Organic Phosphorus Or Nitrogen, Except The Ammonium Ion Patents (Class 502/162)
  • Patent number: 8853461
    Abstract: A process for preparing a deperoxidation catalyst comprising chromium as the main catalytic element is described. Also described, is a process for preparing an organic solution of a chromic acid ester. The solution can be used as a catalyst in a deperoxidation of an alkyl peroxide in a process for manufacturing cyclohexanol/cyclohexanone by oxidation of cyclohexane.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: October 7, 2014
    Assignee: Rhodia Operations
    Inventors: Sandra Chouzier, Serge Veracini, Françoise Igersheim
  • Publication number: 20140171295
    Abstract: A catalyst composition including a solution of at least one member selected from the group consisting of an alkali metal carboxylate and an alkaline earth metal carboxylate in a solvent which is nonreactive with the isocyanate groups of a polyisocyanate.
    Type: Application
    Filed: February 21, 2014
    Publication date: June 19, 2014
    Inventor: Vittorio Bonapersona
  • Patent number: 8741156
    Abstract: The subject of the invention is a hybrid photocatalyst which is a layered aluminosilicate, possibly organically modified, containing compounds introduced into the aluminosilicate galleries bearing groups such as porphyrin, rose bengal, anthracene, pyrene, perylene, tetracene, rubrene, naphthalene, phthalocyanines, coumarins, and methylene blue, which are organic chromophores able to absorb visible and/or ultraviolet light and sensitize photochemical reactions. The invention includes also the methods of synthesis and application of the photocatalysts for the photocatalytical degradation of water pollutants.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: June 3, 2014
    Assignee: Uniwersytet Jagiellonski
    Inventors: Maria Nowakowska, Krzysztof Szczubialka, Dominik Drozd
  • Publication number: 20140121427
    Abstract: The present invention is directed to the activation of metal carbonyl clusters by an oxidative agent to prepare a stable metal cluster catalyst exhibiting catalytic rate enhancement. The activation comprises, for example, using oxygen for decarbonylation of carbonyl ligands and changing the oxidation state of the other ligands. In one aspect, treatment of the metal cluster catalyst under oxidative conditions in a flow reactor leads to removal of CO ligands and oxidation of bound calixarene phosphine ligands, and results in a stable activated open metal cluster that is more active for ethylene hydrogenation catalysis. The resulting metal cluster contains coordinatively unsaturated sites comprising carbonyl vacancies. In one aspect, the resulting activated open metal cluster can be used as a catalyst in a variety of chemical transformations.
    Type: Application
    Filed: October 28, 2013
    Publication date: May 1, 2014
    Applicant: The Regents of the University of California
    Inventors: Alexander Katz, Ron C. Runnebaum, Alexander Okrut, Xiaoying Ouyang, Igor Busygin
  • Publication number: 20140121096
    Abstract: A method of rendering a substrate catalytic to electroless metal deposition comprising the steps of: (a) depositing a ligating chemical agent on the substrate, which is capable of both binding to the substrate and ligating to an electroless plating catalyst; and (b) ligating the electroless plating catalyst to the ligating chemical agent, wherein the ligating chemical agent has the chemical structure: wherein n and m are each between about 1 and about 100.
