with substituted cyclopentadiene ligands, (B) a mixture of two organometallic aluminium compounds, with at least one of the groups bound to the aluminium being other than a linear alkyl, and (C) water. When used in the polymerization of olefins, these catalysts show higher activities, at short residence times, than corresponding catalysts obtained from the individual components of the above-mentioned mixtures of aluminium compounds.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: March 18, 2003
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventor: Maurizio Galimberti
  • Patent number: 6534606
    Abstract: Described are catalyst systems having aluminium alkyl complexes of the formula (I) described herein applied to magnesium chloride, SiO2 or SiO2 in combination with MgCl2 as support in the presence of titanium halides or vanadium halides and internal and, if desired, external donors act both as cocatalysts and as stereoselectivity promoters in heterogeneous polymerizations of &agr;-olefins. Also described are polymerization methods using these catalyst systems.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: March 18, 2003
    Assignee: Merck Patent Gesellschaft Mit Beschränkter Haftung
    Inventors: Katrin Köhler, Eike Poetsch, Herbert Schumann, Sebastian Dechert, Walter Kaminsky, Andre Laban, Manfred Arnold, Jana Knorr, Birgit Corinna Wassermann
  • Patent number: 6531551
    Abstract: A polypropylene composition comprising 0.001 to 10 parts by weight of a polyethylene having an intrinsic viscosity [&eegr;E] of 0.01 to less than 15 dl/g s measured in tetralin at 135° C. and 100 parts by weight of a polyolefin comprising at least polypropylene, wherein the polyethylene is finely dispersed as particles with a number average particle diameter of, e.g., 1 to 5000 nm in the polyolefin comprising at least polypropylene. By virtue of the above constitution, the polypropylene composition has excellent transparency and rigidity, is free from the creation of a sweeper roll flow mark in the preparation of a film and substantially free from a neck-in phenomenon of a film, and has high productivity.
    Type: Grant
    Filed: January 11, 1999
    Date of Patent: March 11, 2003
    Assignee: Chisso Corporation
    Inventors: Katsuhiko Ohno, Masami Kimura, Taketo Hirose, Yoshitaka Morimoto, Jun Saito
  • Patent number: 6528448
    Abstract: A process to produce a first catalyst composition is provided. The process comprises contacting at least one first organometal compound, oxygen bridged mono-cyclopentadienyl transition metal dimer, and at least one activator to produce the first catalyst composition. The activator is selected from the group consisting of aluminoxanes, fluoro-organo borates, and treated solid oxide components in combination with at least one organoaluminum compound. In another embodiment of this invention, a process to produce a second catalyst composition for producing bimodal polymers is provided. The process comprises contacting at least one first organometal compound, at least one activator, and at least one second organometal compound to produce the second catalyst composition. The first and second catalyst compositions are also provided as well as polymerization processes using these compositions to produce polymers.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: March 4, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Michael D. Jensen, Max P. McDaniel, Elizabeth A. Benham, Anthony P. Eaton, Joel L. Martin, Gil R. Hawley, Tony R. Crain, Martha J. Tanner
  • Patent number: 6524986
    Abstract: Catalyst support containing an &agr;-olefin polymer which is in the form of particles of mean size from 5 to 350 &mgr;m in which the pore volume generated by the pores of radius from 1,000 to 75,000 Å is at least 0.2 cm3/g. Catalyst usable for the polymerization of &agr;-olefins, including a compound containing at least one transition metal belonging to groups IIIb, IVb, IVb and VIb of the Periodic Table, bound in or on this support.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: February 25, 2003
