Of Group I (i.e., Alkali, Ag, Au Or Cu) Patents (Class 502/184)
  • Patent number: 11658310
    Abstract: A high-performance positive electrode catalyst for a metal-air battery is disclosed, which is composed of transition metal nitride-transition metal oxide heterogeneous particles and a mesoporous carbon matrix. The nano heterogeneous particles, which are 10-50% based on the total mass of the catalyst, are dispersed in the mesoporous carbon matrix; and the oxide is 10-100% based on the heterogeneous particles. A preparation method of the catalyst includes: treating mesoporous carbon with a strong acid solution to obtain surface-functionalized mesoporous carbon; immersing the surface-functionalized mesoporous carbon in an aqueous solution of a transition metal salt, and stirring and washing; adding ammonia water and stirring to enable a confined complexation reaction; washing again, and vacuum drying; and calcining the product in an inert atmosphere or a vacuum condition.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: May 23, 2023
    Assignee: JIANGSU UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Xingmei Guo, Junhao Zhang, Wei Zhang, Xiaohan Wan
  • Patent number: 10875015
    Abstract: Methods for making porous materials having metal alloy nanoparticles formed therein are described herein. By preparing a porous material and delivering the precursor solutions under vacuum, the metal precursors can be uniformly embedded within the pores of the porous material. Once absorption is complete, the porous material can be heated in the presence of one or more functional gases to reduce the metal precursors to metal alloy nanoparticles, and embed the metal alloy nanoparticles inside of the pores. As such, the metal alloy nanoparticles can be formed within the pores, while avoiding surface wetting and absorption problems which can occur with small pores.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: December 29, 2020
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha, The University of Akron
    Inventors: Li Qin Zhou, Kan Huang, Tomoyuki Nagai, Hongfei Jia, Hisao Kato, Xiaochen Shen, Zhenmeng Peng
  • Patent number: 10662509
    Abstract: A method for making covetic metal-carbon composites or compositions by electron beam melt heating under vacuum (pressure <10?3 Torr) is described herein. This fabrication method is advantageous, in that it provides oxygen-free covetic materials in a process that allows precise control of the composition of the covetic material to be produced. The method described herein also can be applied to produce multi-element-carbon composites within a metal or alloy matrix, including high melting temperature materials such as ceramic particles or prefabricated nano- or micro-structures, such as carbon nanotubes or graphene compounds. The covetic reaction between metal and carbon takes place under the influence of flowing electrons through the melted metal-carbon precursor. This process creates strong bonding between nanocarbon structure and the metal elements in the melt.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: May 26, 2020
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Uthamalingam Balachandran, Beihai Ma, Stephen E. Dorris
  • Patent number: 9308523
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises a precious metal and one or more active metals on a modified support that comprises cobalt.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: April 12, 2016
    Assignee: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
  • Patent number: 9249260
    Abstract: A process for preparing perfluoropolyethers of formula T-O—(RF)z-T???(I) wherein: T, T' are end groups, z=0 or 1; RF is a perfluoro(poly)oxyalkylene chain containing one or more fluorooxyalkylene repeating units selected from the group consisting of (CF2O), —(CF(CF3)O)—, —(CF2CF2O)—, —(CF2CF(CF3)O)—, —(CF(CF3)CF2O)—, —(CF2CF2CF2O)—, —(CF2CF2CF2CF2O)—, and —(CF2)j—CFZ—O— wherein j is an integer from 0 to 3, and Z is a fluorooxyalkylene chain comprising from 1 to 20 repeating units selected from the above reported fluorooxyalkylene units; comprising the reduction of peroxidic perfluoropolyethers comprising one or more of the above defined repeating units by using gaseous hydrogen in the presence of a catalyst comprising one or more metals of the VIII group supported on graphitic materials.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: February 2, 2016
    Assignee: SOLVAY SOLEXIS S.P.A.