    Type: Application
    Filed: August 14, 2013
    Publication date: May 1, 2014
    Applicant: International Business Machines Corporation
    Inventors: Tricia Breen CARMICHAEL, Sarah Jane VELLA, Ali AFZALI-ARDAKANI, Mahmoud Mostafa KHOJASTEH
  • Patent number: 8710276
    Abstract: Disclosed are a catalyst composition for hydroformylation of olefin compounds, comprising a specific phosphine ligand and a transition metal catalyst, and a hydroformylation process using the same. Through a hydroformylation process using the catalyst composition according to the present invention, a suitable selectivity of iso-aldehyde can be maintained, catalyst stability can be improved, the amount of used ligand can be reduced and superior catalyst activity can be obtained.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: April 29, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Dong Hyun Ko, Sung Shik Eom, O Hak Kwon, Hye Won Yang, Jae Hui Choi
  • Patent number: 8686183
    Abstract: The invention provides a method for the hydroxycarbonylation, alkoxycarbonylation, aryloxycarbonylation or thiocarbonylation of an unsaturated molecule. The method includes a hydroxycarbonylation, alkoxycarbonylation, aryloxycarbonylationor thiocarbonylation reaction on the unsaturated molecule in which a complex including a ligand comprising a [n,n?] cyclophane comprising two non-fused monocyclic aromatic rings bridged by two linear and aliphatic linkages, in which each of the non-fused monocyclic aromatic rings is substituted with a phosphorus atom-containing substituent, is used to catalyse the reaction.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: April 1, 2014
    Assignee: University Court Of The University of St Andrews
    Inventors: Matthew Lee Clarke, Tina Marie Konrad
  • Patent number: 8685879
    Abstract: Disclosed are spherical magnesium-based catalyst supports and methods of using the same in a Ziegler-Natta catalyst system for the polymerization of an olefin. The spherical magnesium-based catalyst supports are made by reacting a magnesium halide, a haloalkylepoxide, and a phosphate acid ester in an organic solvent that does not have to contain substantial amounts of toluene.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: April 1, 2014
    Assignee: BASF Corporation
    Inventors: Michael Donald Spencer, Neil O'Reilly
  • Publication number: 20140051568
    Abstract: The catalyst solution used in a hydroformylation process is prepared for storage by first reducing its acid concentration and/or water content, and then storing the solution under a blanket of syngas and/or an inert gas. Alternatively, or in addition to, the catalyst solution can be stored with an aqueous buffer comprising materials that will neutralize and/or absorb the acid species within the catalyst solution.
    Type: Application
    Filed: April 13, 2012
    Publication date: February 20, 2014
    Inventors: Thomas C. Eisenschmid, Michael C. Becker, Donald L. Campbell, JR., Michael A. Brammer, Glenn A. Miller, Edward Adrian Lord, Jens Rudolph, Hans-Rüdiger Reeh
  • Patent number: 8648000
    Abstract: Process for producing homopolymers or copolymers of conjugated dienes by contacting monomeric material including at least one conjugated diene with a catalyst system comprising (A) a first transition metal compound selected from Cr, Mo and W compounds, and a second transition metal compound selected from Fe, Co and Ni compounds, (B) a catalyst modifier and, optionally, (C) one or more catalyst activators.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: February 11, 2014
    Assignee: Ineos Commercial Services UK Limited
    Inventors: Juan Jose Chirinos-Colina, Vernon Charles Gibson, Grant Berent Jacobsen
  • Patent number: 8642812
    Abstract: A compound having the formula (I) where each of R1, R2, R3 and R4 is independently C6-C18 aryl-, C5-C8 cycloalkyl-, C6-C18 aryl having at least one C1-C20 alkyl substituent, C5-C8 cycloalkyl having at least one C1-C20 alkyl substituent, C4-C20 branched alkyl-, C16-C20 linear alkyl-, RO—, —NRR?, —PRR?, —SR, fluoro substituted forms thereof, and perfluoro forms thereof: and R5 is C6-C18 aryl-, C3-C8 cycloalkyl-, C6-C18 aryl having at least one C1-C20 alkyl substituent, C5-C8 cycloalkyl having at least one C1-C20 alkyl substituent, C3-C20 branched alkyl-, C2-C30 linear alkyl-, fluoro substituted forms thereof, and perfluoro forms thereof; where R and R? are each independently C6-C18 aryl-, C5-C8 cycloalkyl-, C6-C18 aryl having at least one C1-C20 alkyl substituent, C5-C8 cycloalkyl having at least one C1-C20 alkyl substituent, C4-C20 branched alkyl-, C2-C30 linear alkyl-, fluoro substituted forms thereof, and perfluoro forms thereof; A is N, P, S, or O with the proviso that when A is S, R2 is a nullity; and M is
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: February 4, 2014
    Assignee: Stephan Consulting Corporation
    Inventors: Douglas W. Stephan, Gregory C. Welch, Jenny S. J. McCahill
  • Patent number: 8637419
    Abstract: Provided is a method for making a catalyst for hydroprocessing a carbonaceous feedstock under hyd reprocessing conditions. More particularly, the methods relate to inhibiting rapid decomposition of ammonium nitrate during calcination of the catalyst following metal impregnation, wherein ammonium nitrate is formed when a nitrate-containing composition and an ammonium-containing component is used in the deposition of metal onto the catalyst.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: January 28, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventor: Bi-Zeng Zhan
  • Patent number: 8637626
    Abstract: Disclosed herein are manganese, iron, cobalt, or nickel complexes containing 2,8-bis(imino)quinoline ligands and their use as catalysts or catalysts precursors for hydrosilylation reactions.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: January 28, 2014
    Assignee: Momentive Performance Materials Inc.