    Assignee: Solvay Polyolefins Europe-Belgium
    Inventors: Jean-Louis Costa, Vincent Laurent, Philippe Francois, Dirk Vercammen
  • Patent number: 6511935
    Abstract: A method of halogenating a precursor to form a polymerization procatalyst is disclosed whereby a magnesium/transition metal-containing alkoxide complex precursor is contacted with a halogenating agent selected from alkylaluminum halide, TiX4, SiX4, BX3, and Br2, where halide and X are reach respectively a halogen, and when an alkylaluminum halide, TiX4, SiX4, BX3, and Br2 are used as the halogenating agent, they are used together or in combination in a multi-step halogenation. The procatalyst then can be converted to an olefin polymerization catalyst by contacting it with a cocatalyst and optionally a selectivity control agent, and used to polymerize olefins in high yield with desired properties.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: January 28, 2003
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventor: Robert Charles Job
  • Patent number: 6500907
    Abstract: Catalyst system suitable for polymerizing unsaturated monomers and comprising active constituents obtainable by reacting A) a transition metal compound with B) aluminum trifluoride, C) a cation-forming compound and, if desired, D) further components.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: December 31, 2002
    Assignee: Basell Polyolefine GmbH
    Inventors: Carsten Süling, Marc Oliver Kristen, Günther Schweier, Andrei Gonioukh, Gerhard Hauck
  • Patent number: 6495484
    Abstract: Disclosed are polymerization catalyst activator compositions which include a carbonium cation and an aluminum containing anion. These activator compositions are prepared by combining a carbonium or trityl source and with an aluminum containing complex, preferably a perfluorophenylaluminum compound. Also disclosed are polymerization catalyst systems including the activator composition of the invention, and processes for polymerizing olefins utilizing same.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: December 17, 2002
    Assignee: Univation Technologies, LLC
    Inventor: Matthew W. Holtcamp
  • Patent number: 6495640
    Abstract: Process for polymerizing alpha-olefins, in which at least one alpha-olefin is placed in contact, under polymerizing conditions, with a catalytic system comprising (a) a solid catalyst comprising (i) a compound of a transition metal from groups 4 to 6 of the Periodic Table, containing at least one cyclopentadiene ligand which may be substituted, (ii) an activator chosen from aluminoxanes and ionizing agents, and (iii) a porous polymeric support, and (b) at least one organoaluminium compound corresponding to the general formula R3−nAl(Y′)n in which 0.
    Type: Grant
    Filed: March 10, 2000
    Date of Patent: December 17, 2002
    Assignee: Solvay Polyolefins Europe-Belgium(Societe Anonyme)
    Inventors: Fabian Siberdt, Philippe Francois, Stéphane Paye
  • Patent number: 6492293
    Abstract: A catalyst for the polymerisation and copolymerisation of 1-olefins is disclosed which comprises 1) a late transition metal complex 2) optionally an activating quantity of an activator compound, and 3) a support which has been impregnated with titanium or aluminium, and calcined at a temperature of between 200° C. and 1000° C., said calcining being after impregnation in the case of aluminium.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: December 10, 2002
    Assignee: BP Chemicals Limited
    Inventor: John Gabriel Speakman
  • Patent number: 6482902
    Abstract: The present invention relates to a catalyst system comprising metallocene, cocatalyst, support material and, if desired, further organometallic compounds. The catalyst system can advantageously be used for the polymerization of olefins, where the use of aluminoxanes such as methylaluminoxane (MAO), which usually has to be used in a large excess, as cocatalyst can be dispensed with and a high catalyst activity and good polymer morphology are nevertheless achieved.