    Inventors: Ugo De Patto, Giuseppe Marchionni, Pier Antonio Guarda
  • Patent number: 9249022
    Abstract: Disclosed are a method of manufacturing a graphene-carbon nanotube nanostructure which includes mixing graphite, a catalytic metal, and an ionic liquid, and then radiating microwaves on the mixture, and a graphene-carbon nanotube nanostructure manufactured using the method.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: February 2, 2016
    Assignee: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Il-Kwon Oh, Vadahanambi Sridhar, Hyun-Jun Kim
  • Patent number: 9233366
    Abstract: Disclosed are hierarchically porous carbon materials with a plurality of discreet nanoparticles dispersed on their carbon phase. The materials possess a continuous network of pores that spans the porous material, permitting the flow of fluids into and through the material. The porous materials can be used as heterogeneous catalysts.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: January 12, 2016
    Assignee: Board of Trustees of The University of Alabama
    Inventors: Martin G. Bakker, Franchessa Maddox Sayler, Kevin Shaughnessy
  • Patent number: 9224537
    Abstract: Technologies are generally described related to the design, manufacture and/or use of electrodes, capacitors, or any other similar component. In an example, a system effective to form a component may include a container effective to receive graphite nanoplatelets and effective to receive ruthenium chloride. The system may include a coating device in communication with the container. The system may further include a processor arranged in communication with the container and the coating device. The processor may be configured to control the container effective to combine the ruthenium chloride with the graphite nanoplatelets under reaction conditions sufficient to form a ruthenium oxide graphite nanoplatelets nanocomposite. The processor may further be configured to control the coaling device effective to coat a support with the ruthenium oxide graphite nanoplatelets nanocomposite.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: December 29, 2015
    Assignee: Indian Institute of Technology Madras
    Inventors: Sundara Ramaprabhu, Ashish Kumar Mishra
  • Publication number: 20150140333
    Abstract: Porous and/or curved nanofiber bearing substrate materials are provided having enhanced surface area for a variety of applications including as electrical substrates, semipermeable membranes and barriers, structural lattices for tissue culturing and for composite materials, production of long unbranched nanofibers, and the like. A method of producing nanofibers is disclosed including providing a plurality of microparticles or nanoparticles such as carbon black particles having a catalyst material deposited thereon, and synthesizing a plurality of nanofibers from the catalyst material on the microparticles or nanoparticles. Compositions including carbon black particles having nanowires deposited thereon are further disclosed.
    Type: Application
    Filed: October 3, 2014
    Publication date: May 21, 2015
    Inventor: Chunming NIU
  • Publication number: 20150118477
    Abstract: Disclosed herein is a fungicide, including: a porous carbon material; and a silver member adhered to the porous carbon material, wherein a value of a specific surface area based on a nitrogen BET, namely Brunauer, Emmett, and Teller method is equal to or larger than 10 m2/g, and a volume of a fine pore based on a BJH, namely Barrett, Joyner, and Halenda method and an MP, namely Micro Pore method is equal to or larger than 0.1 cm3/g.
    Type: Application
    Filed: January 7, 2015
    Publication date: April 30, 2015
    Applicant: Sony Corporation
    Inventors: Hironori Iida, Shun Yamanoi, Machiko Minatoya, Seiichiro Tabata, Shinichiro Yamada
  • Patent number: 8999876
    Abstract: Catalyst compositions comprising molybdenum, sulfur and an alkali metal ion supported on a nanofibrous, mesoporous carbon molecular sieve are useful for converting syngas to higher alcohols. The compositions are produced via impregnation and may enhance selectivity to ethanol in particular.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: April 7, 2015
    Assignee: Georgia Tech Research Corporation
    Inventors: Christopher W. Jones, Pradeep K. Agrawal, Tien Thao Nguyen
  • Patent number: 8999874
    Abstract: Provided is a carbon catalyst having an improved catalytic activity, a production method therefor, and an electrode and a battery which use the carbon catalyst. The carbon catalyst is obtained by carbonizing a raw material including an organic substance containing a nitrogen atom and metals, and includes iron and/or cobalt, and copper as the metals. Further, the carbon catalyst has a crystallinity of 41.0% or less, which is determined by X-ray diffractometry, a nitrogen atom-to-carbon atom ratio of 0.7 or more, which is determined by X-ray photoelectronic spectrometry, and an oxygen reduction-starting potential of 0.774 V (vs. NHE) or more.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: April 7, 2015
    Assignees: National University Corporation Gunma University, Nisshinbo Holdings Inc.
    Inventors: Takeaki Kishimoto, Mayumi Mizushiri, Jun-ichi Ozaki, Yusuke Sudo, Naokatsu Kannari
  • Patent number: 8980104
    Abstract: An activated carbon cloth-supported bimetallic Pd—Cu nanocatalyst is disclosed comprising about 1 wt % Pd and about 0.35-0.45 wt % Cu and having a surface Cu/Pd metal ratio of about 8-10 m2/m2. The nanocatalyst is capable of removing nitrate and/or nitrite from wastewater with a high selectivity to nitrogen.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: March 17, 2015
    Assignee: Technion Research and Development Foundation Ltd.