    Inventors: Aaron M. Tondreau, Paul J. Chirik, Johannes G. P. Delis, Keith J. Weller, Kenrick M. Lewis, Susan A. Nye
  • Patent number: 8633127
    Abstract: A composition comprising a supported hydrogenation catalyst comprising palladium and an organophosphorous compound, the supported hydrogenation catalyst being capable of selectively hydrogenating highly unsaturated hydrocarbons to unsaturated hydrocarbons. A method of making a selective hydrogenation catalyst comprising contacting a support with a palladium-containing compound to form a palladium supported composition, contacting the palladium supported composition with an organophosphorus compound to form a catalyst precursor, and reducing the catalyst precursor to form the catalyst.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: January 21, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Zongxuan Hong
  • Patent number: 8614162
    Abstract: Disclosed are catalyst compositions having an external electron donor which includes one or more of the following compositions: a phosphite, a phosphonite, a pyrophosphite, and/or a diphosphazane. Ziegler-Natta catalyst compositions containing the present external electron donor exhibit strong activity and produce propylene-based olefins with high isotacticity and high melt flow rate.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: December 24, 2013
    Assignee: Dow Global Technologies LLC
    Inventor: Joseph N. Coalter, III
  • Patent number: 8613902
    Abstract: Hydrogen (“H2”) is produced when ammonia borane reacts with a catalyst complex of the formula LnM-X wherein M is a base metal such as iron, X is an anionic nitrogen- or phosphorus-based ligand or hydride, and L is a neutral ancillary ligand that is a neutral monodentate or polydentate ligand.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: December 24, 2013
    Assignee: Los Alamos National Security, LLC
    Inventors: Charles W. Hamilton, R. Thomas Baker, Troy A. Semelsberger, Roshan P. Shrestha
  • Patent number: 8609924
    Abstract: Disclosed herein is a method of preparing 1-octene at high activity and high selectivity while stably maintaining reaction activity by tetramerizing ethylene using a chromium-based catalyst system comprising a transition metal or a transition metal precursor, a cocatalyst, and a P—C—C—P backbone structure ligand represented by (R1)(R2)P—(R5)CHCH(R6)—P(R3)(R4).
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: December 17, 2013
    Assignees: SK Innovation Co., Ltd., SK Global Chemical Co., Ltd.
    Inventors: Taek Kyu Han, Myung Ahn Ok, Sung Seok Chae, Sang Ook Kang, Jae Ho Jung
  • Publication number: 20130317256
    Abstract: Disclosed are a catalyst composition for hydroformylation of olefin compounds, comprising a specific phosphine ligand and a transition metal catalyst, and a hydroformylation process using the same. Through a hydroformylation process using the catalyst composition according to the present invention, a suitable selectivity of iso-aldehyde can be maintained, catalyst stability can be improved, the amount of used ligand can be reduced and superior catalyst activity can be obtained.
    Type: Application
    Filed: July 24, 2013
    Publication date: November 28, 2013
    Applicant: LG CHEM, LTD.
    Inventors: Dong Hyun KO, Sung Shik EOM, O Hak KWON, Hye Won YANG, Jae Hui CHOI
  • Publication number: 20130296510
    Abstract: The present disclosure provides catalysts for olefin polymerization comprising titanium, silicon, magnesium, phosphorus, at least one internal electron donor compound, and at least one halogen, processes for preparing the catalysts for olefin polymerization, and processes for olefin polymerization using the catalysts for olefin polymerization.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 7, 2013
    Inventors: Zhengyang Guo, Shilong Lei, Cuilian Liu, Ting Hong, Yu Wang, Ying Wang, Chunhong Ren, Meiyan Fu
  • Patent number: 8563458
    Abstract: A method of polymerizing olefins with catalyst systems, such as, for example, a multimodal catalyst system, wherein the catalyst system is stored at a controlled temperature to minimize loss of catalyst system productivity.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: October 22, 2013
    Assignee: Univation Technologies, LLC
    Inventors: Natarajan Muruganandam, Jeevan Abichandani, Kersten A. Terry, Hement G. Patel, George Rodriguez
  • Patent number: 8546570
    Abstract: A process is described for the synthesis of a cationic [rhodium diolefin phosphorus ligand] complex comprising the steps of: (a) reacting a rhodium-diolefin-1,3-diketonate and an acid in a ketone solvent, (b) adding a stabilising olefin to form a stabilised cationic rhodium compound, and (c) mixing a phosphorus ligand with the solution of the stabilised cationic rhodium compound to form a solution of the cationic [rhodium diolefin phosphorus ligand] complex. The solution may be used directly or the complex recovered. In one embodiment, the solution may be combined with a co-solvent and the ketone removed to give a new catalyst solution, from which the complex may be recovered.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: October 1, 2013
    Assignee: Johnson Matthey Public Limited Co.