    Type: Grant
    Filed: July 13, 2000
    Date of Patent: November 19, 2002
    Assignee: Targor GmbH
    Inventors: Hans Bohnen, Cornelia Fritze
  • Patent number: 6482903
    Abstract: The present invention relates to a composition of carboxylate metal salt and a flow improver useful in combination with a polymerization catalyst to improve the flowability and bulk density of the catalyst. The invention also relates to a polymerization process using the catalyst.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: November 19, 2002
    Assignee: Univation Technologies, LLC
    Inventors: Agapios K. Agapiou, Chi-I Kuo
  • Patent number: 6476163
    Abstract: Catalysts for the polymerization of olefins are disclosed, comprising the product obtainable by contacting: (A) a bridged and/or substituted cyclopentadienyl compound of Ti, Zr or Hf; (B) one or more organometallic aluminium compounds of formula (II): AlR43−zHz wherein the substituents R4, same or different from each other, are linear or branched, saturated or unsaturated C1-C20 alkyl or alkylaryl radicals, optionally containing Si or Ge atoms, wherein at least one of the substituents R4 is different from a straight alkyl group; z is 0 or 1; and (C) water, the molar ratio between the organometallic aluminium compound and water being comprised between 1:1 and 100:1; said catalyst being obtainable by a process comprising the following steps: (i) contacting component (A) with part of component (B) in the absence of component (C); (ii) contacting part of component (B) with component (C) in the absence of component (A) and successively (iii) contacting the products obtained in steps (i) and (ii).
    Type: Grant
    Filed: June 29, 1999
    Date of Patent: November 5, 2002
    Assignee: Basell Technology Company BV
    Inventors: Jan F. Van Baar, Maurizio Galimberti, Klaas L. Von Hebel, Andrew D. Horton, Gerard M. M. Van Kessel, Peter A. Schut, Tiziano Dall'occo
  • Patent number: 6472342
    Abstract: The present invention relates to a catalyst composition and a method for making the catalyst composition of a polymerization catalyst and a carboxylate metal salt. The invention is also directed to the use of the catalyst composition in the polymerization of olefin(s). In particular, the polymerization catalyst system is supported on a carrier. More particularly, the polymerization catalyst comprises a bulky ligand metallocene-type catalyst system.
    Type: Grant
    Filed: August 20, 2001
    Date of Patent: October 29, 2002
    Assignee: Univation Technologies, LLC
    Inventors: Agapios K. Agapiou, Chi-I Kuo, David M. Glowczwski, Steve K. Ackerman
  • Patent number: 6451934
    Abstract: This invention relates to a process for preparation of high 1,4-cis polybutadiene and more particularly, to the process for preparing polybutadiene by polymerizing 1,3-butadiene monomer in the presence of a catalyst prepared by aging a mixture of a neodymium salt compound, a nickel salt compound, an organoaluminium compound and a borontrifluoride complex compound in the presence or absence of a conjugated diene compound. With much remarked catalytic activity, polybutadiene with a very high 1,4-cis content can be prepared in a high yield using a small amount of catalyst.
    Type: Grant
    Filed: March 30, 2000
    Date of Patent: September 17, 2002
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Young Chan Jang, A Ju Kim, Gwang Hoon Kwag, Seung Hwon Lee
  • Patent number: 6433111
    Abstract: In a process for preparing a supported catalyst which comprises the following steps: A) reacting an inorganic support material with an organometallic compound I B) reacting the support material obtained as described in A) with a metallocene complex and a compound capable of forming metallocenium ions and C) subsequently reacting the resulting material with an organometallic compound II, the supported catalyst obtained in this way or its precursor is brought into contact with a Lewis base in an amount of from 0.1 to <10 mole per mole of metallocene complex.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: August 13, 2002
    Assignee: Basell Polyolefine GmbH
    Inventors: Marc Oliver Kristen, Heike Gregorius, Ursula Rief
  • Patent number: 6433108
    Abstract: The invention relates to a process for the manufacture of a solid catalytic component for the polymerization or copolymerization of olefins, resulting in a polymer or copolymer with broadened molecular mass distribution. The process includes a first stage including bringing into contact a) a solid support including at its surface at least 5 hydroxyl groups per square nanometre (OH/nm2) and b) an organic magnesium derivative, and optionally, preferably, c) an aluminoxane, to obtain a first solid, and then a second stage including bringing the first solid and a chlorinating agent into contact to obtain a second solid and then, in a later stage, impregnation of the second solid with a transition metal derivative.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: August 13, 2002
    Assignee: Elf Atochem S.A.