    Inventors: Moshe Sheintuch, Uri Matatov-Meytal
  • Publication number: 20150064608
    Abstract: A catalyst consisting of structurally ordered mesoporous carbon containing a transition metal and a method for preparing the same are provided. The method for preparing the catalyst includes forming a mixture of a carbon precursor and structurally ordered mesoporous silica, carbonizing the mixture to form a composite, and removing mesoporous silica from the composite.
    Type: Application
    Filed: October 18, 2013
    Publication date: March 5, 2015
    Applicant: UNIST Academy-Industry Research Corporation
    Inventors: Sang Hoon JOO, Jae Yeong Cheon
  • Publication number: 20150030968
    Abstract: The present invention relates to an aerogel based on doped graphene, a method for producing said aerogel and the use of said aerogel, for example, as an electrode or a catalyst. Furthermore, the present invention relates to electrodes, all solid-state supercapacitors (ASSS) or catalysts based on said aerogel. The present invention also relates to doped graphene, which can be obtained as an intermediate in the production of the aerogel based on doped graphene using graphene oxide as starting material.
    Type: Application
    Filed: February 26, 2013
    Publication date: January 29, 2015
    Applicants: BASF SE, Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Matthias Georg Schwab, Klaus Muellen, Xinliang Feng, Zhong-Shuai Wu
  • Patent number: 8940453
    Abstract: An electrode catalyst for a fuel cell includes a complex support including at least one metal oxide and carbon-based material; and a palladium (Pd)-based catalyst supported by the complex support. A method of manufacturing the electrode catalyst includes dissolving a precursor of a palladium (Pd)-based catalyst in a solvent and preparing a mixture solution for a catalyst; adding a complex support including at least one metal oxide and a carbon-based material to the mixture solution for a catalyst and stirring the mixture solution to which the complex support is added; drying the mixture solution for a catalyst, to which the complex support is added, in order to disperse the precursor of the Pd-based catalyst on the complex support; and reducing the precursor of the Pd-based catalyst dispersed on the complex support. A fuel cell includes the electrode catalyst.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: January 27, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seon-ah Jin, Chan-ho Pak, Kyung-jung Kwon, Kang-hee Lee, Dae-jong Yoo, Jong-won Lee
  • Publication number: 20150018201
    Abstract: The invention is directed to a process for producing carbon nanofibers and/or carbon nanotubes, which process comprises pyrolysing a particulate cellulosic and/or carbohydrate substrate that has been impregnated with a compound of an element or elements, the metal or alloy, respectively, of which is capable of forming carbides, in a substantially oxygen free, volatile silicon compound containing atmosphere, optionally in the presence of a carbon compound.
    Type: Application
    Filed: September 12, 2014
    Publication date: January 15, 2015
    Applicant: BASF CORPROATION
    Inventors: Jacobus Hoekstra, John Wilhelm Jenneskens
  • Publication number: 20150010455
    Abstract: Provided is a microwave catalyst. The microwave catalyst comprises: i) an active catalyst component comprising a metal and/or a metal oxide; ii) a microwave-absorbing component comprising at least one of CuO, ferrite spinel, and active carbon; and iii) a support. The microwave catalyst can be used for denitration by microwave catalysis, and has advantages such as high denitration efficiency, low energy consumption, environmental friendliness, and low costs. Also provided is a process for preparing the microwave catalyst and the use thereof.
    Type: Application
    Filed: December 24, 2012
    Publication date: January 8, 2015
    Inventors: Jicheng Zhou, Zhe Wang, Hongli Wang, Meng Wang, Guiyue Mao, Zunfang Jiang, Lingfei Gao
  • Patent number: 8895467
    Abstract: An Ag/MnyOx/C catalyst is disclosed, wherein MnyOx is one of Mn3O4 and MnO, or the mixture of Mn3O4 and MnO, or the mixture of Mn3O4 and MnO2 with the mass content of MnO2 in the mixture of Mn3O4 and MnO2 being 0.01-99.9%. The catalyst is obtained by pyrolyzing AgMnO4 at a high temperature. The preparation method comprises two steps: (1) preparing AgMnO4 crystal as the precursor; (2) preparing the Ag/MnyOx/C catalyst. The catalyst has advantages such as high oxygen reduction reaction (ORR) catalytic activity in an alkaline environment, good stability, abundant availability and low cost of raw materials, safety, non-toxicity and pollution-free, environmental friendliness, and adaptive capacity for massive production. The catalyst can be used as oxygen reduction catalyst in metal air fuel cell, alkali anion exchange membrane fuel cell and other alkaline environments.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: November 25, 2014
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Gongquan Sun, Qiwen Tang, Luhua Jiang, Suli Wang
  • Publication number: 20140336037
    Abstract: An electrocatalyst for the electrochemical conversion of carbon dioxide to hydrocarbons is provided. The electrocatalyst for the electrochemical conversion of carbon dioxide includes copper material supported on carbon nanotubes. The copper material may be pure copper, copper and ruthenium, copper and iron, or copper and palladium supported on the carbon nanotubes. The electrocatalyst is prepared by dissolving copper nitrate trihydrate in deionized water to form a salt solution. Carbon nanotubes are then added to the salt solution to form a suspension, which is then heated. A urea solution is added to the suspension to form the electrocatalyst in solution. The electrocatalyst is then removed from the solution. In addition to dissolving the copper nitrate trihydrate in the deionized water, either iron nitrate monohydrate, ruthenium chloride or palladium chloride may also be dissolved in the deionized water to form the salt solution.