    Inventor: Hans Guenter Nedden
  • Patent number: 8536236
    Abstract: A method for the preparation of an eggshell catalyst is described comprising the steps of i) immersing shaped units of an oxidic support having a smallest unit dimension ?0.5 mm in a solution of cobalt ammine carbonate, ii) heating the solution to a temperature between 60 and 120° C. to precipitate cobalt compounds onto the surface of the shaped units, iii) separating the resulting supported cobalt compounds from the remaining solution, and iv) drying the supported cobalt compounds. The cobalt compounds may be reduced to provide catalysts suitable for the hydrogenation of unsaturated compounds or the Fischer-Tropsch synthesis of hydrocarbons.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: September 17, 2013
    Assignee: Johnson Matthey PLC
    Inventors: Cornelis Martinus Lok, Sharon Bale
  • Patent number: 8524953
    Abstract: Provided is an alcohol production method comprising the step of reducing an ester or a lactone with hydrogen to produce a corresponding alcohol without addition of a base compound by using, as a catalyst, a ruthenium complex represented by the following general formula (1): RuH(X)(L1)(L2)n??(1) wherein X represents a monovalent anionic ligand, L1 represents a tetradentate ligand having at least one coordinating phosphino group and at least one coordinating amino group or a bidentate aminophosphine ligand having one coordinating phosphino group and one coordinating amino group, and L2 represents a bidentate aminophosphine ligand having one coordinating phosphino group and one coordinating amino group, provided that n is 0 when L1 is the tetradentate ligand, and n is 1 when L1 is the bidentate aminophosphine ligand.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: September 3, 2013
    Assignee: Takasago International Corporation
    Inventors: Wataru Kuriyama, Yasunori Ino, Osamu Ogata
  • Publication number: 20130217876
    Abstract: The disclosure is directed to: (a) phosphacycle ligands; (b) catalyst compositions comprising phosphacycle ligands; and (c) methods of using such phosphacycle ligands and catalyst compositions in bond forming reactions.
    Type: Application
    Filed: August 21, 2012
    Publication date: August 22, 2013
    Applicant: ABBVIE INC.
    Inventors: Shashank Shekhar, Thaddeus S. Franczyk, David M. Barnes, Travis B. Dunn, Anthony R. Haight, Vincent S. Chan
  • Patent number: 8507396
    Abstract: A process for regenerating a used acidic catalyst which has been deactivated by conjunct polymers by removing the conjunct polymers so as to increase the activity of the catalyst is disclosed. Methods for removing the conjunct polymers include addition of a basic reagent and alkylation. The methods are applicable to all acidic catalysts and are described with reference to certain ionic liquid catalysts.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: August 13, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Saleh Elomari, Thomas V. Harris
  • Patent number: 8501032
    Abstract: The invention provides ruthenium-comprising catalysts, and methods of making and using them, for conjugating double bonds in polyunsaturated hydrocarbons, including polyunsaturated fatty acid derivatives, such as natural fats and oils which comprise (contain) more than one carbon to carbon double bond—where the double bonds are separated by, e.g., a methylene, ethylene or propylene or longer group. The invention provides compositions and methods for treating fats and oils comprising “interrupted” (e.g., “methylene-, ethylene- or propylene-interrupted”) double bonds to generate isomers with “conjugated” double bonds. The invention also provides compositions, and methods of making and using them, for making catalysts on a solid support. In one aspect, these catalysts are for alkene isomerization or exchange of alkene hydrogens for other isotopes.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: August 6, 2013
    Assignee: San Diego State University (SDSU) Foundation
    Inventor: Douglas Grotjahn
  • Patent number: 8492504
    Abstract: The disclosure relates to methods and materials useful for depolymerizing a polymer. In one embodiment, for example, the disclosure provides a method for depolymerizing a polymer containing electrophilic linkages, wherein the method comprises contacting the polymer with a nucleophilic reagent in the presence of a guanidine-containing compound. The methods and materials of the disclosure find utility, for example, in the field of waste reclamation and recycling.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: July 23, 2013