    Inventors: Jean Malinge, Claude Brun, Jean-Loup Lacombe
  • Publication number: 20020099154
    Abstract: A catalyst composition has a catalyst component which includes a metallocene transition metal compound, a magnesium compound, a hydroxyl containing compound, and a polymeric material. The catalyst component may also include asilicon compound and an aluminum compound. The catalyst component is combined with a cocatalyst and used in olefin polymerization.
    Type: Application
    Filed: September 10, 2001
    Publication date: July 25, 2002
    Applicant: Saudi Basic Industries Corporation.
    Inventors: Orass Hamed, Akhlaq Moman, Atieh Abu-Raqabah
  • Patent number: 6423660
    Abstract: Supported catalysts for the polymerization of olefins comprise the following components: (A) a porous organic support functionalised with groups having active hydrogen atoms; (B) an organo-metallic compound of aluminium containing heteroatoms selected from oxygen, nitrogen and sulphur; and (C) a compound of a transition metal selected from those of groups IVb, Vb or VIb of the Periodic Table of the Elements, containing ligands of the cyclopentadienyl type. These supported catalysts, obtainable in the form of spherical particles, can be used in the polymerization reaction of olefins either in liquid or in gas phase, thus producing polymers endowed with a controlled morphology and with a high bulk density.
    Type: Grant
    Filed: January 9, 1998
    Date of Patent: July 23, 2002
    Assignee: Basell Technology Company BV
    Inventors: Enrico Albizzati, Tiziano Dall'Occo, Luigi Resconi, Fabrizio Piemontesi
  • Patent number: 6420500
    Abstract: A novel supported catalyst component useful for &agr;-olefin polymerization and a method of polymerizing an &agr;-olefin using the same. The catalyst component is characterized by being prepared by contacting a complex represented by general formula (I) wherein R1 and R2 are the same or different and each represents a C1-6 linear or branched alkyl, a C1-3 haloalkyl, or optionally substituted phenyl; and X represents a halogeno with magnesium compound.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: July 16, 2002
    Assignee: Tosoh Akzo Corporation
    Inventors: Kazuo Soga, Toshiya Uozumi, Eiichi Kaji
  • Publication number: 20020091062
    Abstract: Catalysts for the polymerization of olefins are disclosed, comprising the product obtainable by contacting: (A) a bridged and/or substituted cyclopentadienyl compound of Ti, Zr or Hf; (B) one or more organometallic aluminium compounds of formula (II): AlR 43−z Hz wherein the substituents R4, same or different from each other, are linear or branched, saturated or unsaturated C1-C20 alkyl or alkylaryl radicals, optionally containing Si or Ge atoms, wherein at least one of the substituents R4 is different from a straight alkyl group; z is 0 or 1; and (C) water; the molar ratio between the organometallic aluminium compound and water being comprised between 1:1 and 100:1; said catalyst being obtainable by a process comprising the following steps: (i) contacting component (A) with part of component (B) in the absence of component (C), (ii) contacting part of component (B) with component (C) in the absence of component (A) and successively (iii) contacting the products obtained in steps (i) and (ii).
    Type: Application
    Filed: June 29, 1999
    Publication date: July 11, 2002
    Inventors: JAN F. VAN BAAR, MAURIZIO GALIMBERTI, KLAAS L. VON HEBEL, ANDREW D. HORTON, GERARD M. M. VAN KESSEL, PETER A. SCHUT
  • Patent number: 6417302
    Abstract: The present invention relates to a chemical compound of the formula A The compound can be employed as a catalyst component for the polymerization of olefins.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: July 9, 2002
    Assignee: BASELL Polyolefine GmbH
    Inventor: Hans Bohnen
  • Patent number: 6413901
    Abstract: A catalyst composition for alpha olefin polymerization is provided. The catalyst composition is prepared by a process including treating PVC containing particles with an organomagnesium compound in an inert solvent, contacting the treated PVC containing particles with a transition metal compound from the group TiCl4, VCl4 or ZrCl4, in the absence of an electron donor, and activating the product particles with a cocatalyst. An organoaluminum compound can also be mixed with the organomagnesium compound prior to treating the PVC containing particles.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: July 2, 2002
    Assignee: Saudi Basic Industries Corporation
    Inventors: Akhlaq Moman, Atieh Abu-Raqabah, Navin Nallaveerapan
  • Patent number: 6413489
    Abstract: The present invention relates to a method of producing particles having a particle size of less than 100 nm and surface areas of at least 20 m2/g where the particles are free from agglomeration. The method involves synthesizing the particles within an emulsion having a 1-40% water content to form reverse micelles. In particular, the particles formed are metal oxide particles. The particles can be used to oxidize hydrocarbons, particularly methane.