    Type: Application
    Filed: July 25, 2014
    Publication date: November 13, 2014
    Inventors: SALEEM UR RAHMAN, SYED MOHAMMED JAVAID ZAIDI, SHAKEEL AHMED, SK SAFDAR HOSSAIN
  • Patent number: 8859458
    Abstract: Provided are a method of preparing an electrocatalyst for fuel cells in a core-shell structure, an electrocatalyst for fuel cells having a core-shell structure, and a fuel cell including the electrocatalyst for fuel cells. The method may be useful in forming a core and a shell layer without performing a subsequent process such as chemical treatment or heat treatment and forming a core support in which core particles having a nanosize diameter are homogeneously supported, followed by selectively forming shell layers on surfaces of the core particles in the support. Also, the electrocatalyst for fuel cells has a high catalyst-supporting amount and excellent catalyst activity and electrochemical property.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: October 14, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Seung Jun Hwang, Sung Jong Yoo, Soo Kil Kim, Eun Ae Cho, Jong Hyun Jang, Hyoung Juhn Kim, Suk Woo Nam, Tae Hoon Lim
  • Publication number: 20140249334
    Abstract: Ethylene glycol and propylene glycol may be made by hydrogenolysis of a polyol comprising the steps of reacting a polyol with hydrogen in the presence of a hydrogenolysis catalyst. The hydrogenolysis comprises nickel, one or more promoter, and one or more support. The promoter is selected from bismuth, silver, tin, antimony, gold, lead, thallium, cerium, lanthanum, and manganese. The support is selected from zirconia and carbon. A zirconia support comprises a zirconia textual promoter, which is selected from Cr, Mo, W, Nb, Ce, Ca, Mg, La, Pr, Nd, Al, and P. If the support comprises carbon, then the promoter is selected from bismuth and antimony. In another embodiment, if the support comprises carbon, then both the promoter is selected from bismuth and antimony, and the catalyst comprises copper. In another embodiment, the catalyst additionally comprises copper.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 4, 2014
    Applicant: Clariant Corporation
    Inventors: Aaron B. MILLER, Malati RAGHUNATH, Valery SOKOLOVSKII, Claus G. LUGMAIR, Anthony F. VOLPE, JR., Wenqin SHEN, Wayne TURBEVILLE
  • Patent number: 8816130
    Abstract: A heterogeneous catalyst that is a combination of rhodium, zinc, iron, a fourth metal and at least one metal selected from alkali metals and alkaline earth metals on a catalyst support (e.g. at least one of silica, alumina, titania, magnesia, zinc aluminate (ZnAl2O4), magnesium aluminate (MgAl2O4), magnesia-modified alumina, zinc oxide-modified alumina, zirconium oxide-modified alumina, and zinc oxide) and use of the catalyst in converting an alkylene to an oxygenate that has one more carbon atom than the alkylene.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: August 26, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Palanichamy Manikandan, Sreenivasa Rao, Phani Kiran Bollapragada, David G. Barton, Richard M. Wehmeyer, William Tenn, Gerolamo Budroni
  • Publication number: 20140228201
    Abstract: Method for producing a substrate with Au (gold) nanoclusters affixed to the surface thereof and substrate and catalyst obtained by means of said method. The method consists in preparing a solution containing, in disperse form, Au nanoclusters and, also in disperse form, a substrate with a surface functionalised with a polyelectrolyte that confers a net electric charge thereon, and in intensely agitating said solution to affix Au nanoclusters to the substrate surface. This results in a substrate that has a surface with Au nanoclusters affixed in disperse form, significantly without clusters. The invention also relates to a catalyst that comprises said substrate with Au nanoclusters affixed to the surface thereof. Said catalyst is particularly suitable for use in oxidation reactions.