    Assignees: International Business Machines Corporation, The Board of Trustees of the Leland Stanford Junior University
    Inventors: James Lupton Hedrick, Russell Clayton Pratt, Robert M. Waymouth
  • Patent number: 8481450
    Abstract: Methods and systems for contacting of a crude feed with one or more catalysts to produce a total product that includes a crude product are described. The crude product is a liquid mixture at 25° C. and 0.101 MPa. The crude product has an MCR content of at most 90% of the MCR content of the crude feed. One or more other properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: July 9, 2013
    Assignee: Shell Oil Company
    Inventor: Opinder Kishan Bhan
  • Patent number: 8461072
    Abstract: This invention relates to a series of novel late transition metal catalysts for olefin oligomerization, the catalysts demonstrating high activity and selectivity for linear ?-olefins. The catalysts contain a Group-8, -9, or -10 transition metal, M, excluding palladium; an ancillary ligand comprising: a terminal amine comprising two independently selected hydrocarbyl radicals, R1 and R2; a terminal phosphine comprising two independently selected hydrocarbyl radicals, R3 and R4; and a hydrocarbyl bridge, Y, comprising a backbone wherein the hydrocarbyl bridge connects between the terminal amine and the terminal phosphine and wherein the backbone comprises a chain that is four or more carbon atoms long; and an abstractable ligand, X. For example this invention relates to a composition of matter with the following formula: wherein M, R1, R2, R3, and R4, Y, and X are as defined above.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: June 11, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Baiyi Zhao, Smita Kacker, Jo Ann Marie Canich
  • Publication number: 20130144082
    Abstract: A novel nickel particulate form is provided that efficiently forms a zero-valent nickel complex with a phosphorus-containing ligands in an organic liquid to form a hydrocyanation catalyst. Particles in the nickel particulate form comprise nickel crystallites. For example, the nickel particulate form can have a BET Specific Surface Area of at least about 1 m2/gm; an average crystallite size less than about 20-25 nm, the nickel particulate form can have at least 10% of the crystallites in the nickel form can have can have a diameter (C10) of less than about 10 nm, and/or there are on average at least about 1015 surface crystallites per gram nickel. A ratio of BET SSA to C50 for the nickel particulate form can be at least about 0.1×109 m/gm and preferably at least about 0.4×109 m/gm. Methods of preparation and use are also provided.
    Type: Application
    Filed: June 6, 2012
    Publication date: June 6, 2013
    Applicant: INVISTA North America S.a r.l.
    Inventors: Joan Fraga-Dubreuil, Vinay Medhekar, Thomas A. Micka, Keith Whiston
  • Publication number: 20130143730
    Abstract: As described herein, nickel treated with sulfur provides a surprisingly effective source of nickel atoms for generating nickel-phosphorus-containing ligand complexes useful as hydrocyanation catalysts.
    Type: Application
    Filed: June 6, 2012
    Publication date: June 6, 2013
    Applicant: INVISTA North America S.a.r.l.
    Inventors: JOAN FRAGA-DUBREUIL, Vinay Medhekar, Thomas A. Micka, Keith Whiston
  • Patent number: 8435912
    Abstract: A supported and sulphur-containing catalyst is described, comprising; a porous support constituted by an organic-inorganic hybrid material for which the covalent bond between the organic and inorganic phases conforms to the formula M-O—Z—R where M represents at least one metal constituting the inorganic phase, Z at least one heteroelement from among phosphorus and silicon and R an organic fragment, at least one metal of group VIB and/or of group VB and/or of group VIII. The invention also relates to the use of this catalyst for the hydrorefining and the hydroconversion of hydrocarbon-containing feedstocks such as petroleum fractions, fractions from coal or biomass or hydrocarbons produced from natural gas.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: May 7, 2013
    Assignee: IFP Energies Noevelles
    Inventors: Alexandra Chaumonnot, Denis Guillaume, Benoit Fremon, Karin Marchand, Renaud Revel
  • Publication number: 20130109770
    Abstract: Organic-inorganic composite particles that can be dispersed in a solvent and/or a resin as primary particles having an organic group on the surface of inorganic particles, the organic-inorganic composite particles having negative birefringence.