    Type: Grant
    Filed: April 15, 1998
    Date of Patent: July 2, 2002
    Assignee: Massachusetts Institute of Technology
    Inventors: Jackie Y. Ying, Andrey Zarur
  • Patent number: 6410475
    Abstract: The olefin polymerization catalyst comprises a supported transition metal, magnesium and halogen; the support comprises aluminum phosphate and at least one oxide of silica or alumina. The catalyst is formed by impregnating the support with a liquid complex formed by reacting a magnesium compound and a transition metal compound, which can contain either oxygen or halogen, and then precipitating the complex on the support with an organoaluminum compound which may be halogenated. The catalyst is used with an organometallic cocatalyst.
    Type: Grant
    Filed: October 5, 1999
    Date of Patent: June 25, 2002
    Assignee: Solvay Polyolefins Europe-Belgium (Societe Anonyme)
    Inventors: Charles Detrez, Benoit Koch
  • Patent number: 6410474
    Abstract: A make-up catalyst of at least one metallic component of a bimetallic catalyst component is used in conjunction with a bimetallic catalyst to control the proportion of weight fractions in broad or bimodal molecular weight distribution olefin resin product. The bimetallic catalyst which is formed with at least one metallocene of a transition metal, produces broad or bimodal molecular weight distribution polyolefin resin whose composition depends on the ratio of the concentration of the two catalyst components producing the HMW/LMW components. The make-up catalyst consisting of a single metal component is added in proportion necessary to make-up the deficiencies in the amount of the HMW/LMW component. The type of make-up catalyst added depends on whether increase of the HMW or LMW component produced by the bimetallic catalyst is sought.
    Type: Grant
    Filed: March 10, 1997
    Date of Patent: June 25, 2002
    Assignee: ExxonMobil Oil Corporation
    Inventors: Thomas E. Nowlin, Sandra D. Schregenberger, Pradeep P. Shirodkar, Grace O. Tsien
  • Patent number: 6407026
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients including an iron-containing compound, a hydrogen phosphite, and a mixture of two or more organoaluminum compounds. This catalyst composition is particularly useful for polymerizing conjugated dienes. When this catalyst composition is used to polymerize 1,3-butadiene into syndiotactic 1,2-polybutadiene the ratio of the organoaluminum compounds can be adjusted to vary the melting temperature and molecular weight of the polymer product.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: June 18, 2002
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 6399533
    Abstract: The present invention relates to components of catalysts for the polymerization of olefins comprising a metallocene compound and a magnesium halide which have particular values of porosity and surface area. Group 4 and vanadium metallocenes are useful metallocenes and the components typically include an electron donor such as an ether, ester or ketone. In particular the components of the invention have surface area (BET) greater than about 50 m2/g, porosity (BET) greater than about 0.15 cm3/g and porosity (Hg) greater than 0.3 cm3/g, with the proviso that when the surface area is less than about 150 m2g, the porosity (Hg) is less than about 1.5 cm3/g. The magnesium halide is complexed by an ether, ester, or ketone electro donor. The components of the invention are particularly suitable for the preparation of catalysts for the gas-phase polymerization of &agr;-olefins.