    Type: Application
    Filed: October 17, 2012
    Publication date: August 14, 2014
    Applicant: UNIVERSITAT POLITECNICA DE CATALUNYA
    Inventors: Ernest Mendoza Gómez, Jordi Llorca Piqué
  • Patent number: 8785343
    Abstract: This invention relates to a mesoporous carbon supported copper based catalyst comprising mesoporous carbon, a copper component and an auxiliary element supported on said mesoporous carbon, production and use thereof. The catalyst is cheap in cost, friendly to the environment, and satisfactory in high temperature resistance to sintering, with a highly improved and a relatively stable catalytic activity.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: July 22, 2014
    Assignees: China Petroleum & Chemical Corp., Sinopec Yangzi Petrochemical Co., Ltd.
    Inventors: Jingwei Liu, Zezhuang Li, Shaohui Chen, Aiwu Yang, Jiye Bai, Lijuan Liu, Yingwu Wang
  • Patent number: 8785699
    Abstract: Systems, catalysts, and methods are provided for transforming carbon based material into synthetic mixed alcohol fuel.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: July 22, 2014
    Assignee: Pioneer Energy, Inc.
    Inventors: Emily Bostwick White, Cherie Wilson, Mark Berggren, Robert M. Zubrin
  • Publication number: 20140179513
    Abstract: The invention relates to a catalytic material which is used as an optofluidic reactor, and also a method for production thereof. In this case, first a reticulated plastic foam can be fabricated which then is coated with at least one first metal or metal alloy layer. Subsequently, a photocatalytic substrate is then applied to the metal or metal alloy layer. The photocatalytic substrate eliminates bacteria, viruses and other harmful substances, as well as fine dust or fungal spores, when the optofluidic reactor is used.
    Type: Application
    Filed: May 25, 2012
    Publication date: June 26, 2014
    Inventor: Wolfgang Kollmann
  • Publication number: 20140159181
    Abstract: A graphene-nanoparticle structure includes a substrate, a graphene layer disposed on the substrate and a nanoparticle layer disposed on the graphene layer. The graphene-nanoparticle structure may be formed by alternately laminating the graphene layer and the nanoparticle layer and may play the role of a multifunctional film capable of realizing various functions according to the number of laminated layers and the selected material of the nanoparticles.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 12, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung-min KIM, Dae-Jun KANG, Seung-nam CHA, Muhammad Imran SHAKIR, Young-jun PARK
  • Patent number: 8741243
    Abstract: Sorbent bodies comprising activated carbon, processes for making them, and methods of using them. The sorbent bodies can be used to remove toxic elements from a fluid, such as from a gas stream. For instance, the sorbent bodies may be used to remove elemental mercury or mercury in an oxidized state from a coal combustion flue gas.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: June 3, 2014
    Assignee: Corning Incorporated
    Inventors: Kishor Purushottam Gadkaree, Benedict Yorke Johnson, Pei Qiong Kuang, Anbo Liu, Youchun Shi
  • Publication number: 20140135411
    Abstract: The present invention relates to a catalyst composition comprising cobalt molybdenum and optionally one or more elements selected from the group consisting of alkali metals and alkaline earth metals on a carbon support wherein said cobalt and molybdenum are in their metallic form. It was surprisingly found that the selectivity for alcohols can be increased by using the carbon supported cobalt molybdenum catalyst as described herein in a process for producing alcohols from a feed stream comprising hydrogen and carbon monoxide. Furthermore, it was found that the catalyst of the present invention has a decreased selectivity for CO2 and can be operated at relatively low temperature when compared to conventional catalysts. Moreover, a method for preparing the carbon supported cobalt molybdenum catalyst composition and a process for producing alcohols using said carbon supported cobalt molybdenum catalyst composition is provided.