    Type: Application
    Filed: April 11, 2011
    Publication date: May 2, 2013
    Applicant: NITTO DENKO CORPORATION
    Inventors: Yoshiharu Hatakeyama, Takahiro Fukuoka, Junichi Nagase, Shusaku Shibata, Tatsuki Nagatsuka, Saori Fukuzaki
  • Publication number: 20130102457
    Abstract: Disclosed are catalyst compositions having an external electron donor which includes one or more of the following compositions: a phosphite, a phosphonite, a pyrophosphite, and/or a diphosphazane. Ziegler-Natta catalyst compositions containing the present external electron donor exhibit strong activity and produce propylene-based olefins with high isotacticity and high melt flow rate.
    Type: Application
    Filed: December 11, 2012
    Publication date: April 25, 2013
    Applicant: Dow Global Technologies LLC
    Inventor: Dow Global Technologies LLC
  • Patent number: 8420276
    Abstract: In a membrane-electrode assembly for polymer electrolyte fuel cells comprising a polymer electrolyte membrane and two gas diffusion electrodes being bonded to the membrane so that the membrane can be between them, at least one catalyst layer constituting the gas diffusion electrodes characterized in that the ion-conductive binder comprises a block copolymer having a particle size of 1 ?m or less comprising a polymer block (A) having ion-conductive groups and a polymer block (B) having no ion-conductive group, both polymer blocks phase separate from each other, polymer block (A) forms a continuous phase, and the contact parts of the block copolymer with catalyst particles are comprised of polymer block (A) having ion-conductive groups; a membrane-electrode assembly and a polymer electrolyte fuel cell.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: April 16, 2013
    Assignee: Kuraray Co., Ltd.
    Inventors: Shinji Nakai, Keiji Kubo, Hiroyuki Ohgi, Tomohiro Ono
  • Patent number: 8415443
    Abstract: Disclosed herein are metal-terpyridine complexes and their use in hydrosilylation reactions.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: April 9, 2013
    Assignees: Momentive Performance Materials Inc., Cornell University
    Inventors: Johannes G. P. Delis, Paul J. Chirik, Aaron M. Tondreau
  • Patent number: 8395003
    Abstract: The object of this invention is a suspension of metal nanoparticles with a mean size of between 1 and 20 nanometers, in at least one non-aqueous ionic liquid, whereby said suspension also contains at least one nitrogen-containing ligand, in which said metal nanoparticles comprise at least one transition metal in the zero valence state that is selected from among rhodium, ruthenium, iridium, nickel, and platinum by themselves or in a mixture and in which said nitrogen-containing ligand is selected from the group that is formed by the linear compounds that comprise at least one nitrogen atom, whereby the non-aromatic cyclic compounds comprise at least one nitrogen atom, the non-condensed aromatic compounds comprise at least one nitrogen atom, the condensed aromatic compounds comprise at least one group of two aromatic cycles that are condensed two by two, and at least one nitrogen atom, whereby the condensed aromatic compounds comprise at least 3 aromatic cycles and 1 nitrogen atom, and whereby the condensed ar
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: March 12, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Bastien Leger, Alain Roucoux, Helene Olivier-Bourbigou
  • Patent number: 8394735
    Abstract: A catalyst for ultra-deep desulfurization of diesel via oxidative distillation is an amphiphilic oxidative catalyst, which is expressed as Qm[XMnOq], wherein 1?m?12; 9?n?18; 34?q?62; Q is a quaternary ammonium cation; X is P, Si, As or B; and M is Mo) or W. A desulfurization method comprises a) mixing well a diesel, the amphiphilic catalyst, and hydrogen peroxide, reacting for 10-300 minutes at ambient temperature and normal pressure, transforming the sulfur-containing compounds in the diesel into sulfone to obtain an oxidized diesel; b) distilling the oxidized diesel obtained in step a) under reduced pressure to obtain the ultra-low sulfur diesel having a sulfur content of less than 10 ppm; and c) separating and recovering the catalyst and sulfone.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: March 12, 2013
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Zongxuan Jiang, Can Li, Yongna Zhang, Hongying Lv
  • Publication number: 20130030233
    Abstract: The invention provides a catalyst system composed of: a) a support material selected from at least one of the following materials: silicon dioxide, aluminium oxide, magnesium oxide, zirconium oxide and mixed oxides thereof, carbon nanotubes; b) an ionic liquid; c) a catalytically active composition comprising nickel; d) an activator selected from the group of Lewis acids with alkylating properties. Additionally provided is the use of the catalyst systems of the invention in the oligomerization of unsaturated hydrocarbon mixtures.