    Type: Grant
    Filed: September 10, 1997
    Date of Patent: June 4, 2002
    Assignee: Basell Technology Company bv
    Inventors: Mario Sacchetti, Stefano Pasquali, Gabriele Govoni
  • Patent number: 6399535
    Abstract: The present invention is directed to a coordinating catalyst system comprising at least one bidentate or tridentate ligand containing pre-catalyst transition metal compound, (e.g., 2,6-bis (2,4,6-trimethylarylamino)pyridyl iron dichloride), at least one support-activator (e.g., spray dried silica/clay agglomerate), and optionally at least one organometallic compound (e.g., triisobutyl aluminum), in controlled amounts, and methods for preparing the same. The resulting catalyst system exhibits enhanced activity for polymerizing olefins and yields polymer having very good morphology.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: June 4, 2002
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Keng-Yu Shih, Michael John Carney, Dean Alexander Denton
  • Publication number: 20020065189
    Abstract: A novel supported catalyst component useful for &agr;-olefin polymerization and a method of polymerizing an &agr;-olefin using the same. The catalyst component is characterized by being prepared by contacting a complex represented by general formula (I) wherein R1 and R2 are the same or different and each represents a C1-6 linear or branched alkyl, a C1-3 haloalkyl, or optionally substituted phenyl; and X represents a halogeno with magnesium compound.
    Type: Application
    Filed: December 31, 1998
    Publication date: May 30, 2002
    Inventors: KAZUO SOGA, TOSHIYA UOZUMI, EIICHI KAJI
  • Patent number: 6395670
    Abstract: The present invention relates to catalyst components for the polymerization of olefins having Mg, Ti, halogen and at least two internal electron donor compounds, said catalyst components characterized by the fact that at least one of the electron donor compounds is selected from ethers containing two or more ether groups which are further characterized by the formation of complexes with anhydrous magnesium dichloride in an amount less than 60 mmoles per 100 g of MgCl2 and by the failure of entering into substitution reactions with TiCl4 or by reacting in that way for less than 50% by moles, and at least another electron donor compound selected from esters of mono or polycarboxylic acids. Said catalyst components are able to produce propylene polymers which, for high values of xylene insolubility, show a broad range of isotacticity.
    Type: Grant
    Filed: May 6, 1999
    Date of Patent: May 28, 2002
    Assignee: Basell Technology Company BV
    Inventors: Giampiero Morini, Giulio Balbontin, Gianni Vitale
  • Patent number: 6395669
    Abstract: A catalyst component formed by the steps of contacting a transition metal-containing metallocene of a transition metal of Group 4, 5 or 6 of the Periodic Table of the Elements with silica or an organic support. This product is contacted with an organomagnesium compound or complex followed by contact with an alcohol and a silane. Finally, the so-contacted product is contacted with a Group 4, 5 or. 6 transition metal-containing non-metallocene compound. The component is preferably combined with an aluminum-containing cocatalyst to form a catalyst system.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: May 28, 2002
    Assignee: Equistar Chemicals, LP
    Inventors: William J. Sartain, Patricia A. Hooks, Keta M. Lindstrom, Stella L. Ellis, Douglas D. Klendworth, Albert P. Masino, Richard W. Fries, Therese A. Pastrick
  • Patent number: H2060
    Abstract: One aspect of the present invention relates to a catalyst system for use in olefinic polymerization, containing a solid titanium catalyst component prepared by contacting a titanium compound and a magnesium compound; an organoaluminum compound having at least one aluminum-carbon bond; and an organosilicon compound comprising at least one of cyclobutyl group. Another aspect of the present invention relates to a method of making a catalyst for use in olefinic polymerization, involving the steps of reacting a Grignard reagent having a cyclobutyl group with an orthosilicate to provide an organosilicon compound having a cyclobutyl moiety; and combining the organosilicon compound with an organoaluminum compound having at least one aluminum-carbon bond and a solid titanium catalyst component prepared by contacting a titanium compound and a magnesium compound.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: March 4, 2003
    Assignee: Engelhard Corporation
    Inventors: Michael D. Spencer, Chung-Ping Cheng