    Type: Application
    Filed: April 19, 2012
    Publication date: May 15, 2014
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Khalid Karim, Graham Hutchings, Sarwat Iqbal
  • Patent number: 8716168
    Abstract: Electrode catalysts for fuel cells, a method of manufacturing the same, a membrane electrode assembly (MEA) including the same, and a fuel cell including the MEA are provided. The electrode catalysts include a first catalyst alloy containing palladium (Pd), cobalt (Co), and phosphorus (P), a second catalyst alloy containing palladium (Pd) and phosphorus (P), and a carbon-based support to support the catalysts.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: May 6, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-jong Yoo, Kyung-jung Kwon, Chan-ho Pak, Victor Roev, Kang-hee Lee, Seon-ah Jin
  • Patent number: 8703639
    Abstract: This invention relates to the field of heterogeneous catalysis, and more particularly to oxidation catalysts including carbon supports having deposited thereon a noble metal and one or more optional promoters and to methods for their preparation. The invention further relates to the field of heterogeneous catalytic oxidation reactions, including the preparation of secondary amines by the catalytic oxidation of tertiary amines, such as the oxidation of an N-(phosphonomethyl)iminodiacetic acid to produce an N-(phosphonomethyl)glycine product.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: April 22, 2014
    Assignee: Monsanto Technology LLC
    Inventors: Kam-To Wan, Mark A. Leiber
  • Patent number: 8685878
    Abstract: A multimetallic nanoscale catalyst having a core portion enveloped by a shell portion and exhibiting high catalytic activity and improved catalytic durability. In various embodiments, the core/shell nanoparticles comprise a gold particle coated with a catalytically active platinum bimetallic material. The shape of the nanoparticles is substantially defined by the particle shape of the core portion. The nanoparticles may be dispersed on a high surface area substrate for use as a catalyst and is characterized by no significant loss in surface area and specific activity following extended potential cycling.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: April 1, 2014
    Assignee: UChicago Argonne, LLC
    Inventors: Vojislav Stamenkovic, Nenad M. Markovic, Chao Wang, Hideo Daimon, Shouheng Sun
  • Patent number: 8685287
    Abstract: A method of making a mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel, including the steps of dispersing nanotubes in an aqueous media or other media to form a suspension, adding reactants and catalyst to the suspension to create a reaction mixture, curing the reaction mixture to form a wet gel, drying the wet gel to produce a dry gel, and pyrolyzing the dry gel to produce the mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel. The aerogel is mechanically robust, electrically conductive, and ultralow-density, and is made of a porous carbon material having 5 to 95% by weight carbon nanotubes and 5 to 95% carbon binder.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: April 1, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Joe H. Satcher, Jr.
  • Patent number: 8664143
    Abstract: A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: March 4, 2014
    Assignee: Lawrence Livermore National Security, LLC.
    Inventors: Marcus A. Worsley, Thomas Yong-Jin Han, Joshua D. Kuntz, Octavio Cervantes, Alexander E. Gash, Theodore F. Baumann, Joe H. Satcher, Jr.
  • Patent number: 8664149
    Abstract: Heterogeneous catalyst systems, methods of making these systems, and methods of using these systems, wherein catalytically active gold is deposited onto composite support media. The composite support media is formed by providing nanoporous material on at least a portion of the surfaces of carbonaceous host material. In representative embodiments, relatively fine, nanoporous guest particles are coated or otherwise provided on surfaces of relatively coarser activated carbon particles. Catalytically active gold may be deposited onto one or both of the guest or host materials either before or after the guest and host materials are combined to from the composite host material. PVD is the preferred catalyst system of depositing gold.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: March 4, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: John T. Brady, Marvin E. Jones, Larry A. Brey, Gina M. Buccellato, Craig S. Chamberlain, John S. Huberty, Allen R. Siedle, Thomas E. Wood, Badri Veeraraghavan, Duane D. Fansler
  • Patent number: 8664148
    Abstract: Use of physical vapor deposition methodologies to deposit nanoscale gold on activating support media makes the use of catalytically active gold dramatically easier and opens the door to significant improvements associated with developing, making, and using gold-based, catalytic systems. The present invention, therefore, relates to novel features, ingredients, and formulations of gold-based, heterogeneous catalyst systems generally comprising nanoscale gold deposited onto a nanoporous support.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: March 4, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Larry A. Brey, Thomas E. Wood, Gina M. Buccellato, Marvin E. Jones, Craig S. Chamberlain, Allen R. Siedle
  • Patent number: 8658554