    Type: Application
    Filed: August 12, 2010
    Publication date: January 31, 2013
    Applicant: EVONIK OXENO GmbH
    Inventors: Christian Boeing, Dietrich Maschmeyer, Markus Winterberg, Stefan Buchholz, Berthold Melcher, Marco Haumann, Peter Wasserscheid
  • Patent number: 8362189
    Abstract: Provided are a catalyst mixture and also a method for the production of a polyester melt with high viscosity, the granulate obtained therefrom having an intrinsic viscosity of >0.70 dl/g and an L* color >70 and the b* color being between ?5 and +5. The catalysts being used during the production are not based on heavy metals but on titanium compounds. Also no components of catalysts based on heavy metal are added. The granulate can be processed further in any way, e.g. to form bottles, containers, films, foils or fibers.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: January 29, 2013
    Assignee: Uhde Inventa-Fischer GmbH
    Inventor: Matthias Schoennagel
  • Publication number: 20130023403
    Abstract: A supramolecular assembly comprising a metal-organic molecular framework and a heterocyclic macrocycle guest molecule. The metal-organic molecular framework comprises cubicuboctahedral cavities, octahemioctahedral cavities and trigonal cavities in a 1:1:2 ratio, respectively, and the heterocyclic macrocycle guest molecule is hosted by the octahemioctahedral cavity. In a preferred embodiment, the heterocyclic macrocycle guest molecule is a heme.
    Type: Application
    Filed: March 5, 2012
    Publication date: January 24, 2013
    Applicant: University of South Florida
    Inventors: Randy W. Larsen, Carissa M. Vetromile, Jason A. Perman, Lukasz Wojtas, Michael J. Zaworotko, Mohamed Eddaoudi, Yunling Liu
  • Publication number: 20130018207
    Abstract: A compound having the formula (I) where each of R1, R2, R3 and R4 is independently C6-C18 aryl-, C5-C8 cycloalkyl-, C6-C18 aryl having at least one C1-C20 alkyl substituent, C5-C8 cycloalkyl having at least one C1-C20 alkyl s?bstituent, C4-C20 branched alkyl-, C16-C20 linear alkyl-, RO—, —NRR?, —PRR?, —SR, fluoro substituted forms thereof, and perfluoro forms thereof: and R5 is C6-C18 aryl-, C5-C8cycloalkyl-, C6-C18 aryl having at least one C1-C20 alkyl substituent, C5-C8 cycloalkyl having at least one C1-C20 alkyl substituent, C3-C20 branched alkyl-, C2-C30 linear alkyl-, fluoro substituted forms thereof, and perfluoro forms thereof; where R and R? are each independently C6-C18 aryl-, C5 -C8 cycloalkyl-, C6-C18 aryl having at least one C1-C20 alkyl substituent, C5-C8 cycloalkyl having at least one C1-C20 alkyl substituent, C4-C20 branched alkyl-, C2-C30 linear alkyl-, fluoro substituted forms thereof, and perfluoro forms thereof; A is N, P, S, or O with the proviso that when A is S, R2 is a nullity; and M is
    Type: Application
    Filed: September 14, 2012
    Publication date: January 17, 2013
    Applicant: STEPHAN CONSULTING CORPORATION
    Inventors: Douglas W. Stephan, Preston A. Chase, Gregory C. Welch
  • Publication number: 20120330016
    Abstract: A novel bidentate ligand of general formula (I) is described together with a process for the carbonylation of ethylenically unsaturated compounds. The group X1 may be defined as a univalent hydrocarbyl radical of up to 30 atoms containing at least one nitrogen atom having a pKb in dilute aqueous solution at 18° C. of between 4 and 14 wherein the said at least one nitrogen atom is separated from the Q2 atom by between 1 and 3 carbon atoms. The group X2 is defined as X1, X3 or X4 or represents a univalent radical of up to 30 atoms having at least one primary, secondary or aromatic ring carbon atom wherein each said univalent radical is joined via said at least one primary, secondary or aromatic ring carbon atom(s) respectively to the respective atom Q2. Q1 and Q2 each independently represent phosphorus, arsenic or antimony.