    Abstract: A catalyst support which may be used to support various catalysts for use in reactions for hydrogenation of carbon dioxide including a catalyst support material and an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction associated with the catalyst support material. A catalyst for hydrogenation of carbon dioxide may be supported on the catalyst support. A method for making a catalyst for use in hydrogenation of carbon dioxide including application of an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction to a catalyst support material, the coated catalyst support material is optionally calcined, and a catalyst for the hydrogenation of carbon dioxide is deposited on the coated catalyst support material. A process for hydrogenation of carbon dioxide and for making syngas comprising a hydrocarbon, esp. methane, reforming step and a RWGS step which employs the catalyst composition of the present invention and products thereof.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: February 25, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Robert W. Dorner, Heather D. Willauer, Dennis R Hardy
  • Patent number: 8648004
    Abstract: A method for preparing a metal-nanotube composite catalyst for an electro-chemical oxygen reduction reaction includes: debundling carbon nanotubes (CNTs); loading a carbon-containing polymeric material onto the surfaces of the nanotubes that have been debundled; carbonizing in situ the carbon-containing polymeric material on the carbon nanotubes to form carbon char layers surrounding the surfaces of the carbon nanotubes; and loading metal catalyst particles on the carbon nanotubes. The carbon char layers contain high amount of nitrogen and may be formed into a porous structure.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: February 11, 2014
    Assignee: National Cheng Kung University
    Inventors: Ping-Lin Kuo, Chun-Han Hsu, Wan-Ting Li, Hsiu-Mei Wu
  • Publication number: 20140031195
    Abstract: The method for producing a material loaded with gold nanoparticles, includes: impregnating a carrier with an anionic gold-hydroxo complex solution including a transparent solution that has a pH of not lower than 8, does not contain a halide anion, and contains a conjugate base of a weak acid not coordinated to gold and an anionic hydroxo complex of trivalent gold having a square planar molecular geometry whose at least one ligand is OH? and not containing a halide anion as a ligand; removing water; heating; and washing with water. According to the method, in a method for preparing a gold nanoparticle catalyst using a liquid phase method, a gold compound not containing a halide such as chloride is used as a raw material, and the gold compound can be supported efficiently. Furthermore, a gold nanoparticle-loaded catalyst having high activity can be obtained through a simple preparation method.
    Type: Application
    Filed: April 18, 2012
    Publication date: January 30, 2014
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Hiroaki Sakurai, Takae Takeuchi, Kenji Koga, Masato Kiuchi
  • Publication number: 20140030171
    Abstract: The invention related to a nano-structured catalyst system for removing mercaptans and/or H2S from hydrocarbonous gas mixtures and an apparatus for removing mercaptans and H2S from gas streams utilizing the catalyst system.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 30, 2014
    Applicant: RIPI
    Inventors: Ali Mohamadalizadeh, Alimorad Rashidi, Jafar Towfighi, Ali Mohajeri, Morteza Rezapour, Kheirollah Jafarijozani, Mehdi Vahidi
  • Publication number: 20140015158
    Abstract: Multilayer substrates for the growth and/or support of CNT arrays are provided. These multilayer substrates both promote the growth of dense vertically aligned CNT arrays and provide excellent adhesion between the CNTs and metal surfaces. Carbon nanotube arrays formed using multilayer substrates, which exhibit high thermal conductivity and excellent durability, are also provided. These arrays can be used as thermal interface materials.
    Type: Application
    Filed: July 11, 2012
    Publication date: January 16, 2014
    Inventor: Baratunde A. Cola
  • Patent number: 8618020
    Abstract: Use of physical vapor deposition methodologies to deposit nanoscale gold on activating support media makes the use of catalytically active gold dramatically easier and opens the door to significant improvements associated with developing, making, and using gold-based, catalytic systems. The present invention, therefore, relates to novel features, ingredients, and formulations of gold-based, heterogeneous catalyst systems generally comprising nanoscale gold deposited onto a nanoporous support.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: December 31, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Larry A. Brey, Thomas E. Wood, Gina M. Buccellato, Marvin E. Jones, Craig S. Chamberlain, Allen R. Siedle
  • Patent number: 8603934
    Abstract: A carbon nanosphere has at least one opening. The carbon nanosphere is obtained by preparing a carbon nanosphere and treating it with an acid to form the opening. The carbon nanosphere with at least one opening has higher utilization of a surface area and electrical conductivity and lower mass transfer resistance than a conventional carbon nanotube, thus allowing for higher current density and cell voltage with a smaller amount of metal catalyst per unit area of a fuel cell electrode.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: December 10, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hyuk Chang, Chan-Ho Pak, Jian Nong Wang
  • Publication number: 20130310610
    Abstract: A heterogeneous catalyst that is a combination of rhodium, zinc, iron, a fourth metal and at least one metal selected from alkali metals and alkaline earth metals on a catalyst support (e.g. at least one of silica, alumina, titania, magnesia, zinc aluminate (ZnAl2O4), magnesium aluminate (MgAl2O4), magnesia-modified alumina, zinc oxide-modified alumina, zirconium oxide-modified alumina, and zinc oxide) and use of the catalyst in converting an alkylene to an oxygenate that has one more carbon atom than the alkylene.
    Type: Application
    Filed: January 12, 2012
    Publication date: November 21, 2013
    Applicant: Dow Global Technologies LLC
    Inventors: Palanichamy Manikandan, Sreenivasa Rao, Phani Kiran Bollapragada, David G. Barton, Richard M. Wehmeyer, William Tenn, Gerolamo Budroni
  • Publication number: 20130295483
    Abstract: A method for producing a fuel cell electrode catalyst including a metal element selected from aluminum, chromium, manganese, iron, cobalt, nickel, copper, strontium, yttrium, tin, tungsten, and cerium and having high catalytic activity through heat treatment at comparatively low temperature. The method including: a step (1) of mixing at least a certain metal compound (1), a nitrogen-containing organic compound (2), and a solvent to obtain a catalyst precursor solution, a step (2) of removing the solvent from the catalyst precursor solution, and a step (3) of heat-treating a solid residue, obtained in the step (2), at a temperature of 500 to 1100° C. to obtain an electrode catalyst; a portion or the entirety of the metal compound (1) being a compound containing, as the metal element, a metal element M1 selected from aluminum, chromium, manganese, iron, cobalt, nickel, copper, strontium, yttrium, tin, tungsten, and cerium.
    Type: Application
    Filed: August 9, 2011
    Publication date: November 7, 2013
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji Monden, Takuya Imai, Yasuaki Wakizaka, Kunchan Lee, Takashi Sato
  • Patent number: 8568678
    Abstract: The reductive removal of nitrogen oxides from the exhaust gas from internal combustion engines operated predominantly under lean conditionstakes place in a selective catalytic reduction (SCR) of the nitrogen oxides by means of ammonia or a compound which can be decomposed into ammonia as reducing agent. Conventional SCR catalysts typically have a relatively narrow working temperature window, usually 350° C. to 520° C., in which good nitrogen oxide conversions can be achieved with sufficient selectivity. SCR catalyst formulations whose working window is in the temperature range from 150° C. to 350° C. generally not be used at higher temperatures since they oxidize the ammonia required as reducing 18 agent to nitrogen oxides at above 350° C. To cover the entire exhaust gas temperature range typical of vehicles having been operating internal combustion enginesextending from 200° C. to 600° C.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: October 29, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Nicola Soeger, Lothar Mussmann, Ralf Sesselmann, Katja Adelmann, Wolfgang Schneider
  • Publication number: 20130274355
    Abstract: The present invention relates to a catalyst composition comprising cobalt manganese oxide which is modified with lanthanum and/or phosphorus and optionally one or more basic elements selected from the group consisting of alkali metal, alkaline earth metal and transition metal. Furthermore, a method for preparing said catalyst composition and a process for producing aliphatic and aromatic hydrocarbons by Fischer-Tropsch synthesis using said catalyst composition is provided.
    Type: Application
    Filed: December 15, 2011
    Publication date: October 17, 2013
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Khalid Karim, Saleh A. Al-Sayari
  • Patent number: 8551905
    Abstract: A gold-carbon compound that is a reaction product of gold and carbon, wherein the gold and the carbon form a single phase material that is meltable. The compound is one in which the carbon does not phase separate from the gold when the single phase material is heated to a melting temperature.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: October 8, 2013
    Assignee: Third Millennium Metals, LLC
    Inventors: Jason V. Shugart, Roger C. Scherer
  • Publication number: 20130256123
    Abstract: An electrocatalyst for the electrochemical conversion of carbon dioxide to hydrocarbons is provided. The electrocatalyst for the electrochemical conversion of carbon dioxide includes copper material supported on carbon nanotubes. The copper material may be pure copper, copper and ruthenium, copper and iron, or copper and palladium supported on the carbon nanotubes. The electrocatalyst is prepared by dissolving copper nitrate trihydrate in deionized water to form a salt solution. Carbon nanotubes are then added to the salt solution to form a suspension, which is then heated. A urea solution is added to the suspension to form the electrocatalyst in solution. The electrocatalyst is then removed from the solution. In addition to dissolving the copper nitrate trihydrate in the deionized water, either iron nitrate monohydrate, ruthenium chloride or palladium chloride may also be dissolved in the deionized water to form the salt solution.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 3, 2013
    Applicants: KING ABDULAZIZ CITY FOR SCIENCE AND TECHNOLOGY, KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: SALEEM UR RAHMAN, SYED MOHAMMED JAVAID ZAIDI, SHAKEEL AHMED, SK SAFDAR HOSSAIN