    Type: Application
    Filed: December 29, 2010
    Publication date: December 27, 2012
    Applicant: LUCITE INTERNATIONAL UK LIMITED
    Inventors: Graham Ronald Eastham, Mark Waugh, Paul Pringle, Thomas Philip William Turner
  • Publication number: 20120330067
    Abstract: Catalyst compositions of palladium supported on alumina or zirconium oxide supports having low or no silicon dioxide contents and having a specific surface area or modified with alkali, alkaline earth, or phosphine oxide compounds are selective in a vapor phase hydrogenolysis reaction to convert cyclic acetal compounds and/or cyclic ketal compounds in the presence of hydrogen to their corresponding hydroxy ether hydrocarbon reaction products.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 27, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Thomas James Devon, Damon Ray Billodeaux
  • Patent number: 8334232
    Abstract: The invention relates to a porous heterogeneous catalyst. In order to prepare a catalyst which catalyzes with a relatively high selectivity the hydrogenation of individual unsaturated bonds of polyunsaturated compounds it is proposed that the inner surface of the catalysts is coated with an ionic liquid.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: December 18, 2012
    Assignee: Sud-Chemie AG
    Inventors: Andreas Jess, Wolfgang Korth, Bastian Etzold
  • Publication number: 20120309613
    Abstract: A method of increasing the TON of a catalyst system for the monocarbonylation of ethylenically unsaturated compounds using carbon monoxide in the presence of a co-reactant, other than water or a source thereof, having a mobile hydrogen atom is described. The catalyst system is obtainable by combining: (a) a metal of Group (8, 9) or (10) or a suitable compound thereof; (b) a ligand of general formula (I) wherein the groups X3 and X4 independently represent univalent radicals of up to 30 atoms or X3 and X4 together form a bivalent radical of up to 40 atoms and X5 has up to 400 atoms; Q1 represents phosphorus, arsenic or antimony; and c) optionally, a source of anions. The method includes the step of adding water or a source thereof to the catalyst system. The method is preferably carried out in the presence of an electropositive metal.
    Type: Application
    Filed: December 15, 2009
    Publication date: December 6, 2012
    Applicant: LUCITE INTERNATIONAL UK LIMITED
    Inventors: Graham Ronald Eastham, Philip Ian Richards
  • Publication number: 20120310012
    Abstract: A process for preparing a deperoxidation catalyst comprising chromium as the main catalytic element is described. Also described, is a process for preparing an organic solution of a chromic acid ester. The solution can be used as a catalyst in a deperoxidation of an alkyl peroxide in a process for manufacturing cyclohexanol/cyclohexanone by oxidation of cyclohexane.
    Type: Application
    Filed: November 18, 2010
    Publication date: December 6, 2012
    Applicant: RHODIA OPERATIONS
    Inventors: Sandra Chouzier, Serge Veracini, Françoise Igersheim
  • Patent number: 8324416
    Abstract: The invention generally relates to chain shuttling agents (CSAs), a process of preparing the CSAs, a composition comprising a CSA and a catalyst, a process of preparing the composition, a processes of preparing polyolefins, end functional polyolefins, and telechelic polyolefins with the composition, and the polyolefins, end functional polyolefins, and telechelic polyolefins prepared by the processes.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: December 4, 2012
    Assignee: Dow Global Technologies, LLC
    Inventors: Thomas P. Clark, Nahrain E. Kamber, Sara B. Klamo, Phillip D. Hustad, David R. Wilson
  • Patent number: 8304361
    Abstract: Fouling in a dispersed phase reactor in the presence of a phosphinimine catalyst and MAO may be reduced by reducing the loading of the phosphinimine catalyst to provide from 0.02 to 0.031 mmol of transition M per g of catalyst while still maintaining a productivity of not less than 2500 g of polymer/gram of catalyst. The catalyst may optionally be used in the presence of an antistatic agent.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: November 6, 2012
    Assignee: NOVA Chemical (International) S.A.
    Inventors: Xiaoliang Gao, Benjamin Milton Shaw, Cliff Robert Baar
  • Publication number: 20120277090
    Abstract: Disclosed are spherical magnesium-based catalyst supports and methods of using the same in a Ziegler-Natta catalyst system for the polymerization of an olefin. The spherical magnesium-based catalyst supports are made by reacting a magnesium halide, a haloalkylepoxide, and a phosphate acid ester in an organic solvent that does not have to contain substantial amounts of toluene.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: BASF CORPORATION
    Inventors: Michael Donald Spencer, Neil O'Reilly